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Preface 

This book deals with ultrasonic nondestructive evaluation (NDE) inspections 
where high frequency waves are used to locate and characterize dangerous 
flaws (such as cracks) in materials. Ultrasonic NDE flaw inspections 
involve a very complex combination of electrical, electromechanical, and 
acoustic/elastic components so that it is important to understand the 
behavior of those components and their interactions in order to make 
quantitative flaw measurements. It will be shown that through the use of 
models and measurements it is now possible to characterize all the 
elements of an ultrasonic NDE flaw inspection system. Those elements 
include the pulser/receiver, the cabling, the transducers, and the wave 
propagation and scattering processes present in an ultrasonic NDE flaw 
measurement. It will also be demonstrated how to combine models and 
measurements of those elements to form ultrasonic measurement models 
which can simulate the flaw signals seen in ultrasonic NDE tests. This 
comprehensive modeling and measurement capability is described for the 
first time in this book. 

There are important engineering applications of this new techno-
logy. For example, these ultrasonic models and measurements can be used 
to design new ultrasonic inspections as well as optimize existing ones. 
This technology can also help one to extract information on the nature of 
the flaw present from the measured ultrasonic flaw signals that can then be 
used to evaluate the safety and reliability of the material being inspected. 

The topics covered in this book include Fourier analysis, linear 
system theory, and wave propagation and scattering theory for fluids and 
solids. A series of Appendices provide some background materials for all 
these topics. Additional background information in these areas can be 
found in Fundamentals of Ultrasonic Nondestructive Evaluation – A 
Modeling Approach by L. W. Schmerr Jr. This book will also provide 
many details of the fundamentals of the ultrasonic measurement process 
but the primary purpose here is to show how the elements of an ultrasonic 
measurement system combine to generate a measured signal received from 
a flaw in a material and to give models and measurements that make it 
practical to simulate those measured flaw signals. In addition to giving the 
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VIII      Preface 

equations and models that govern the behavior of an ultrasonic system we 
also develop some simple but powerful MATLAB functions and scripts. 
Those functions/scripts can be used by the reader to conduct simulated 
inspections and to quickly learn how to implement this modeling 
technology. The validity of the models discussed is also demonstrated by 
comparing them to experiments.  
 There are two parts of this book that warrant special notice. First, a 
recently developed pulse-echo method for measuring the sensitivity of an 
ultrasonic transducer is given in Chapter 6. This method makes the 
experimental characterization of transducers much easier than previous 
methods. Since transducer characterization is an important part of the 
series of measurements needed to characterize completely all the 
components an ultrasonic measurement system, having this simple method 
for calculating sensitivity also makes that entire chain of measurements 
more practical. Second, in Chapter 9 we give a complete description of 
Gaussian beam theory and its use for simulating the wave fields generated 
by ultrasonic transducers in the form of a multi-Gaussian beam model. 
Although there are other methods for calculating these wave fields, multi-
Gaussian beam models are generally the most effective ultrasonic beam 
models available. Gaussian beams have been described in other application 
areas such as Laser science and Geophysics, but the underlying theory as it 
relates to NDE problems has not been previously given in a complete and 
unified manner. Chapter 9, therefore, provides a detailed discussion of 
Gaussian beams as used for modeling sound beams in fluids and isotropic, 
homogeneous elastic solids. Because the general treatment in Chapter 9 
necessarily leads to a lengthy and detailed description of Gaussian beam 

of circularly symmetric Gaussian beams along a single direction, a simple 
case where the properties of these beams can be more clearly illustrated 
and explained. 
 This book is an outgrowth of over thirty years of ultrasonic NDE 
modeling research by the two authors, their colleagues from around the 
world, and many students.  It is designed to communicate that research in 
an organized fashion and to serve as the foundation for solving many 
important ultrasonic NDE problems. However, it is also our vision that this 
modeling technology is not just for the “modelers”. We believe that 
modeling can affect the NDE community at all levels. Thus, the book was 
developed as part of a workshop series sponsored by the World Federation 
of NDE Centers (www.wfndec.org). One purpose of that series is to “teach 
the teacher”, that is to provide materials to those with a responsibility for 
supervising and educating others in the NDE field so that they in turn 
could communicate the materials and resulting knowledge to others. This 

theory, Appendix F describes the propagation and transmission/reflection 
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book is written at an advanced undergraduate or graduate education level, 
but by combining the concepts presented here with the simulation 
capabilities that the MATLAB functions provide one can use or deliver 
this material at a number of levels. We hope that the reader will enjoy 
learning about how ultrasonic NDE systems work as much as we have and 
will pass that learning on to others. We have placed exercises at the end of 
some of the Chapters and Appendices (most of them MATLAB-based) to 
help in that learning process. 
 We would especially like to thank Prof. Alexander Sedov and Drs. 
Hak-Joon Kim, Ana Lopez-Sanchez, Ruiju Huang, and Changjiu Dang for 
both their contributions to the research that has helped make this book 
possible and for their assistance in its preparation. 
  
 
L.W. Schmerr 
S.J. Song 

Preface 
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1 Introduction 

1.1 Prologue 

In the following Chapters we will describe in detail models that can be 
used to characterize all the elements of an ultrasonic nondestructive 
evaluation (NDE) flaw measurement system. We will also discuss the 
measurements needed to obtain the system parameters that appear in the 
models. These models can be used to optimize existing inspections, design 
new inspections, and analyze inspection results. This technology can also 
be a major cost-saving tool for industry if the models are used to replace 
expensive tests and sample fabrications. For this to occur, it must be clear 
that the models are accurate and reliable. We hope to provide sufficient 
information on current ultrasonic NDE modeling efforts so that the reader 
can better judge for himself/herself the maturity of this field.  

Many aspects of modeling ultrasonic NDE systems require a back-
ground in linear system theory and wave propagation and scattering theory. 
We will provide some of that background in the Appendices and later 
Chapters but in many cases we will state results without proof and point 
the reader to other sources. One source in particular that will be referred to 
frequently is the book Fundamentals of Ultrasonic Nondestructive Evaluation 
– A Modeling Approach by L.W. Schmerr Jr. which is listed as a reference 
at the end of this Chapter. In subsequent discussions that source will be 
referred to as the reference [Fundamentals].  

In this Chapter we will provide an overview of the models and 
methods that will be discussed in later Chapters, using the flaw measurement 
setup of Fig. 1.1 as an example. We will highlight the major results that 
allow us to model all the components of Fig.1.1 and ultimately obtain an 
explicit model of the entire measurement system. Although most of our 
discussions will refer to the immersion system of Fig. 1.1, the models are 
also applicable to other NDE setups that involve angle beam and contact 
transducers. Some angle beam inspection applications of the models, for 
example, are described in Chapter 13.  
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Fig. 1.1. The components of an ultrasonic flaw measurement system. 

Throughout this book we will only model inspection systems that 
use bulk waves. Appendix E gives a brief introduction to the properties of 
other types of waves such as surface (Rayleigh) waves and guided waves 
but models of inspections with those wave types require transducer models 
and wave propagation and scattering models that are not treated here. 

1.2 Ultrasonic System Modeling – An Overview 

An ultrasonic measurement system involves the generation, propagation, 
and reception of short transient signals. In the electrical elements of the 
system shown in Fig. 1.1 such as the pulser/receiver and cabling, these signals 
are electrical pulses. In the acoustic/elastic parts of the system, the signals 
are short time duration acoustical pulses traveling in either fluids or solids. 

 

The ultrasonic transducers are “mixed” devices that transform electri-

systems it is convenient not to deal with these transient signals directly 
cal pulses into acoustic pulses, and vice-versa. In modeling ultrasonic 

b ut to work instead  with their spectral  (frequency domain) components. 
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Fig. 1.2. (a) A voltage versus time trace and (b) the magnitude of its frequency 
domain spectrum (for positive frequencies).  

Thus, Fourier analysis becomes an essential part of any discussion of 
ultrasonic system modeling. Figure 1.2, for example, shows a simulated 
transient voltage versus time signal that might be measured in an ultrasonic 
NDE system and its corresponding spectral amplitude. It can be seen that 
the pulse in Fig. 1.2 is very short (typically on a microsecond scale) and 
the corresponding frequencies in the pulse spectrum are in the 106 Hz 
(MHz) range. These values are similar to the pulses and spectra one  
often finds in NDE tests. Appendix A gives a brief  introduction to Fourier  
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Fig. 1.3.  An ultrasonic pulser and an equivalent circuit model as a voltage source 
and electrical impedance. 

transforms, Fast Fourier transforms and related concepts that form some of 
the fundamental foundations for transforming time signals into frequency 
domain signals and vice-versa. 

Chapter 2 discusses the modeling of the pulser section of a 
pulser/receiver and the basic characteristics of the signals generated by the 
pulser. The pulser is an active electrical network, i.e. it contains a driving 
energy source as well as complex circuits that shape the output electrical 
pulse. If the pulser acts as a linear device, then it can be replaced by a very 
simple equivalent model (in the frequency domain) consisting of a voltage 
source, ( )iV ω , and impedance, ( )e

iZ ω , both of which are complex functions 
of the circular frequency,ω, as shown in Fig. 1.3. This representation is 
possible because of a fundamental theorem of electrical circuits called 
Thévenin’s Theorem. Appendix B gives a brief proof of Thévenin’s 
theorem and discusses the concept of impedance. It is demonstrated in 
Chapter 2 that one can experimentally determine the voltage source and 
impedance terms shown in Fig. 1.3 by performing a set of electrical  
voltage measurements on the pulser under different loading conditions. 
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matrix, [T]. 

Note that these measurements are done for a particular set of pulser settings 
(such as energy and damping). When the pulser settings are changed, the 
equivalent source and impedance also change.  

The cabling in a measurement system is discussed in Chapter 3. 
The cable is modeled as a two port system of the type shown in Fig. 1.4, 
where an input voltage and current at one end of the cable is transformed 
into an output voltage and current at the other end. The relationship between 
these inputs and outputs can be expressed in terms of a 2x2 transfer 
matrix, [ ]T , where: 

1 11 12 2

1 21 22 2

V T T V
I T T I

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎣ ⎦ ⎩ ⎭
. (1.1)

Two port systems and related concepts such as linear time-shift 
invariant (LTI) systems are also important fundamental foundations for 
analyzing linear systems. These concepts are discussed in Appendix C. It 
is shown in Chapter 3 that the transfer matrix components of the cabling 
can also be obtained by performing a set of electrical measurements at the 
ends of the cable under different driving/termination conditions. From 
those measurements it can be seen that at the MHz frequencies found in 
ultrasonic systems unless the cabling is very short (typically much less 
than a meter in length) the cables do not act as pure “pass-through” devices 
that simply transfer the signal unchanged from one end of the cable to the 
other. Thus, cabling has an effect on the measured signals and this part of 
the ultrasonic system needs to be characterized as part of any system 
modeling effort. 

Fig. 1.4  A cable and its model as a two port system characterized by a 2x2 transfer 
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Fig. 1.5. (a) A transmitting ultrasonic  transducer A as a transformer of voltage, 

inV , and current, inI , at its electrical port into a compressive  force, F, and average 
velocity, v, at its  acoustic port, and (b) a model of the transducer characterized by 
a 2x2 transfer matrix, A⎡ ⎤⎣ ⎦T . 

Chapter 4 discusses a transducer when it is used as a generator of 
sound in an ultrasonic system. Like the cabling, the sending transducer can 
be modeled as a two port system where the voltage and current at the input 
electrical port are converted into a compressive force and average velocity 

matrix in the same manner as done for the cabling, one would have to 
perform a series of both electrical and acoustic measurements at the 
input/output ports under different driving/termination conditions. This is 
possible in principle but in general it is not practical since it is difficult 
(and expensive) to make the precise acoustic measurements this type of 
characterization would require. It is shown in Chapter 4, however, that it is 
not necessary to know all the elements of the transducer transfer matrix 
directly since when the transducer A of Fig. 1.5 is used in practice it is 
always radiating waves into a known medium. For radiation into a fluid or 
a linear elastic solid the output compressive  force, ( )tF ω , and the average  
 

on the output side (Fig. 1.5). To characterize the transducer’s transfer 
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Fig. 1.6. (a) A transmitting transducer radiating into a medium characterized by a 
terminated two-port system, and (b) a simpler equivalent model of the transducer 
as an electrical impedance, ( );A e

inZ ω , and a sensitivity, ( )A
vIS ω . 

output velocity, ( )tv ω , are proportional to each other through the relation-
ship ;A a

t r tF Z v= , where ( );A a
rZ ω  is the acoustic radiation impedance of 

transducer A as shown in Fig. 1.6 (a). This relationship results in the two 
port transfer matrix model of the transducer being terminated at its 
acoustic port with the acoustic impedance ( );A a

rZ ω . Under these 
conditions it is shown in Chapter 4 that one can replace the terminated 
transducer transfer matrix by an equivalent reduced transducer model 
consisting only of an electrical impedance, ;A e

inZ , and a transducer 
sensitivity, A

vIS , as shown in Fig. 1.6 (b), where the sensitivity is modeled 
as an ideal “converter” that transforms input current to output velocity or 
force. The transducer impedance, ;A e

inZ , is by definition the input voltage 
divided by  the input current,  while  the sensitivity, A

vIS  , is defined as the  
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Fig. 1.7. (a) The sound generation process consisting of the pulser, cabling, and 
sending transducer. (b) The detailed models of each of those components. (c) A 
single input-output LTI system model characterized by the sound generation 
transfer function, ( )Gt ω . 

average output velocity divided by the input current. The advantage of 
using this reduced model is that both the transducer impedance and 
sensitivity can be obtained by purely electrical measurements, making it 
possible to readily characterize a transducer in terms of these parameters. 
Chapter 6 outlines a new pulse-echo method for determining transducer 
electrical impedance and sensitivity that makes it easy to obtain these 
quantities in a simple calibration setup. Chapter 6 also describes the 
measurement of “effective” transducer parameters such as effective radius 
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and focal length. Those effective values are needed to accurately model the 
wave field of a transducer.  
 In Chapter 4 it is demonstrated that at high frequencies the 
acoustic radiation impedance is a known constant if the transmitting 
transducer acts as a piston source (i.e. if the velocity distribution is 
uniform over the transducer surface at the acoustic port). For an immersion 
piston transducer, for example, ;A a

r f f AZ c Sρ= , where fρ  is the density of 
the fluid, fc  is the compressional wave speed of the fluid, and AS  is the area 
of the transducer face at the acoustic port. Thus, with measurements of 

; ,A e A
in vIZ S  and the transducer effective parameters and with ;A a

rZ easily 
found, it is possible to completely characterize the transmitting transducer’s 
role in the ultrasonic measurement system. 

Since the model parameters of the pulser, cabling and transducer 
shown in Figs. 1.3-1.6 can all be obtained with a series of measurements, it 
is also possible to combine these models together into a single linear time-
shift invariant (LTI) system that characterizes the entire sound generation 
process, as shown in Fig. 1.7. From the concepts discussed in Appendix C, 
the LTI system for the sound generation process can be represented in 
terms of a transfer function, ( )Gt ω , that relates the voltage source, ( )iV ω , of 
the pulser to the output force, ( )tF ω , of the transducer. In Chapter 4, this 
sound generation transfer function is given explicitly in terms of the 
pulser, cabling, and transducer parameters as: 

( ) ( )
( ) ( ) ( )

;

; ;
11 12 21 22

A a A
t r vI

G A e A e e
i in in i

F Z St
V Z T T Z T T Z

ω
ω

ω
= =

+ + +
. (1.2)

Since the pulser voltage source, ( )iV ω , and all the quantities appearing in 
this sound generation transfer function can be measured the output force 
on the transducer can be found as 

( ) ( ) ( )t G iF t Vω ω ω= . (1.3)

In Chapter 5 LTI system concepts are used again to relate the 
output force on the transmitting transducer, ( )tF ω , to the blocked force, 

( )BF ω  acting on the receiving transducer through an acoustic/elastic transfer  
function, ( )At ω  , that describes  all the three-dimensional wave propagation 
and scattering processes  occurring between the sending and receiving 
transducers. This relationship is given by: 
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10      Introduction 

Fig. 1.8. (a) A receiving transducer transforming the incident and scattered waves 
at the transducer face into output voltage, V, and current, I , and (b) a model of the 
receiving transducer and acoustic sources as a voltage source and  electrical 
impedance. 

 

( ) ( ) ( )B A tF t Fω ω ω= . (1.4)

The blocked force is defined in Chapter 5 as the compressive force 
exerted on the receiving transducer by the incident waves when its face is 
held rigidly fixed. As shown in Chapter 5, it is this particular force that 
arises naturally in the reception process and it is also shown that a 
receiving transducer B and the acoustic sources that drive it can be 
modeled as a voltage source B

s B vIV F S=  in series with an electrical impe-
dance, ;B e

inZ , where B
vIS  and ;B e

inZ  are the sensitivity and impedance of 
transducer B (see Fig. 1.8). This result shows that the same transducer  
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Fig. 1.9. The receiver modeled as an electrical impedance, ( )0

eZ ω , and a gain 
factor, ( )K ω . 
 
impedance and sensitivity that are used to characterize a transmitting 
transducer are also the terms needed to model the transducer when it is 
acting as a receiver. The receiving transducer is also connected to the 
receiver through cabling that can again be modeled as a 2x2 transfer 
matrix. The components of this matrix can be found by the same electrical 
measurements discussed in Chapter 3. The receiver, like the pulser, is an 
electrical network that needs to be characterized. In many ultrasonic 
pulser/receivers the receiver section performs both amplification and 
filtering functions. We will not model the filters present in ultrasonic 
receivers because in quantitative NDE measurements where one wants as 
wide a frequency response as possible these filtering functions are 
typically disabled. However, filtering can always be easily added to our 
receiver model when necessary. Thus, in Chapter 5 the receiver is modeled 

( )0
e ω ( )K ωZ , and a gain factor, , (see Fig. 1.9) only as an electrical impedance, 
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Fig. 1.10. (a) The sound reception process consisting of the receiving transducer, 
cabling, and receiver and (b) the detailed models of each of those components, 
which can be combined into (c) a single input-output LTI system model 
characterized by the sound reception transfer function, ( )Rt ω . 

both of which can also be found by a series of electrical measurements. 
Thus, the entire sound reception process can also be described by a 
reception transfer function, ( )Rt ω , that relates the frequency components 

( )R ω , to the blocked force, ( )BF ω , of the output voltage of the receiver, V
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Fig. 1.11. An ultrasonic measurement system modeled as a series of LTI systems, 
each characterized by their transfer functions. 

(see Fig. 1.10). This transfer function is given by 

( ) ( )
( ) ( ) ( ); ;

11 12 21 22

e B
R o vI

R B e B e e
B in in o

V K Z St
F Z R R Z R R Z

ω
ω

ω
= =

+ + +
, (1.5)

where the ijR  ( ), 1,2i j = terms are the components of the transfer matrix of 
the receiving cable shown in Fig. 1.10 (b). Since all the terms appearing in 
Eq. (1.5) can also be measured, this receiving transfer function can be 
obtained explicitly and we can write the output voltage, ( )RV ω , as 

( ) ( ) ( ) ( ) ( )R G R A iV t t t Vω ω ω ω ω= . (1.6)

Equation (1.6) gives a model of the entire measurement process as 
simply a product of transfer functions multiplied by the pulser source 
voltage, ( )iV ω (see Fig. 1.11). Equations (1.2) and (1.5) show that the 
generation and reception transfer functions can be determined by making 
electrical measurements of all the electrical and electromechanical 
components that make up those functions. Similarly, the pulser source vol-
tage, ( )iV ω  can be measured. Thus, the only remaining unknown in Eq. (1.6) 
is the acoustic/elastic transfer function, ( )At ω , where, from Eq. (1.4) 

( ) ( )
( )

B
A

t

F
t

F
ω

ω
ω

=  (1.7)

(see Fig. 1.12). It is not possible to directly measure this transfer function, 
since it is determined by inaccessible quantities  such as the displacements 
in the sound beam generated in the solid surrounding a flaw and the  
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Fig. 1.12. (a) The components of an ultrasonic measurement system, showing the 
sound generation process  that transforms the voltage source, ( )iV ω , into the 
transmitted (compressive) force, ( )tF ω , and the  sound reception process which 
transforms the blocked force, ( )BF ω , into the frequency components of the 
measured output voltage, ( )RV ω . The acoustic/elastic transfer function, ( )At ω , 
describes all the wave propagation and scattering processes that occur between the 
transmitting and receiving transducers. (b) The corresponding model of all the 

resulting displacements of the waves scattered from the flaw. However, it 
is possible to model those quantities if one has sufficiently general 
ultrasonic beam and flaw scattering models. Appendix D and Chapter 8 
both provide some basic background into wave propagation theory and the 
properties of sound beams in fluids and solids that is needed for beam 
models and flaw scattering models. In Chapter 9 an ultrasonic beam model 

the corresponding transfer functions that define the system. 
components of the measurement system showing the system elements and 
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Fig. 1.13. An ultrasonic immersion system for inspecting a flawed component. 

that uses the paraxial approximation and a superposition of Gaussian 
beams is developed for fluids and isotropic elastic solids. This multi-
Gaussian beam model allows one to simulate the ultrasonic sound beams 
found in many ultrasonic testing geometries and is computationally very 
efficient. Appendix F provides some background in Gaussian beam theory 
needed for a more thorough understanding of the models discussed in 
Chapter 9. Chapter 10 describes models of the waves scattered from flaws, 
using the Kirchhoff and Born approximations – two approximate methods 
that have been found to be very useful in modeling NDE problems. 
Chapter 10 also describes some exact scattering models for simple flaw 
shapes that can be used to validate those more approximate models.  In 
Chapter 11, a general expression for the acoustic/elastic transfer function is 
derived for an ultrasonic immersion flaw inspection system of the type 
shown in Fig. 1.13. This transfer function is shown to be given by 

( ) ( ) ( )
( ) ( ) ( ) ( )( )1 2 2 1

1 2;

1

f

A T a
Sr T R

t dS
Z v v

ω = ⋅ − ⋅∫ t v t v , (1.8)

where ;T a
rZ  is the acoustic radiation impedance of the transmitting 

transducer, T. The quantities ( ) ( )( )1 1,t v  are the traction vector and velocity 
vector, respectively, on the surface, fS , of the flaw when the transmitting 
transducer, T, is firing and the flaw is present (labeled as state (1)), while 
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( ) ( )( )2 2,t v  are the traction vector and velocity vector, respectively, if the 
receiving transducer, R , was acting as a transmitter and the flaw was absent 
(labeled as state (2)). The quantities ( ) ( ) ( ) ( )1 2,T Rv vω ω  are just the average 
velocities on the faces of the transmitting transducer in state (1) and the 
receiving transducer in state (2), respectively.  

Equation (1.8) is a very general result as it relies primarily on the 
assumptions of linearity and reciprocity. It is also a very useful result since 
it shows that if one has beam models and flaw scattering models that can 
predict the fields on the surface of the flaw in states (1) and (2), then those 
fields can be inserted into Eq. (1.8) to obtain the acoustic/elastic transfer 
function that is needed to predict the measured output voltage, ( )RV ω , in 
Eq. (1.6).  

By making some additional assumptions, Eq. (1.8) can be reduced 
to a very modular model. For example, it is shown in Chapter 11 that if the 
flaw is small enough so the beam variations across the flaw surface can be 
neglected and if the incident beam can be expressed as a quasi-plane wave 
acting on the flaw, then the transfer function of Eq. (1.8) can be written in 
the form 

( ) ( ) ( ) ( ) ( ) ( )1 2 2 2
0 0 ;

2

4ˆ ˆ
A T a

r

ct V V A
ik Z

α

α

πρ
ω ω ω ω

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

, (1.9)

where ( )
0̂

mV  ( )1,2m =  are the velocity fields incident on the flaw in states 
(1) and (2) (normalized by the average velocities on the face of the 
transmitting transducer), ( )A ω is a particular component of the vector 
plane wave far-field scattering amplitude of the flaw, and the remaining 
term in Eq. (1.9) is a combination of known material and geometrical 
parameters that are defined explicitly in Chapter 11. Equation (1.9) is in a 
very useful form since the velocity field terms, ( ) ( )0̂ , 1,2mV m = ,which involve 
ultrasonic beam model calculations, and the flaw response, which is contained 
entirely in the ( )A ω  term, are separated. This modularity allows one to easily 
perform engineering parametric studies and to isolate the contribution of 
the flaw from the overall measured response. The latter capability is 
particularly important since ultimately one must extract information on the 
flaw itself for sizing and classification purposes, and that information is 
contained only in ( )A ω . 

Equations (1.8) or (1.9) complete the overall measurement model 
defined by Eq. (1.6) and Fig. 1.11, since it is possible to measure 
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( )Gt ω , ( ) ( ),R it Vω ω  and with beam and flaw scattering models we can 
obtain ( )At ω , leading to a prediction of the output voltage frequency compo-
nents, ( )RV ω . This voltage can then be transformed into the time-domain 
to obtain the A-scan flaw signal that would be seen on an oscilloscope 
screen of the system shown in Fig. 1.1. Figure 1.12 (b) shows all the 
measurement system components and the transfer functions that combine 
those components into the model of Eq. (1.6). Chapter 7 gives some 
examples where A-scan signals determined experimentally in a pitch-catch 
measurement calibration setup are compared to the signals synthesized by 
measuring/modeling all the system components of Fig. 1.12 (b) and 
combining them to predict the output response.  

There are, of course, many electrical measurements that underlie 
the determination of the transfer functions ( ) ( ),G Rt tω ω  and the voltage 
source term, ( )iV ω . Obtaining these individual terms is essential if one 
wants to quantify how a particular component, such as a transducer or a 
cable, affects the measured result. However, in many cases one is only 
interested in the net combined contribution of all of the electrical and 
electromechanical components to the measured response. In that case all of 
these terms can be combined into a single system function, ( )s ω , where 

( ) ( ) ( ) ( )G R is t t Vω ω ω ω= . (1.10)

It is shown in Chapter 7 that if one measures the output voltage in 
a reference experiment, ( )ref

RV ω , where the acoustic/elastic transfer function, 
( )ref

At ω , is known explicitly, then one can obtain this system function directly 
by deconvolution, i.e. 

( ) ( )
( )

ref
R
ref
A

V
s

t
ω

ω
ω

= . (1.11)

In practice, this deconvolution is carried out with a Wiener filter to 
desensitize the result to noise, but the basic process is still primarily the 
simple complex division of Eq. (1.11). If a subsequent flaw measurement 
is then made with the same electrical and electromechanical components 
(pulser/receiver, cabling, transducers) and at the same system settings as in 
the reference experiment, then the system function, ( )s ω ,obtained from 
Eq. (1.11) is the same in both the reference experiment and the flaw 
measurement. Thus the measured flaw response ( ) ( ) ( )f f

R AV s tω ω ω=  is  
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known once the acoustic/elastic transfer function for the flaw measurement 
setup, ( )f

At ω , is obtained, using either Eq. (1.8) or Eq. (1.9) and the appro-
priate beam models and flaw scattering models. Obtaining the system 
function experimentally in this fashion makes it very practical to develop 
measurement models that can predict the measured output signals of very 
complex inspection problems. In Chapter 12, we demonstrate the versatility 
of this approach by combining a system function with the acoustic/elastic 
transfer function of Eq. (1.8) to produce an overall ultrasonic measurement 
model of the form 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )( )1 2 2 1
1 2;

f

R T a
Sr T R

s
V dS

Z v v
ω

ω = ⋅ − ⋅∫ t v t v . (1.12)

If the transfer function of Eq. (1.9) is used instead we obtain the 
Thompson-Gray measurement model  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 2
0 0 ;

2

4ˆ ˆ
R T a

r

cV s V V A
ik Z

α

α

πρ
ω ω ω ω ω

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

. (1.13)

In Chapter 12, MATLAB codes are developed that implement these meas-
urement models as well as a measurement model suitable for cylindrical-
shaped scatterers such as a side-drilled hole, which is a commonly used 
reference reflector in ultrasonic testing. These measurement models are 
combined with measurements of ( )s ω , the multi-Gaussian beam model of 
Chapter 9 and flaw scattering models of Chapter 10 to predict the output 
signals for spherical pores, flat-bottom holes, and side-drilled holes. It is 
shown that these measurement model predictions agree well with the 
responses measured experimentally for these reflectors. 

Finally, in Chapter 13, we discuss some of the ways in which 
ultrasonic measurement models can be used as tools in NDE applications. 
For example, the use of the models to determine flaw scattering amplitudes 
experimentally is demonstrated. This is an important capability since if we 
can extract the flaw response from the total measured response, this flaw 
response can be directly used in quantitative flaw classification and sizing 
algorithms [Fundamentals]. We also discuss in Chapter 13 how models can 
predict distance amplitude correction (DAC) transfer curves. DAC curves 
are commonly used for calibration purposes but in current practice their 
determination requires the construction of sets of reference specimens for 
every different testing situation. Model-based DAC transfer curves allow 
one to perform calibrations on a simple specimen and then transform those  
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calibrations to other more complex testing configurations, thus avoiding 
the considerable expense of fabrication of many different test specimens. 
Chapter 13 also applies our ultrasonic measurement model to angle beam 
shear wave tests, demonstrating that the concepts presented for immersion 
systems also can be applied to other setups as well. These angle beam 
inspection models are then used in model-assisted flaw identification and 
sizing applications. All the examples shown in Chapter 13, however, only 
illustrate a very small fraction of the areas where these models are useful. 
Model-based applications are still in their infancy, so there is considerable 
work that can be done with these models (and others) to help solve 
fundamental NDE problems. 

1.3 Some Remarks on Notation 

In some of the following Chapters it will be necessary to occasionally use 
Einstein summation notation to avoid overly complex expressions. In that 
notation a repeated subscript is understood to imply a summation over the 
values (1, 2, 3) of the indices. For example, in calculating the scalar (dot) 
product of two vectors we can write 1 1 2 2 3 3i iu v u v u v u v⋅ = = + +u v . In 
contrast an unrepeated (free) subscript takes on any of the values (1, 2, 3). 
For example: the expression /j ju xφ= ∂ ∂  implies the three equations: 

1 1/ ,u xφ= ∂ ∂ 2 2/u xφ= ∂ ∂ 3 3, /u xφ= ∂ ∂ . For more details see the reference 
[Fundamentals]. 

1.4 Organization of the Book 

Models that characterize the individual electrical and electromechanical 
components (pulser/receiver, transducer(s), cabling) of an ultrasonic 
measurement system are discussed in Chapters 2-6. Appendices A, B, and 
C provide some of the necessary background material for those Chapters. 
As discussed previously, all those components can be lumped together into 
a single system function, ( )s ω , that can be determined experimentally in a 
calibration experiment. Thus, if the reader wants to concentrate primarily 
on the wave processes present in an ultrasonic system, he/she can begin 
with the discussion of ( )s ω in Chapter 7 and then cover Chapters 8-13 
that discuss beam models, flaw scattering models, and ultrasonic 
measurement models in detail and describe a number of applications.  
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Appendices D and E provide background material on waves needed for the 
Chapters on wave modeling and Appendix F gives some of the funda-
mental properties of Gaussian beams. 

A number of short exercises are given throughout the book. In 
most cases those exercises involve the use of MATLAB and MATLAB-
based functions. MATLAB functions and scripts are also developed and 
described at a number of places in the book.  A complete set of all the 
MATLAB resources used in this book can be found on the Web at 
www.springer.com/978-0-387-49061-8. Appendix G also gives listings of 
the MATLAB functions and scripts used to develop a complete ultrasonic 
NDE flaw measurement model. 

References to all the topics discussed in this Chapter can be found 
at the ends of each of the following Chapters. For more information on 
ultrasonic nondestructive evaluation methods and applications we have 
listed a few suggested reading references below. 

1.5 Reference 

Schmerr LW (1998) Fundamentals of ultrasonic nondestructive evaluation – a 
modeling approach. Plenum Press, New York (referred to as [Fundamentals] 
in this book) 

 

1.6 Suggested Reading 

Blitz J and Simpson G (1996) Ultrasonic methods of non-destructive testing. 
Chapman & Hall, London, UK  

Harker AH (1988) Elastic waves in solids. Adam Hilger, Philadelphia  
Krautkramer J, Krautkramer H (1990) Ultrasonic testing of materials, 4th ed. 

Springer-Verlag, Berlin, Germany  
Lempriere BM (2002) Ultrasound and elastic waves – frequently asked questions. 

Academic Press, San Diego, CA  
Rose JL (1999) Ultrasonic waves in solid media. Cambridge University Press, 

Cambridge, UK 
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2 The Pulser 

A pulser/receiver is a complex electrical network that generates the energy 
that drives the transmitting transducer in an ultrasonic measurement 
system. The pulser/receiver also amplifies and/or filters the electrical 
response arriving from the receiving transducer. In this Chapter we will 
examine only the pulser section of a pulser/receiver and describe some of 
the important overall characteristics of its output signals and how those 
signals are affected by instrument setting changes. Simple models that can 
describe the pulser output are also discussed. 

2.1 Characteristics of a Pulser 

Figure 2.1 shows a sketch of the front panel of a typical laboratory “spike” 
pulser/receiver while Fig. 2.2 shows a highly idealized circuit schematic of 
this same instrument. The pulser side of this instrument has three controls. 
One control is the “energy” setting. The energy setting basically controls 
the amount of energy stored in the capacitor, 0C , of Fig. 2.2. This energy is 
periodically discharged into the sending transducer by closing the switch 
shown in that figure. The “rep rate” controls the frequency at which this 
switch is closed, which typically may be varied from several hundred 
closings/sec to several thousand closings/sec. Generally this rate is set to 
ensure that the waves traveling in a component have had time to decay in 
amplitude to very small values before the next discharge occurs. In this 
case there is no overlapping of the received responses from one closing to 
the next which, if it occurred, could cause triggering problems when the 

d , in the pulser/receiver.  
 In addition to a spike-like pulser, which uses a capacitive discharge 
to drive a transducer, there are also square wave pulser/receivers like the 
UTEX 340 shown in Fig. 2.3 which drive a transducer with circuits that  

received signals are displayed on an oscilloscope screen since the oscillos- 
cope is triggered by a signal generated in synchronization with the pulser 
discharges. The “damping” control on the pulser changes the value of a   
 damping resistance, R

produce a rectangular-shaped voltage pulse. This particular pulser has 
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Fig. 2.1.  The front panel controls of a typical laboratory “spike” pulser/receiver. 

 
Fig. 2.2.  A highly simplified circuit representation of a “spike” pulser/receiver. 

most of its controls also available under computer control. An image of the 
UTEX 340 computer control panel is shown in Fig. 2.4. It can be seen 
from that figure that on the pulser side of this instrument there are 
primarily three settings- the pulse repetition rate, the pulse voltage 
amplitude (in volts), and the pulse width (in nanoseconds). The energy/ 
damping settings of the  spike pulser and  the  voltage/pulse  width settings 
of the square wave pulser control the amplitude and shape of the voltage 
and current at the output port of the pulser. In the next section we will  
show how the output behavior of these pulsers can be described in terms of 
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Fig. 2.3.  A UTEX 340 square wave pulser/receiver. Photo courtesy of UTEX 
Scientific Instruments, Inc. , Mississauga, Ontario, Canada. 

 
 

 
 

Fig. 2.4.  The control panel of the UTEX 340 pulser/receiver. Photo courtesy of 
UTEX Scientific Instruments, Inc., Mississauga, Ontario, Canada. 
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Fig. 2.5.  The Thévenin equivalent voltage source and impedance for a pulser.  

a simple equivalent circuit whose parameters can be obtained with several 
electrical measurements. The properties of that equivalent circuit, however, 
are dependent on these pulser settings so that if they are changed, the equi-
valent parameters will change. 

2.2 Measurement of the Circuit Parameters of a Pulser 

As shown in Appendix B, Thévenin's theorem allows us to replace the 
pulser, which is a circuit network with sources, with the equivalent voltage 
source and equivalent impedance of Fig. 2.5 if one assumes that the pulser 
is a linear device. Several authors have used either the simple model of 
Fig. 2.5 or other similar equivalent circuits to model both the pulser and 
receiver circuits [2.1-2.4]. As pointed out in these studies, because of the 
internal diode protection circuits and other elements present in 
pulser/receivers, strictly speaking those devices may not act in a linear 
fashion. However, if the measurement of ( )iV ω  and ( )e

iZ ω  are made for a 
specific set of pulser settings at the same external electrical loading 
conditions (cabling, transducer) found in the measurement system, then the 
simple equivalent circuit of Fig.2.5 can be successfully used to model a 
given pulser [2.4]. It is relatively easy to measure the  Thévenin equivalent 
voltage source for the pulser, ( )iV ω , by measuring the open-circuit voltage, 

( )0V t  , at the output terminals of the pulser and then Fourier-transforming 
this measured voltage to obtain ( )0V ω . Since there is no current flowing 
from the pulser under open-circuit conditions we have ( ) ( )0iV Vω ω= . 
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Fig. 2.6.  The Thévenin equivalent circuit for a pulser attached to a known 
external resistance, LR , for measuring the impedance, ( )e

iZ ω . 

To find the electrical impedance of the pulser we can place a known load 
resistance, LR , at the output terminals of the pulser and measure the voltage, 

( )LV t , across this load. Fourier transforming this voltage then gives ( )LV ω . 
But from the Thévenin equivalent circuit of the pulser shown in Fig. 2.6, 
we see that 

.

e
i L i

L L

V V Z I
V R I

− =

=
 (2.1)

So eliminating the current, I, we find 

( ) ( )
( )

1 .ie
i L

L

V
Z R

V
ω

ω
ω

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 (2.2)

Since the values of the Thévenin equivalent parameters ( ), e
i iV Z  

depend on the instrument settings of the pulser we have shown these 
parameters at several different settings. Figure 2.7, for example, shows the 
magnitude of the Thévenin equivalent voltage measured for a Panametrics 
5052 PR pulser/receiver (spike pulser) at combinations of two different 
energy settings and two damping settings. In the same fashion Fig. 2.8 
shows the magnitude of the Thévenin equivalent voltage obtained for a 
UTEX 320 pulser/receiver (square wave pulser) at combinations of two 
different voltage settings and two pulse width settings. Figures 2.9 and 
2.10 show the corresponding dependency of the equivalent impedance of 
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Fig. 2.7.  Magnitude of the Thévenin equivalent voltage source versus frequency 
obtained for a Panametrics 5052PR pulser/receiver for (a) damping setting = 0 and 
energy  setting =1 (solid line) or energy setting = 4 (dashed line), and (b) damping 
setting = 7 and energy setting = 1 (solid line) or energy setting = 4 (dashed line). 
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Fig. 2.8. Magnitude of the Thévenin equivalent voltage source versus frequency 
obtained for a UTEX 320 pulser/receiver at: (a) pulse width = 10 and voltage = 100V 
(solid line) or voltage = 200V (dashed line), and (b) pulse width = 50 and voltage 
= 100 V (solid line) or voltage = 200 V (dashed line).  
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Fig. 2.9. Magnitude of the Thévenin equivalent pulser impedance versus frequency 
obtained for a Panametrics 5052PR pulser/receiver for (a) damping setting = 0, 
energy setting =1 (solid line), energy setting = 4 (dashed line), and (b) damping 
setting = 7, energy setting = 1 (solid line), energy setting = 4 (dashed line). 
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Fig. 2.10. Magnitude of the Thévenin equivalent impedance versus frequency for 
a UTEX 320 pulser/receiver at: (a) pulse width = 10, voltage = 100V (solid line), 
voltage = 200V (dashed line), and (b) pulse width = 50, voltage = 100 V (solid 
line), voltage = 200 V (dashed line). 

 
the pulser at the same pulser settings for these two pulser/receivers. It can 
be seen that the energy and voltage settings do increase the magnitude of 
the Thévenin equivalent voltage source for these pulsers, as expected, but 
that there are also changes in the shape of the voltage source and impedance 
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with frequency so that the overall behavior of such pulsers is a rather complex 
function of the pulser settings Although the resistance, LR , appears in  
Eq. (2.2) the impedance. ( )e

iZ ω  should not depend on that resistance, as 
discussed in Appendix B. Pulser impedance measurements made in this 
fashion with spike and square wave pulsers, however, do show some 
variations with the load used, possibly due the non-linear elements present 
in those instruments, as discussed previously. Figure 2.11 shows, for 
example, the magnitude of the equivalent impedance of the Panametrics 
5052 PR pulser obtained when a 50Ω  resistor was used at the pulser 
output versus the impedance obtained when a transducer and cable were 
attached to the output port instead. In the latter case the voltage and current 
were both measured at  the  output  port  of  the pulser in order to calculate 
the impedance of the loading induced by the cabling and transducer. The 

LR in Eq. (2.2) was then replaced by that load impedance to calculate the 
pulser impedance. It can be seen from Fig 2.11 that there are indeed 
differences in the calculated impedance of the pulser under these different 
external loads. Similar changes have been observed when calculating the 
equivalent impedance of square wave pulsers. In general our experience 

 
Fig. 2.11.  The magnitude of the Thévenin equivalent impedance of a Panametrics 
5052 PR pulser/receiver versus frequency found using a 50 ohm resistor loading 
(solid line) and a loading consisting of a cable and transducer (dashed line). 

dance under the actual loading conditions that will be found when 
using the pulser  in ultrasonic flaw measurements, but  we have  also  

has been that it is best to make these measurements of the pulser impe- 
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been successful in using the pulser impedance values measured with Eq. (2.2) 
and purely resistive loads to simulate the pulser effects in an overall 
ultrasonic system measurement model of the type discussed in Chapter 7. 
Thus, while the loading at the pulser output port does change the measured 
values of the equivalent impedance of the pulser it appears that these 
loading effects do not significantly affect the measured output voltage in 
an ultrasonic measurement system, where other parameters, such as 
transducer sensitivity, play a more important role. 

2.3 Pulser Models 

It is possible to set up a simple model of the open-circuit output voltage of 
a typical spike or square wave pulser by directly specifying this voltage in 
the form of a four parameter model given by 

( ) ( )
( )

1 0

0 2 0 0

0 0

1 exp 0

exp
i

t
V t V t t t

V t t t t

α

α
∞

⎧ ≤
⎪⎪= − ⎡ − − ⎤ ≤ ≤⎨ ⎣ ⎦
⎪
− ⎡− − ⎤ ≥⎪ ⎣ ⎦⎩

 (2.3)

where ( )1 0
0 / 1 tV V e α−

∞ = −  and the four parameters ( )0 1 2 0, , ,t Vα α control 

the amplitude and rise and fall characteristics of the pulse. Figure 2.12 (a) 
shows a plot of this modeled voltage which is very similar in form to a 
measured Thévenin equivalent open-circuit voltage from the Panametrics 
5052PR pulser/receiver, as shown in Fig. 2.12 (b). This same model, with 
the appropriate choice of parameters, can also be used to model a square 
wave pulse output (see Fig. 2.13 (a)). The actual open-circuit output 
voltage of a UTEX 320 square wave pulser/receiver is shown in 
Fig. 2.13 (b). The spectrum generated by this simple source model can be 
obtained from Eq. (2.3) by numerically evaluating the FFT of this time 
domain response or one can use the explicit Fourier transform of the ( )iV t  
of Eq. (2.3), which is given by:  

( )
( ){ } [ ]{ }

[ ]

1 0 0

1

0 0

2

1 exp 1 exp

exp
.

i

V i t V i t
V

i i
V i t

i

α ω ω
ω

α ω ω
ω

α ω

∞ ∞− ⎡− − ⎤ −⎣ ⎦= +
−

−
−

 (2.4)
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Fig. 2.12. (a) Voltage pulse (volts) versus time (µsec) obtained from Eq. (2.3) with 

0 1 2 00.01, 0.2, 50, 200t Vα α= = = = (shifted for better visualization). (b) Measured 
open-circuit voltage versus time for a Panametrics 5052PR pulser/receiver at energy 
setting 1, damping setting 5. 
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Fig. 2.13.  (a) Voltage pulse (volts) versus time (µsec) obtained from Eq. (2.3) 
with 0 1 2 00.1, 1000, 1000, 190t Vα α= = = = . (b) Measured open-circuit output volt-
age versus time for a UTEX 320 pulser/receiver. 

 
It is not as easy to obtain an explicit parametric model of the impedance of  
a pulser since this impedance changes significantly in both amplitude and 
shape with the pulser settings and as a function of frequency, as shown in 
Figs. 2.9 and 2.10. However, one could try to model the pulser impedance 
by an equivalent RLC circuit whose parameters are adjusted to match the 
measured impedance values (as a function of frequency) at various damp-
ing settings, as done by Brown [2.1]. Brown found that the equivalent RLC 
parameters obtained for a Panametrics 5052PR did change significantly, 
particularly at the higher damping settings. 

www.iran-mavad.com 
ایران مواد



34      The Pulser  
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2.5 Exercises 

1. The MATLAB function model_pulser takes as inputs an energy setting 
(energy = 1, 2, 3, 4), a damping setting (damping = 0, 5, 10), a resistance 
loading , RL, (in ohms) across the output terminals of the pulser and 
returns the sampled voltage, vt, across RL (in volts) and the sampled time 
values, t, (in µsec). The form of the calling sequence of this function is: 

 
>> [t , vt] =model_pulser( energy, damping, RL); 

 
Use this model pulser at energy = 2, damping = 5 settings for both open 
circuit conditions (RL = inf) and a given load (RL = 250 ohms) to deter-
mine the Thévenin equivalent source voltage (in volts) and impedance (in 
ohms) of the pulser at these settings as functions of frequency over the 
range of frequencies from 0-20 MHz and plot the magnitude and phase of 
these functions over the same frequency range. Use the MATLAB unwrap 
function to eliminate any artificial jumps of 2π in the phase plots. Example: 

 
>> plot(f, unwrap(angle(Vf))) 

 
Show and explain all the steps you used to obtain your answers. 

47: 1377-1396  
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3 The Cabling 

At the MHz frequencies involved in NDE tests, the electrical cables that 
transfer the electrical pulses from the pulser to the sending transducer and 
from the receiving transducer to the receiver do not just pass those signals 
unchanged. Thus, significant cabling effects may be present in some 
ultrasonic testing setups. Here we will discuss models and measurements 
that can help us to quantitatively determine the effects of the cables. These 
models and measurements will enable us to predict how the voltage and 
current change from one end of the cable to the other (Fig. 3.1). 

3.1 Cable Modeling 

At the most fundamental level we can model a cable as a set of coaxial 
conductors transferring electrical and magnetic fields ( ,E H ) from one end 
of the cable to the other, as shown in Fig. 3.2. It is shown in many texts on 
electromagnetism [3.1-3.7] that the fields at each end of the cable are 
related by the reciprocity relationship 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1

2

2 1 1 2
1 1 1 1 1

2 1 1 2
2 2 2 2 2 ,

S

S

dS

dS

× − × ⋅

= × − × ⋅

∫

∫

E H E H n

E H E H n
 (3.1)

where ( 1 1,E H ) are fields at the left end of the cable acting over an area 1S  
whose unit normal (pointing out from the cable) is 1n , and ( 2 2,E H ) are 
the corresponding fields at the other end, 2S , whose outward normal is 2n  
as shown in Fig. 3.2. The superscripts (1) and (2) on the field variables in 
Eq. (3.1) designate these fields when the cable is under two different 
driving/termination conditions at its ends. These two driving/termination 
conditions are labeled as states (1) and (2). If the fields are carried in the 
cable as a fundamental propagating electromagnetic wave mode called a 
TEM mode, then it can be shown that the electric field, E, can be expressed 
in terms of a potential  (voltage), V,  across the two conductors in the cable  
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Fig. 3.1. A cable and the voltages and currents at its end connectors. 

 
Fig. 3.2. The electrical and magnetic fields at the ends of a coaxial cable. 

and the magnetic field, H, can be related to the current, I, flowing through 
the central conductor [3.4]. These relations are 

,
c

V

I d

= −∇

= ⋅∫
E

H l  (3.2)

where c is a closed path taken around the central conductor of the cable 
and dl  is a vector differential element along that path. 

For such a propagating TEM mode it can also be shown that the 
reciprocity relationship of Eq. (3.1) reduces to a similar reciprocity relation-

 
 

ship between the voltages and the currents in states (1) and (2) given by 
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Fig. 3.3. A cable modeled in terms of the voltages and currents at its two ends 
(ports). 

 
Fig. 3.4. Cross-section of an ideal circular coaxial cable where the radius of the 
inner conductor is a and the radius of the outer conductor is b. 

( ) ( ) ( ) ( ) ( ) ( )
1 2

2 2 1 2 2 1(1) (1)
1 1 1 2 2 2V I V I V I V I− = −  (3.3)

so that we can then consider our cable as modeled in terms of these 
voltages and currents where 1I  is the current flowing into the cable at the 
left end and 2I  is the current flowing out of the cable at the other end (see 
Fig. 3.3). If the reciprocity relationship of Eq. (3.3) is satisfied for any set 
of driving/termination conditions, then it can also be shown that the 
voltage and current at one end (port) of the cable are linearly related to the 
voltage and current at the other end (port) and we can model the cable as a 
reciprocal two port system (see Appendix C) where one has 

1 11 12 2

1 21 22 2

V T T V
I T T I

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎣ ⎦ ⎩ ⎭
 (3.4)

and [ ] 11 22 12 21det 1T T T T= − =T .  
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Fig. 3.5. An equivalent circuit model of a cable. 

As developed in many electrical engineering texts, one can use a 
simple transmission line model of the cable and obtain an explicit expression 
for this transfer matrix [ ]Τ in the form [3.5] 

( ) ( )
( ) ( )

1 20

1 20

cos sin
,

sin / cos

e
c c

e
c c

V Vk l iZ k l
I Ii k l Z k l

⎡ ⎤−⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥−⎩ ⎭ ⎩ ⎭⎣ ⎦

 (3.5)

where l is the length of the cable, 0
eZ  is the characteristic impedance of the 

cable (in ohms), and /ck cω=  is the wave number  and c is the wave speed 
of signals in the cable. For an ideal circular coaxial cable as shown in  
Fig. 3.4 where the inner conductor is of radius a and the outer conductor is 
of radius b the characteristic impedance of the cable is given by [3.5] 

0
1 ln ,

2
e bZ

a
µ

π ε
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3.6)

where µ  is the permeability and ε  the permittivity of the material in the 
cable between the inner and outer conductors.  

 In Appendix C we showed how a simple RC circuit could be express-
ed in transfer matrix form as a two port system. Thus it is not surprising 
that conversely a two port system can also be expressed as an equivalent 
circuit. There are actually many different equivalent circuits that yield the 
same results as the transfer matrix. Figure 3.5 shows one commonly used 
circuit [3.1] that uses three impedances arranged in a T-shape to model the 
cable.  

 If our cable model is terminated with a impedance, 2
eZ , as shown 

in Fig. 3.6 (a) then the cable and its termination can be represented as a 
single equivalent impedance, 1

eZ , as shown in Fig. 3.6 (b). The behavior of  
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Fig. 3.6. (a) A cable terminated with an impedance, 2

eZ , and (b) the equivalent 
impedance, 1

eZ , of this terminated cable. 

 
Fig. 3.7. The effect of different termination conditions on the equivalent 
impedance of a cable. 

this equivalent impedance versus the non-dimension frequency ck l  is 
shown in Fig. 3.7 for open-circuit ( 2

eZ →∞ ) termination, short-circuit 
2 0eZ =

 
( ) termination, and termination  at the  characteristic  impedance of  
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Fig. 3.8. Measured values of the magnitude and phase of a 50 ohm cable under 
open-circuit (dashed line), short-circuit (dashed-dotted line), and 50 ohm (solid line) 
termination conditions. 

the cable ( 2 0
e eZ Z= ). It can be seen that the open- and short-circuit cases 

generate frequency dependent equivalent impedances while in the matched 
termination case the equivalent impedance is frequency independent. This 
same behavior is seen when the equivalent impedance of a 50 ohm cable is 
measured experimentally, as shown in Fig. 3.8. The cables used in an 
ultrasonic test for sound generation and reception are terminated/driven by 
ultrasonic transducers which in general are not matched in impedance to 
the cable so that inherently we can expect some frequency dependent effects 
due to the cabling in NDE tests. 
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Fig. 3.9. (a) A cable, modeled as a two port system, under open-circuit conditions, 
and (b) under short-circuit conditions. Measurements of the voltages and currents 
shown can be used to determine the transfer matrix of the cable.  

3.2 Measurement of the Cabling Transfer Matrix 

As can be seen from Figs. 3.7 and 3.8 a simple two port model can 
accurately represent the behavior of an ordinary coaxial cable. However, 
we do not ordinarily know all the detailed parameters that are needed to 
obtain the transfer matrix components in Eq. (3.5). Furthermore, in 
immersion NDE testing, such cabling is connected to fixtures that support 
the transducer in an immersion tank and the details of the cabling within 
the fixtures are in general also not known. This is not a problem since it is 
possible to directly measure the transfer matrix components of the 
combined cabling and fixtures in situ by attaching the cable/fixture to a 
driving source, such as the ultrasonic pulser, and making a series of 
voltage and current measurements under different cable/fixture termination 
conditions. Figure 3.9 (a) shows a two port model of a cable under open-
circuit conditions at its output port and driving voltage ( )1

1V  and current ( )1
1I  

at its input port while Fig. 3.9 (b) shows the same model under short-circuit 
conditions at the output port with driving voltage ( )2

1V  and current ( )2
1I  at the 

input port. From Eq. (3.4) it is easy to see that: 
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Fig. 3.10. Measured values of the magnitudes and phases of the transfer matrix 
components versus frequency for a cable. 
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[ ]

( ) ( ) ( ) ( )
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∞

∞

=

=

=

=

 (3.7)

so that all the transfer matrix elements can be obtained by making measure-
( ) ( ) ( ) ( )1 1
m m ( )

( )
,

s

v t∞

( ) ( ) ( ) ( )1 1, ,m mV Iω ω
( ) ( ), sV Iω ω∞

relationship 11 22 12 21 1T T T T− = . 
  Figure 3.10 shows the transfer matrix components found in this 

manner as a function of frequency for a cable (both amplitude and phase 
are plotted). It can be seen that the measured magnitudes of these 
components do exhibit the cosine and sine function behavior of Eq. (3.5) 
and the measured phase terms also generally follow that simple model 
behavior. As a reciprocity check on these measurements we can compute 
the determinant of the measured transfer matrix. Figure 3.11 shows that 
det[T] = 1 is well satisfied over a wide range of frequencies. 

 

Fig. 3.11. A check on the satisfaction of reciprocity ( det T =1) for the measured 
transfer matrix components of Fig. 3.10. The amplitude (solid line) and phase 
(dashed line) of the determinant are shown. 

v t ,i t ,  ments of the voltages and currents in these two states: 
i t (m  = 1,2) and Fourier transforming them to obtain 

(m  =1,2). The consistency of these measured transfer matrix 
elements can be checked by the reciprocity 
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3.4 Exercises 

1. Consider a 1 meter long, 50 ohm cable, where the wave speed in the 
cable is one half the wave speed of light, c0 ,in a vacuum (c0 = 2.998 x 
108 m/sec). Determine the transfer matrix components of the cable at 
10 kHz, 100 kHz, 1 MHz, 20 MHz. 
 
2. Consider a cable for which we wish to measure the transfer matrix 
components (as a function of frequency). We can do this in MATLAB for 
a function cable_X which has the calling sequence: 
 
>> [ v1, i1, vt, it] = cable_X( V, dt, R,  L, 'term'); 
 
 

 
Fig. 3.12. A measurement setup for obtaining the transfer matrix components of a 
cable. 

3.2  Magnusson PC, Alexander GC, Tripathi V (1992) Transmission lines and wave
propagation, 3rd ed. CRC Press, Boca Raton, FL  

3.3  Seshadre SR (1971) Fundamentals of transmission lines and electromagnetic 

3.5  Staelin DH, Morgenthaler AW, Kong  JA (1994) Electromagnetic waves. 

3.6  Bladel JV(1985) Electromagnetic fields. Hemisphere Publishing Co., New 

3.4  Balanis CA (1989) Advanced engineering electromagnetics. John Wiley and 
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The input arguments of cable_X are as follows. V is a sampled voltage 
source versus time, where the sampling interval is dt. R is an external 
resistance (in ohms). This source and resistance are connected in series to 
one end of the cable, which is of length L (in m) as shown in Fig. 3.12. 
The other end of cable can be either open-circuited or short-circuited. The 

sampled voltages and currents versus time (v1, i1, vt, it ) where (v1, i1) are 
on the input side of the cable and (vt, it) are at the terminated end (Note: 
for open-circuit conditions it = 0 and for short-circuit conditions vt = 0). 
As a voltage source to supply the V input to cable_X use the MATLAB 
function pulserVT. For a set of sampled times this function returns a 
sampled voltage output that is typical of a “spike” pulser. Make a vector, t, 
of 512 sampled times ranging from 0 to 5 µsec with the MATLAB call: 
 
>> t = s_space(0, 5, 512);  
 
(see the discussion of the s_space function in Appendix A; a code listing of 
the function is given in Appendix G) and call the pulserVT function as 
follows: 
    
>> V = pulserVT(200, 0.05, 0.2, 12, t); 
 
For the resistance, take R = 200 ohms, and specify the length of the cable 
as L = 2 m.  
 Using Eq. (3.7), determine the four cable transfer matrix 
components and plot their magnitudes and phases from 0 to 30 MHz. Note 
that the outputs of cable_X are all time domain signals but the quantities in 
Eq. (3.7) are all in the frequency domain so you will need to define a set of 
512 sampled frequency values, f, through: 
      
>> dt = t(2) –t(1); 
>> f =s_space(0, 1/dt, 512); 
 
What is the range of frequencies contained in f here? 

string ‘term’ specifies the termination conditions. It can be either ‘oc’ for 
open-circuit or ‘sc’ for short-circuit. Cable_X then returns the “measured” 
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4 Transmitting Transducer and the Sound 
Generation Process 

In this Chapter we will discuss models of the ultrasonic transducer as a 
transmitting device that converts electrical energy into acoustic energy. 
We will also combine the models of the pulser and cabling from Chapters 
2 and 3 with the transducer model of this Chapter to describe a model of 
the entire sound generation process.  

4.1 Transducer Modeling 

An ultrasonic transducer is normally based on a piezoelectric material that 
has the ability to convert electrical energy at its electrical port into acoustic 
energy (motion) at its acoustic port and, conversely, to also convert 
acoustic energy back into electrical energy. Thus a piezoelectric ultrasonic 
transducer can act as both a transmitter and receiver of sound. In this 
Chapter we will examine the transducer in its role as a transmitter. By 
treating the coupled electromagnetic and elastic fields contained in the 
transducer as those of a piezoelectric medium and considering the fields at 
the two transducer ports as purely electrical fields and acoustic fields that 
arise from those internal piezoelectric interactions, one can define a recipro-
city relationship between the fields at the two ports in the form [4.1-4.3] 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )2 1 1 2 1 2 2 1 ,
cS S

dS p p dS× − × ⋅ = − ⋅∫ ∫E H E H n v v n  (4.1)

where ( ,E H ) are the electrical and magnetic fields at the transducer’s elec-
trical port (over area cS ) and ( ,p v ) are the pressure and velocity fields at 
the acoustic port (over area S ), and n is the unit normal pointing outwards 
from each port (see Fig. 4.1). Only the pressure appears on the right side of 
Eq. (4.1) since for an immersion transducer this is the only component of 
the stress tensor that can exist for a fluid. Even for a contact transducer, 
however, there is normally a thin fluid couplant layer between the transducer 
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Fig. 4.1. The electrical and magnetic fields at a transducer's electrical port and the 
corresponding voltage and current flowing into that port. At the acoustic port 
distributed pressure and velocity fields are generated, as shown.  

and the solid component so that in contact testing again only a pressure 
exists at the transducer face. The superscripts (1) and (2) indicate these 
fields for two different states (i.e. under two different sets of driving and 
termination conditions). If we assume that the electrical and magnetic 
fields at the electrical port are in the form of TEM waves, as done for the 
cable in the previous Chapter, then we have [4.3] 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )2 2 1 2 1 1 2(1) ,
S

V I V I p p dS− = − − ⋅∫ v v n  (4.2)

where V and I are the voltage and current flowing into the electrical port, 
as shown in Fig. 4.1. At the acoustic port, we will assume the transducer 
acts as a piston transducer, i.e. the velocity is constant over the area S. This 
is an assumption frequently used to model ultrasonic transducers and is 

( ) ( ) ( )

( ) ( )

,
p

F p dS

v

ω ω

ω ω

=

= ⋅

∫ x x

v n
 (4.3)

so that F is the compressive force acting at the transducer face and v is the 
uniform outward normal velocity on this face. In this case Eq. (4.2) becomes 
 
 
 

expressed in terms of the two quantities, F and v, where 
one we will adopt here. In that case, the right side of Eq.(4.2) can be 
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Fig. 4.2. (a) An ultrasonic transducer represented as a device that converts voltage 
and current into force and velocity and (b) its corresponding two port system 
representation. The pressure distribution over the acoustic port that generates the 
force F is generally non-uniform, as shown. However, we assume the velocity 
distribution at the acoustic port is uniform as shown, i.e. the transducer acts as a 
piston. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 1 1 2 2 1 ,V I V I F v F v− = −  (4.4)

which is the reciprocity relation in terms of “lumped” parameters. Even if 
the transducer does not act as a piston, it is possible to use Eq. (4.4). The 
details can be found in [4.3] but we will not discuss that generalization 
here. In terms of these parameters, therefore, we can consider a transducer 
as a two port device that converts voltage and current into force and velocity, 
as shown in Fig. 4.2. If the reciprocity relation Eq. (4.4) is satisfied for all 
states then this two port system can be written in terms of a reciprocal 
transfer matrix A⎡ ⎤⎣ ⎦T , where 

11 12

21 22

, det 1.
A A

A
A A

V FT T
I vT T

⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎡ ⎤= =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎣ ⎦⎩ ⎭ ⎩ ⎭⎣ ⎦
T  (4.5)

By modeling the fields in the transducer as 1-D fields, Sittig [4.4], 
[4.5] developed an explicit expression for the transfer matrix components 
that describe a compressional wave transducer. In the Sittig model, the  
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transfer matrix of a transducer A, A⎡ ⎤⎣ ⎦T , can be written as a product of two 

2x2 transfer matrices, ,A A
e a⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦T T , as A A A

e a⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦T T T , where 

( )

( ) ( ) ( )
( )
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2

0 0 0

0

1/ /
0

1
tan / 2

cot cot
.

1 2 tan / 2
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o
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a a a
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a a a a a
b b

a a
b

n n i C
i C

Z iZ kd

Z iZ kd Z iZ Z kd

Z iZ kd

ω
ω

⎡ ⎤
⎡ ⎤ = ⎢ ⎥⎣ ⎦ −⎣ ⎦

⎡ ⎤ =⎣ ⎦ −

⎡ ⎤+ +
⎢ ⎥⋅
⎢ ⎥−⎣ ⎦

T

T  (4.6)

The multiple parameters appearing in this model are as follows. 
The parameter k is the wave number for the piezoelectric plate, 0/k vω= , 
where 0v  is the wave speed of compressional waves in the piezoelectric 
plate given by 0 33 /D

Pv c ρ=  in terms of the elastic constant of the plate, 
33
Dc , at constant electric flux density, and Pρ , the density of the plate. The 

constant 33 0n h C=  is given in terms of 33h , a piezoelectric stiffness constant 
for the plate, and 0C , the clamped capacitance of the plate, which is given 
by 0 33/ SC S dβ= , where S is the area of the piezoelectric plate, 33

Sβ  is the 
dielectric impermeability of the plate at constant strain, and d is the plate 
thickness. The quantity 0 0

a
PZ v Sρ=  is the plane wave acoustic impedance 

of the piezoelectric plate, while ( )a
bZ ω is the corresponding acoustic 

impedance of the backing (which is a function of frequency since the 
backing normally consists of one or more layers and is highly attenuating).  

It can be seen from Eq. (4.6) that in order to use the Sittig model 
one must know in considerable detail the internal material and geometry 
parameters of the transducer. When designing and manufacturing trans-
ducers, such details are known explicitly but it is not possible to obtain 
such detailed knowledge of transducers that are purchased commercially. 
Thus, one must rely instead on experimental means to determine the 
transfer matrix of the transducer. Unfortunately, at present a practical 
experimental method does not exist that can determine the complete 
transfer matrix of an ultrasonic transducer. The problem lies in the fact  
that it is difficult to enforce different known termination conditions at the 
acoustic port (as was done in the cable case for one of the electrical 
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4.1 Transducer Modeling      51 

 
Fig. 4.3. (a) A 1-D model of the electrical and acoustic parameters for a plated 
piezoelectric crystal and (b) its representation as a three port system. 

ports of the cable). Also, while it is easy to measure the voltage and 
current at the electrical port of the transducer it is more difficult to measure 
the force and velocity parameters at the acoustic port without investing in 
expensive equipment. Fortunately, as we will show later, we can char-
acterize the role of the transducer in an ultrasonic measurement setup in 
terms of only two parameters that are related to the transducer's transfer 
matrix. These two parameters are the transducer's sensitivity and its 
equivalent electrical impedance. We will also show that it is possible to 
determine the sensitivity and impedance with purely electrical measure-

have the full set of transfer matrix components for characterizing the 
transducer.   

In designing ultrasonic transducers, many designers find it conveni-
ent to use a three port model instead of the two port Sittig model. The 
Mason model and the KLM model are two models of this type that are 
commonly used in  practice  [4.6],[4.7]. Like the Sittig model, both models  

ments at the transducer’s electrical port. Thus, we can bypass the need to 
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52      The Transmitting Transducer and the Sound Generation Process 

 
Fig. 4.4. The Mason equivalent circuit model of the three port system defined by 
Eq. (4.7). 

 
Fig. 4.5. The KLM equivalent circuit model for the three port system defined by 
Eq. (4.7). 

treat the transducer as a plated piezoelectric element where 1-D electrical 
and mechanical fields are present, as shown in Fig. 4.3. The electrical port 
is where electrical connections are made to the plated faces of the 
piezoelectric plate while the two acoustic ports are the two faces of the 
plate (Fig. 4.3). The electrical and mechanical lumped parameters for this 
three port model can be shown to satisfy the relations [4.8] 
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4.1 Transducer Modeling      53 

 
Fig. 4.6. Construction of a typical commercial transducer showing the crystal 
backing and one or more facing acoustic layers at the transducer acoustic output 
port. 

 
Fig. 4.7. The acoustic two port system model of an acoustic layer. 
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( ) ( )
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⎢ ⎥⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦

 (4.7)

which can be seen to be given in the form of a 3x3 impedance matrix. Note 
that in Eq. (4.7) the velocities are assumed to be flowing into the 
transducer at the acoustic ports. This convention is opposite to what is 
assumed (at the acoustic output port) of a transfer matrix model (see 
Fig. 4.2 (b)). If the material backing on the piezoelectric element is 
specified as a given acoustic impedance, ( )a

bZ ω , as done for the Sittig 
model, then this three port model reduces to a two port model. The Sittig 
model is just a transfer matrix representation of the resulting two port 
system. In contrast, the Mason and KLM models are just equivalent circuit 
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54      The Transmitting Transducer and the Sound Generation Process 

representations of the three port system described by Eq. (4.7) where the 
acoustic impedance of the backing of the piezoelectric element is not 
specified. Figure 4.4 shows a schematic of the Mason equivalent circuit 
model and Fig. 4.5 shows the KLM equivalent circuit.  

 The Sittig model is a particularly useful model to use to consider 
additional acoustic layers in the transducer model at the transducer output 
port. Such layers are normally present in the form of wear plates to protect 
the piezoelectric element or impedance matching plates (Fig. 4.6) and can 
be represented as acoustic two port systems (Fig. 4.7). The transfer matrix 

l⎡ ⎤⎣ ⎦T for an acoustic layer containing 1-D propagating compressional waves 
is given by 

( ) ( )
( ) ( )

1 20

1 20

cos sin
,

sin / cos

a
a a a a

a
a a a a

F Fk l iZ k l
v vi k l Z k l

⎡ ⎤−⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥−⎩ ⎭ ⎩ ⎭⎣ ⎦

 (4.8)

where /ak cω= is the wave number for waves traveling in the layer with 
compressional wave speed, c, al is the layer thickness, and 0

aZ cSρ=  is the 
acoustic impedance of the layer, with ρ  the density of the layer and S is 
the cross-sectional area. Note that this transfer matrix has exactly the same 
form as the matrix obtained for a cable, so this matrix is the acoustic 
analog of that electrical model. A transducer containing such an acoustic 
layer can be joined with the Sittig model by simply multiplying that model 
by an additional acoustic transfer matrix so that the entire transfer matrix 
for the transducer, [ AT ], is given by 

A A A l
e a⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦T T T T  (4.9)

and more layers can be handled in exactly the same fashion. 

4.2 Transducer Acoustic Radiation Impedance 

When an ultrasonic transducer is used in an ultrasonic measurement 
system its acoustic port is always terminated, i.e. the output force and 
velocity are related to one another. For an immersion transducer radiating 
into a fluid, for example, we will show in Chapter 8 that for a planar piston 
transducer the pressure field, ( ),p ωx , on the face of the acoustic output port 
of the transducer is given in terms of the uniform  normal velocity, ( )tv ω , 
at that port by the Rayleigh-Sommerfeld integral: 
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Fig. 4.8. An ultrasonic immersion transducer radiating into a fluid. 

 
Fig. 4.9. A transducer A, whose acoustic radiation impedance is ;A a

rZ , radiating 
into a material and  modeled as a acoustically terminated two port system. 

( ) ( ) ( ) ( )exp
, ,

2
t

S

i v ikr
p dS

r
ωρ ω

ω
π

−
= ∫x y  (4.10)

where x and y are two points on the surface, S, of the transducer face, ρ  is 
the density of the fluid, /k cω=  is the wave number for waves propa-
gating in the fluid whose compressional wave speed is c, and r = −x y  is 
the distance between x and y. Since the compressional force, tF , at the 
transducer’s output port is just the integral of this pressure, we have 

( ) ( ) ( ) ( ) ( )

( ) ( )

exp
2

,

t t
S S

a
r t

ikriF dS dS v
r

Z v

ωρω ω
π

ω ω

⎡ ⎤−
= ⎢ ⎥
⎣ ⎦

=

∫ ∫ y x
 (4.11)

where the term in brackets in Eq. (4.11), a
rZ  , is called the transducer radia-

tion impedance. The radiating transducer A of Fig. 4.8, therefore, can be 
represented as a terminated two port system as shown in Fig. 4.9. Greenspan  
[4.9] has shown that the two integrals in Eq. (4.11) can be performed for 
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Fig. 4.10. The normalized acoustic radiation impedance of a circular, planar, 

a circular planar piston transducer of radius a, to obtain an explicit expression 
for the radiation impedance given by 

( ) ( );
1 1/ 1 / ,A a

r AZ cS J ka iS ka kaρ = − ⎡ − ⎤⎣ ⎦  (4.12)

where 1 1,J S  are first order Bessel and Struve functions, respectively, and 
2

AS aπ=  is the area of the “active” face of the transducer at its acoustic 
port. Figure 4.10 shows a plot of this normalized radiation impedance 
versus ka , which is a non-dimensional frequency.  

It can be seen from Fig. 4.10 that for approximately 10ka > we 
can take a

r AZ cSρ=  which is just the value of the acoustic impedance of a 
traveling plane wave. For most ultrasonic transducers, the ka value at the 
MHz frequencies used in testing is large. For example, at 5 MHz a 
6.35 mm radius piston transducer radiating into water has a ka value of 
approximately 135. This same transducer radiating into steel would have a 
ka value of approximately 34. Thus, even though such ultrasonic 
transducers generate  sound beams that are not just plane waves, their 
acoustic radiation impedances can generally be taken as simply as the 
constant value, cSρ , of a plane wave. This is true for any shaped piston 
transducer, not just the circular case considered by Greenspan. To see this 
consider Eq. (4.11) again and with x fixed let ( )dS rdrdφ′=y (see Fig. 4.11 
(a)). Then the radial integration can be performed to yield 

 

piston transducer A of radius a versus the non-dimensional frequency, ka. 
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Fig. 4.11. (a) Integration over points y on the transducer face, and (b) averaging 
over points x on the transducer face, leading to (c) remaining integrations in terms 
of the distance, eR , between  points on the transducer edge. 
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 (4.13)

where ( )( ),e e er r φ′= x y is the radius from point x to a general point on the 
edge of the transducer surface, S (see Fig. 4.11 (b)). With ( )e φ′y fixed, we 
can let ( ) e edS r dr dφ=x  and Eq. (4.13) becomes 
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( ) ( ) ( ) ( )
2

0 0
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e
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t t e e e
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∫ ∫ ∫  (4.14)

where eR  is shown in Fig. 4.11 (c). Performing the integral on er by parts, it 
follows that 

( ) ( ) ( )( )

( )

2
2

0

1exp exp 1 exp

1/
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e

e e e e e e
e e

e

Rikr r dr R ikR ikR
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⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
=

∫  (4.15)

so that at high frequencies the integral in Eq. (4.14) can be neglected and 
we have 

( ) ( )t tF cS vω ρ ω=  (4.16)

4.3 Transducer Impedance and Sensitivity 

Since to date there is not a practical method available to determine experi-
mentally all the transfer matrix components of a radiating transducer, it is 
necessary to re-examine the terminated model of Fig. 4.9 and express it in 
terms of quantities that can be easily measured. In this case we can write 
the transfer matrix relations for a transmitting transducer A either in terms 
of the transmitted output force, tF , or the transmitted output velocity, tv , 
since 

;
11 12

21 22

11 12
;

21 22

.
/

A aA A
in r t

A A
in t

A A
t

A aA A
t r

V Z vT T
I vT T

FT T
F ZT T

⎧ ⎫⎡ ⎤⎧ ⎫ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭

⎡ ⎤ ⎧ ⎫
= ⎨ ⎬⎢ ⎥

⎩ ⎭⎣ ⎦

 (4.17)

The effects of this transducer on the other electrical components 
connected to it through its electrical port are determined by the transducer’s 
electrical impedance, ( );A e

inZ ω , which is given by 

;
; 11 12

;
21 22

A a A A
A e in r

in A a A A
in r

V Z T TZ
I Z T T

+
= =

+
 (4.18)
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However, this quantity can obviously be obtained by measuring inV  and inI , 

tively, when it is radiating into a material and it is not necessary to know 
the underlying transfer matrix components in Eq. (4.18) [4.10]. If the 
transducer’s electrical impedance ( );A e

inZ ω  were found in this fashion by 
electrical measurements and if we also had characterized the pulser and 
cabling by the methods discussed in Chapters 2 and 3 for a given 
ultrasonic setup, we could then find explicitly both the voltage inV  and the 
current inI ( );A e

in ω  
is all that is needed to characterize the electrical properties of the 
transducer in an ultrasonic measurement system. In addition, if we knew 
the transducer’s radiation impedance, ;A a

rZ  and also obtained a measure of 
a quantity such as /t inv I  or /t inF V , we could determine both the output 
force and velocity of the transducer and we would have characterized the 
transducer completely, i.e. both electrically and acoustically. Such 
quantities, which are just ratios of a transducer output to a transducer 
input, are called transducer transmitting sensitivities, OIS , where O is an 
output quantity such as force or velocity, and I is an input quantity such  as 
voltage or current, and  /OIS O I= . There are, obviously, a number of 
different sensitivities one could define. For example we have 

;

;

; ;

/

/

A t
vI

in

A A a At
FI r vI

in

A A A et
vV vI in

in

A A a A A et
FV r vI in

in

vS
I
FS Z S
I
vS S Z
V
FS Z S Z
V

=

= =

= =

= =

 (4.19)

We will choose to describe the transducer A in terms of its sensitivity A
vIS . 

As Eq. (4.19) shows, if we also know the transducer’s electrical impe-
dance, ( );A e

inZ ω ,and its acoustic radiation impedance, ;A a
rZ , we could then 

also obtain any of the other sensitivities listed in Eq. (4.19). From Eq. (4.17) 
it follows that: 
 

 

the driving voltage and current at the transducer’s electrical port, respec-

 at the transducer’s electrical port for this setup. Thus, Z
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Fig. 4.12. A model of a transmitting ultrasonic transducer as an electrical 
impedance and an ideal “converter” that transforms the input electrical signals into 
the acoustic output signals. 

;
21 22

1 .A t
vI A a A A

in r

vS
I Z T T

≡ =
+

 (4.20)

  It will be shown in Chapter 7 that it is possible to obtain this 
sensitivity by direct electrical measurements of the voltage and current at 
the transducer's electrical port, so that there is a practical way to determine 
all the transducer parameters, ; ;, ,A e A A a

in vI rZ S Z .Thus, we can replace the two 
port transfer matrix model of the transmitting transducer by the simpler 
model shown in Fig. 4.12, where we have represented the transducer as an 
electrical impedance and an ideal “converter” that transforms the input 
current to output velocity (or force). 

4.4 The Sound Generation Process 

We can combine our pulser, cabling and transducer models into a complete 
model of the entire sound generation process in an ultrasonic measurement 
system [4.10]. This generation process model is shown schematically in 
Fig. 4.13. We can treat this whole process as a single input, single output 
LTI system that is characterized by a transfer function, ( )Gt ω , as shown in 
Fig. 4.14. We will choose to write this transfer function in terms of the output 
force rather than the output velocity as ( ) ( ) ( )/G t it F Vω ω ω= . Since we have 
defined all of the elements contained in the sound generation process, we 
can obtain an explicit expression for this transfer function. From Fig. 4.13 
we have 
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Fig. 4.13. A model of the entire sound generation process in an ultrasonic system. 

Fig. 4.14. (a) The elements in the sound generation process – the pulser, the 
cabling, and the transmitting transducer and (b) an LTI system model of the sound 
generation process whose transfer matrix is ( )Gt ω . 

1 1,e
i iV V Z I− =  (4.21)

 

1 11 12

1 21 22

,in

in

VV T T
II T T

⎧ ⎫⎧ ⎫ ⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎣ ⎦ ⎩ ⎭
 (4.22)

 
, ,A a A

t r vI inF Z S I=  (4.23)
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Fig. 4.15. A sound generation transfer function obtained experimentally. (a) Magni-
tude of the transfer function versus frequency and  (b) its phase versus frequency. 

; .A e
in in inV Z I=  (4.24)

( ) ( )
( ) ( ) ( )

;

; ;
11 12 21 22

,
A a A

t r vI
G A e A e e

i in in i

F Z St
V Z T T Z T T Z

ω
ω

ω
= =

+ + +
 (4.25)

where ( )11 12 21 22, , ,T T T T  are the components of the transfer matrix, [ ]T , for 
the cabling between the pulser and the transmitting transducer, ;A e

inZ is the 
electrical impedance of the transmitting transducer A and A

vIS  is its 
sensitivity, and ;A a

rZ  is the acoustic radiation impedance of the transducer. 
With this transfer function we can model completely the effect of the 
pulser, the cabling and the transducer and predict the output force, ( )tF ω . 
Figure 4.15 shows an example where the magnitude and phase of a sound 
generation transfer function, ( )Gt ω , was experimentally determined by 
characterizing all the components contained in Eq. (4.21). In this case the 
pulser was the pulser section of a Panametrics 5052 PR  pulser/receiver 
(measured at a set of specific energy and damping  settings). The cabling 
consisted of 1.83 m of flexible 50 ohm coaxial cable connected to a 0.61 m  
 

Using Eqs. (4.21 - 4.24) it is easy to show that [4.10] 
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fixture rod. The rod also contained internal cabling and was terminated by 
a right-angle adapter to which the transducer was connected. The trans-
ducer was a relatively broadband 6.35 mm diameter 5 MHz immersion 
transducer. The sensitivity and impedance of the transducer were obtained 
by the methods which will be discussed in Chapter 6. 
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Fig. 4.16. A plane wave incident on a layer. 

 
Fig. 4.17. Waves incident on a layer, showing the first few reflected and 
transmitted waves. 

transmitted and reflected waves, as shown in Fig. 4.16. Let the velocities 
of these waves in their directions of propagation be given by 

[ ]
[ ]

( )

1

1

1

exp

exp

exp ,

i i

r r

t t

v V ik x

v V ik x

v V ik x h

=

= −

= ⎡ − ⎤⎣ ⎦

 

where we have written the transmitted wave in terms of the coordinate 
2x x h= −  since that wave only exists for 2 0x ≥ .  Then the corresponding 

forces in these waves are 
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( )
( )
( )
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On the sides of the layer we have 1 2 1 2, , ,i r t i r tF F F F F v V V v V= + = = + = . 
Using Eq. (4.8) for the layer then we can obtain the reflection and 
transmission coefficients of the layer in the forms 
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−

 

where ,ij ijR T are the plane wave reflection and transmission coefficients 
for a single interface going from medium i to medium j given by (see 
Appendix D): 

2 2 1 1
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2 2
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1 1
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+
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The layer reflection and transmission coefficients ( ),R T  are 
functions of frequency because they contain all the waves that bounce back 
and forth in the layer and emerge into the adjacent media. To examine this 
behavior in frequency use MATLAB to plot the magnitude of these 
coefficients for 500 frequency values ranging from zero to 20 MHz for a 
thin (1 mm thick) aluminum plate in water. Can you explain the frequency 
dependent behavior of this plot?  

To see the individual reflected and transmitted waves, we can expand 
the denominators of the ( ),R T  expressions and obtain 

( ) ( ){ }
( ) ( ){ }

2
12 21 12 21 2 21 2

2
12 21 2 21 2

exp 2 1 exp 2 ...

exp 1 exp 2 ... ,

R R R T T ik h R ik h

T T T ik h R ik h

= + + +

= + +
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which are the first few reflected and transmitted waves as shown in 
Fig. 4.17. Use MATLAB to calculate the magnitude of ( ),R T  for just 
these first few terms. How do your results here compare to your previous 
results?  
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5 The Acoustic/Elastic Transfer Function and the 
Sound Reception Process 

5.1 Wave Processes and Sound Reception 

The last Chapter showed how to characterize the relationship between the 
Thévenin equivalent driving voltage of the pulser and the output force, 

( )tF ω , at the face of the transmitting transducer. That output force will 
launch waves from the transducer, waves that will propagate and interact 
with the component being inspected as well as with whatever flaws may be 
present. A portion of these waves will be captured by a receiving trans-
ducer as shown in Fig. 5.1. The waves incident on the receiving transducer 
will generate a force on that transducer, labeled ( )BF ω  in Fig. 5.1. All the 
acoustic/elastic wave propagation and scattering interactions that occur 
between the transmitting transducer and the receiving transducer are 
complex 3-D wave phenomena.  

Later Chapters will describe in detail how models can describe 
these waves. Here, we are interested in characterizing the role that the 
acoustic/elastic interactions play in the overall ultrasonic measurement 
system and we will give some simple examples of those interactions. We 
will also describe models for characterizing the entire reception process 
(see Fig. 5.2) where the force, ( )BF ω , is converted into electrical energy 
at the receiving transducer, transmitted by a cable to the receiver, and then 
amplified to generate a final system output voltage, ( )RV ω . Like the process 
of sound generation both the acoustic/elastic process and the reception 
process can be modeled as transfer functions. The acoustic/elastic transfer 
function is defined as: 

( ) ( )
( )

B
A

t

F
t

F
ω

ω
ω

=  (5.1)

and the reception process transfer function is defined as: 

www.iran-mavad.com 
ایران مواد



68      The Acoustic/Elastic Transfer Function and the Sound Reception Process 

Fig. 5.1. (a) An ultrasonic pitch-catch immersion inspection, showing the 
acoustic/elastic waves present between the sending transducer and the receiving 
transducer, and (b) an LTI system model of those acoustic/elastic processes whose 
transfer function is ( )At ω . 

Fig. 5.2. (a) The elements of the reception process – the receiving transducer, the 
cabling, and the receiver portion of a pulser/receiver, and (b) an LTI system model 
of the reception process whose transfer function is ( )Rt ω . 
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Fig. 5.3. Modeling the interaction of the waves incident on a “blocked” receiving 
transducer where the waves are treated as plane waves and the transducer surface 
is treated as a infinite, planar and rigid (immobile) boundary. 

( ) ( )
( )

R
R

B

V
t

F
ω

ω
ω

=  (5.2)

5.2 The Blocked Force 

The force, ( )BF ω , appearing in both Eqs. (5.1) and (5.2) is a particular 
force acting on the receiving transducer called the blocked force. This 
blocked force is defined as the force that would be exerted on the receiving 
transducer if its face was held rigidly fixed (immobile). We will see shortly 
why this specific force arises naturally when we discuss the reception 
process. However, we can use a simple model to gain some additional 
understanding of this force. Consider, for example, the waves incident on a 
receiving transducer in an immersion setup. Let θ be the angle that these 
incident waves make with the normal to the transducer and assume that 
these incident waves behave like harmonic plane waves, as shown in 
Fig. 5.3. If we neglect any wave diffraction effects at the edges of the 
receiving transducer, we can model the face of that transducer, when its 
face is held rigidly fixed, as an infinite plane rigid surface, as shown in 
Fig. 5.3. The pressure of the incident plane wave can be given as 

( )exp cos sininc ip P ik x y i tθ θ ω= ⎡ + − ⎤⎣ ⎦  (5.3)
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and the pressure in the plane reflected wave given by 

( )exp cos sinreflt rp P ik x y i tθ θ ω= ⎡ − + − ⎤⎣ ⎦  (5.4)

since it reflects from the surface with the same angle as the incident wave 
as shown in Appendix D. At the transducer face, x = 0, which is held 
rigidly fixed, the total displacement and velocity normal to the transducer 
(in the x-direction) must be zero. Thus, from the equation of motion (see 
Appendix D) we have at the transducer face 

( ) ( )
0

0

, ,1, , 0x x
x

p x y t
v x y t

i xωρ=
=

∂
= =

∂
 (5.5)

where inc refltp p p= +  is the total pressure. Placing Eqs. (5.3) and (5.4) into 
Eq. (5.5) we find 

( ) ( )cos exp sin 0i r
ik P P iky i t

i
θ θ ω

ωρ
− − =  (5.6)

so that i rP P=  and the total pressure, Bp , at the blocked transducer face is 
just 2B incp p= . If we let S be the area of the face of the transducer then we 
see that the blocked force acting on the face of the transducer, 

( )B B
S

F p dSω = ∫∫ , is just twice that of the force inc inc
S

F p dS= ∫∫ , exerted by 

the incident wave over the same area, i.e. 

( ) ( )2B incF Fω ω=  (5.7)

To summarize: If we assume plane wave interactions at the receiving trans-
ducer, the blocked force, ( )BF ω , is just twice the force, ( )incF ω , exerted by 
the waves incident on the area of the receiver. The force, ( )incF ω , acting 
on S is computed from the incident waves as if the transducer were absent.   
 Many authors use Eq. (5.7) without further discussion since the 
plane wave interaction assumption on which it is based is likely a good 
assumption in most cases. We will also find it useful to use Eq. (5.7) when 
obtaining the acoustic/elastic transfer function since then we can model the 
pressure wave field of only the incident waves at the receiving transducer 
and use Eq. (5.7) to obtain the blocked force, without having to consider 
explicitly any more complex interactions of the incident waves with the 
receiving transducer. 
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Fig. 5.4. An ultrasonic pitch-catch calibration setup where the waves generated by 
a circular planar piston transducer are received by a second circular planar 
transducer and where the transducer axes are aligned. 

5.3 The Acoustic/Elastic Transfer Function 

To obtain the acoustic/elastic transfer function, ( )At ω , in a general ultra-
sonic NDE measurement system requires a knowledge of the waves 
propagating in the component being inspected as well as the waves 
generated by any flaws present. We will develop models needed to 
describe those waves in Chapters 9 and 10. Here, however, we will discuss 
some simple setups where there are explicit analytical expressions for the 
acoustic/elastic transfer function. One setup that is commonly used for 
calibrating pitch-catch setups is shown in Fig. 5.4 where a circular planar 
piston transducer, of radius a, radiates waves into a fluid which are 
captured by a circular planar piston receiving transducer of radius b, where 
the two central axes of the transducers are aligned and the transducer faces 
are parallel to one another.  In this case an explicit model has been 
developed for ( )incF ω ,  the force of the waves incident on the area of the 
receiver (in the absence of that receiver). This force is given by [5.1] 

( ) ( ) ( ){

( )

( ) }

0

/ 2 2 2
2 2

2 2
0

22 2

exp

sin cos16
4 cos

exp 4 cos ,

inc p p

p

F c v ik D

u ua b
a b ab u

ik D a b ab u du

π

ω ρ ω= Θ

−
− +

⎡ ⎤⋅ + − +⎢ ⎥⎣ ⎦

∫  (5.8)

where  
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2

2

b a b
a b a

π

π

⎧ ≥⎪Θ = ⎨
≥⎪⎩

 (5.9)

and , pcρ  are the density and compressional wave speed of the fluid, respec-
tively, /p pk cω= , ( )0v ω  is the velocity on the face of the transmitting 
transducer, and D is the distance between the transducers. If we take the 
acoustic radiation impedance of the transmitter as 2a

r pZ a cπ ρ=  and the 
blocked force at the receiver as 2B incF F= , then we have for the transfer 
function 

( ) ( ){

( )

( ) }

2

/ 2 2 2
2 2

2 2
0

22 2

2 exp

sin cos16
4 cos

exp 4 cos .

A p

p

t ik D
a

u ua b
a b ab u

ik D a b ab u du

π

ω
π

= Θ

−
− +

⎡ ⎤⋅ + − +⎢ ⎥⎣ ⎦

∫  (5.10)

In the special case when the transducers are both of the same size (b = a), 
Eq. (5.10) reduces to 

( ) ( )
/ 2

2 2 2 2

0

42 exp

sin exp 4 cos .

A p

p

t ik D

u ik D a u du
π

ω
π

⎧= −⎨
⎩

⎫⎪⎡ ⎤⋅ + ⎬⎣ ⎦ ⎪⎭
∫

 (5.11)

At high frequencies the integral in Eq. (5.11) can be evaluated analytically, 
yielding [Fundamentals] 

( ) ( ) ( )
( ) ( ){ }

2

2 2
0 1

2exp 1 exp /

/ / ,

A p

p p

t ikD ik a D

J k a D iJ k a D

ω ⎡= −⎣
⎤⋅ − ⎦

 (5.12)

where 0 1,J J  are Bessel functions of order zero and one, respectively.  
 Although Eq. (5.12) is only an approximation of Eq. (5.11) it has 

been found to give accurate results when 1pk a >>  which is well satisfied 
for the size of transducers and frequencies used in NDE testing. Thus, 
Eq. (5.12) can be regularly used in place of Eq. (5.11). This eliminates the 
need to numerically evaluate any integrals. 
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Fig. 5.5. An ultrasonic pulse-echo calibration setup where the waves generated by 
a circular, planar, piston transducer are reflected from a plane fluid-solid interface 
at normal incidence and the reflected waves are received by the same transducer. 

 Some more explicit results can also be obtained from Eq. (5.10) 
for other cases as well. For example, if we assume a  >> b Eq. (5.10) 
reduces to 

( ) { }
2

2 2
22 exp exp .A p p

bt ik D ik D a
a

ω ⎡ ⎤⎡ ⎤= − +⎣ ⎦ ⎣ ⎦  (5.13)

This is just the case where the receiver is small enough so that it acts as a 
point source and the transfer function is just proportional to the on-axis 
pressure of the transmitting transducer (see Chapter 8). Similarly, if we 
assume b >> a then Eq. (5.10) becomes 

( ) { }2 22 exp exp ,A p pt ik D ik D aω ⎡ ⎤⎡ ⎤= − +⎣ ⎦ ⎣ ⎦  (5.14)

which again is proportional to the on-axis pressure. For the case where the 
transducers are separated by a large distance D, where D >> a, b, 
Eq. (5.10) becomes 

( ) ( )2
exp

,p
A p

ik D
t ik a

D
ω = −  (5.15)

which has the behavior of a spherically spreading wave, a behavior that is 
characteristic of point sources and the transducer far-field (again, see 
Chapter 8).  

 A similar immersion calibration setup that is useful for pulse-echo 
testing is shown in Fig. 5.5 where a circular planar piston transducer of 
radius a is oriented at normal incidence to the planar surface of a solid 
block. In this case, the force in the waves incident on the receiver from the 
front face of the solid, ( )incF ω , can be obtained as [Fundamentals]: 
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( ) ( ) ( ) ( )
( ) ( ){ }

2 2
1 1 0 12 1 1

2 2
0 1 1 1

exp 2 1 exp / 2

/ 2 / 2 ,

inc p p p

p p

F a c v R ik D ik a D

J k a D iJ k a D

ω π ρ ω ⎡= −⎣
⎤⋅ − ⎦

 (5.16)

where 1 1, pcρ  are the density and compressional wave speed of the fluid, 
1 1/p pk cω=  is the wave number, ( )0v ω  is the velocity on the face of the trans-

mitting transducer when it is firing, and D is the distance from the trans-
ducer to the fluid-solid interface (Fig. 5.5). The quantity 12R  is the plane 
wave reflection coefficient for the interface, based on the ratio of the 
reflected pressure to that of the incident pressure (see appendix D) given 
by 

2 2 1 1
12

2 2 1 1

,p p

p p

c c
R

c c
ρ ρ
ρ ρ

−
=

+
 (5.17)

where 2 2, pcρ  are the density and compressional wave speed of the solid, 

respectively. If we again take the radiation impedance as 2
1 1

a
r pZ a cπ ρ=  

and the blocked force as 2B incF F= , we obtain the transfer function 

( ) ( ) ( )
( ) ( ){ }

2
12 1 1

2 2
0 1 1 1

2 exp 2 1 exp / 2

/ 2 / 2 .

A p p

p p

t R ik D ik a D

J k a D iJ k a D

ω ⎡= −⎣
⎤⋅ − ⎦

 (5.18)

It is interesting to note that apart from the reflection coefficient Eq. (5.18) 
is identical to Eq. (5.12) if we replace the D in Eq. (5.12) by 2D. This 
similarity occurs because we can view the reflected waves as arising from 
a fictitious  “image” transmitting transducer located a distance 2D from the 
receiving transducer. Thus, for the pitch-catch response of two transducers 
of the same radius located co-axially in a fluid we have, from Eq. (5.12) 

( ) ( ) ( )2 / expA p p pt D k a D ik Dω =  (5.19)

and for the pulse-echo case, from Eq. (5.18) 

( ) ( ) ( )2
12/ 2 exp 2A p p pt D k a D R ik Dω =  (5.20a)

with 

( ) ( ) ( ) ( ){ }0 12 1 exp .pD u iu J u i J u ⎤= ⎡ − −⎣ ⎦  (5.20b)
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Fig. 5.6. The magnitude of the acoustic/elastic transfer function for two identical 
circular 3.175 mm radius planar piston transducers in water facing one another in 
a pitch-catch configuration as shown in Fig. 5.4 with the distance D = 444 mm. 
The effect of attenuation was included by using Eq. (5.22a) with the attenuation 
given by Eq. (5.21). 

From Eq. (5.19) we can recognize the term without the pD function as just 
the transfer function for a plane wave that had traveled directly from the 
transmitter to the receiver, while in Eq. (5.20a) the terms without the 

pD function would be the transfer function describing a plane wave that had 
traveled from the transmitter to the interface, been reflected from the inter-
face and then traveled back to the receiver. Thus, pD  is just the diffraction 
correction term for these two cases that takes into account the deviations 
from a plane wave result. These deviations exist because the transducer 
produces a beam of sound rather than just a plane wave (see the discussion 
in Chapter 8 of diffraction corrections and the paraxial approximation). 
The factor of two in the pD  expression arises simply because our transfer 
function is defined in terms of the blocked force rather than the force of 
the incident waves.  

 In using these transfer functions to model the propagation of 
waves in a real fluid, such as water, it is important to include the effects of 
material attenuation, which is absent in these transfer functions since they 
were developed under the assumption that the waves were propagating in 
an ideal (loss free) compressible fluid. Adding attenuation to these transfer 
functions  can  be  done  by  including  a  term of the form ( )exp f zα⎡− ⎤⎣ ⎦ ,  
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Fig. 5.7. A receiving transducer as a two port system. To use this model we need 
to know the nature of the acoustic sources driving the transducer. 

where ( )fα is a frequency dependent attenuation coefficient (measured in 
Nepers/unit length – see Appendix D) for the material the waves are 
traveling in and z is the distance traveled in that material. The attenuation 
coefficient for water at room temperature, for example, has been measured 
as [Fundamentals] 

( ) 6 225.3 10w f fα −= ×  Nepers/mm (5.21)

where f is the frequency in MHz. Using this attenuation correction the 
transfer functions of Eq. (5.19) and (5.20) become 

( ) ( ) ( ) ( )2 / exp expA p p p wt D k a D ik D f Dω α= ⎡− ⎤⎣ ⎦  (5.22a)

and 

( ) ( ) ( ) ( )2
12/ 2 exp 2 exp 2A p p p wt D k a D R ik D f Dω α= ⎡− ⎤⎣ ⎦  (5.22b)

An example calculation to show the behavior of the transfer function in 
Eq. (5.22a) is given in Fig. 5.6. 

 There are other simple setups where one can develop explicit 
expressions for the transfer function ( )At ω  but we will not discuss those 
cases here. The two setups we have described will be particularly useful in 
setting up model-based measurements that allow us to characterize all the 
electrical and electromechanical components in an ultrasonic measurement 
system (see Chapter 7) and for determining material attenuation (see 
Appendix D). 

www.iran-mavad.com 
ایران مواد



5.4 The Acoustic Sources and Transducer on Reception      77 

5.4 The Acoustic Sources and Transducer on Reception 

The elements of the sound reception process are the receiving transducer, 
the cabling, and the receiver portion of the pulser/receiver as shown in 
Fig. 5.2 (a). In this section we will model the receiving transducer while in 
the next section we will discuss models of the cabling and receiver. By 
combining all of those components we will obtain the transfer function that 
describes the entire reception process (Fig. 5.2 (b)). 

 First, consider a receiving transducer B. We can model this 
transducer as a two port system where the input port is the acoustic port 
and the output port is the electrical port, i.e. we have reversed the inputs 
and outputs from the transmitting case as shown in Fig. 5.7. Note that 
along with this reversal we have also changed the direction of the velocity 
at the acoustic port and the current at the electrical port of the transducer. 
By inverting the transducer transfer matrix B⎡ ⎤⎣ ⎦T that describes B when it 
is used as a transmitter (see Eq. (4.5)), using the fact that det 1B⎡ ⎤ =⎣ ⎦T , and 
accounting for the sign changes on the velocity and current, we have 

22 12

21 11

,
B B

B B

F VT T
v IT T

⎡ ⎤⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎩ ⎭⎣ ⎦
 (5.23)

i.e. the diagonal terms are interchanged but the elements of the transfer 
matrix in Eq. (5.23) are exactly the same elements defined for the case 
where the transducer acts as a transmitter. To make use of this two port 
system model we need to know how the force and velocity inputs are 
related at the acoustic port and define the “driving” sources at this port.  
For the receiving transducer, the “sources” at the acoustic port are 
obviously the waves incident on the transducer as well as the waves 
scattered from the transducer by the interaction of the incident waves with 
the transducer (see Fig. 5.8), generating a normal velocity on the face of 
the transducer. We will again assume that the receiving transducer behaves 
as a piston and let the normal velocity on its face be ( )nv ω .  To see how 
these waves generate the input force, F, and the input velocity, v, for our 
two port model, we break up our original problem into the sum of the two 
problems shown in Fig. 5.9 [5.2]. In Problem I, the face of the transducer 
is held rigidly fixed. In this case we have the pressure from the incident 
waves, incp , as well as the pressure of the waves scattered from the 
“blocked” transducer face, blocked

scattp . The integral of the sum of these two 
pressures  over  the  transducer  face is just  the blocked  force, ( )BF ω , we  
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Fig. 5.8. The incident and scattered waves at a receiving transducer and the total 
force, ( )F ω , and normal velocity, ( )nv ω , that those waves produce on the face 
of the transducer. 

 
Fig. 5.9. The decomposition of the original problem shown in Fig. (5.8) into the 
sum of two auxiliary problems, labeled Problem I and Problem II. 
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Fig. 5.10. (a) Representation of the waves received by a transducer as a blocked 
force source in series with the acoustic radiation impedance of the transducer, and 
(b) the representation of the acoustic sources and receiving transducer by a 
Thévenin equivalent voltage source and electrical impedance. 

defined earlier. In Problem II the incident waves are absent and we have 
just the pressure of the radiated waves, nv

radp , generated by the motion, 
( )nv ω , of the transducer face, which is taken as the same motion as in the 

original problem shown in Fig. 5.8. Let ( )sF ω  be the force acting on the 
face of the transducer in Problem II due to this motion of the transducer 
face. However, Problem II is just the same form as if the transducer were 
radiating waves when the transducer is used as a transmitter so the force, 

( )sF ω , acting on the transducer in this case is related to ( )nv ω  by 
( ) ( ) ( );B a

s r nF Zω = ( );B a
r

B acts as a transmitter. Since we have taken the velocity ( )v ω in our two 
port system as flowing into the system (Fig. 5.7) and ( )nv ω  is the normal 
velocity pointing outwards from the transducer (Fig. 5.8), we have 

( ) ( ) ( );B a
s rF Z vω ω ω= − . The total force, ( )F ω , acting on the transducer, 

is the sum of the forces in Problems I and II, so: 

ω v ω , where  Z ω  is the acoustic  radiation impe- 
dance of the receiving transducer B, the same impedance found when 
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Fig. 5.11. A model of the receiving transducer when the acoustic sources are 
removed. 

( ) ( ) ( ) ( ); .B a
B rF F Z vω ω ω ω= −  (5.24)

Equation (5.24) shows us explicitly how the force, F, and the velocity, v, 
are related at the acoustic port. This relationship is equivalent to the 
configuration shown in Fig. 5.10 (a), where a force “source”, ( )BF ω , is 
placed in series with an acoustic radiation impedance, ( );B a

rZ ω . Thus, we 
now have characterized the input side of the transducer. We see that the 
blocked force arises naturally in this model so that it is the quantity that 
makes sense to use in our transfer function definitions for both the 
acoustic/elastic processes and the reception process. From our previous 
discussion we see we could replace the blocked force source ( )BF ω by a 
source given by ( )2 incF ω , where incF  is the force due to the incident waves 
only (i.e. with the transducer absent). 

 Since there is at present no practical way to experimentally obtain 
the transfer matrix of the receiving transducer (see the discussion in 
Chapter 4), we need to replace the system shown in Fig. 5.10 (a) by an 
equivalent system whose elements we can determine. The system in 

theorem (Appendix B) allows us to replace that system with a single 
equivalent voltage source, ( )sV ω , and an equivalent electrical impedance, 

( )e
eqZ ω , as shown in Fig. 5.10 (b). Recall from Appendix B that to obtain 

the equivalent impedance we can short out (remove) the sources and 
examine the ratio between the input voltage and current for this config-
uration. When we do that for this system we find the configuration shown 
in Fig. 5.11, where the transducer is simply terminated at the acoustic  

( );B a
rZ ω . This configuration is port by its acoustic radiation impedance, 

’Fig. 5.10 (a) is an active system (a system with a source) so Thévenin s
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Fig. 5.12. The Thévenin equivalent circuit that characterizes a receiving trans-
ducer and its acoustic driving sources. 

identical to the situation when  this  transducer is being used as a transmitter  
and so if we measured the voltage and current ( ),in inV I  shown in Fig. 5.11, 
we would find an equivalent impedance that is the same as that when the 
transducer is being used as a transmitter, i.e. ( ) ( );e B e

eq inZ Zω ω=  where 

( )
;

; 11 12
;

21 22

.
B a B B

B e r
in B a B B

r

Z T TZ
Z T T

ω +
=

+
 (5.25)

To obtain the equivalent voltage source, we need to examine the system 
shown in Fig. 5.10 (a) under open circuit conditions. For this case, we have 
from Eq. (5.23) 

( ) ( ) ( )
( ) ( ) ( )

22

21 ,

B

B

F T V

v T V

ω ω ω

ω ω ω

∞

∞

=

=
 (5.26)

where ( )V ω∞ is the open circuit voltage and the source for our Thévenin 
equivalent circuit, i.e. ( ) ( )sV Vω ω∞= . Placing Eq. (5.26) into Eq. (5.24) 
we find 

( )
( ) ( ) ( ) ( );

22 21

1 .B B a B
B r

V
F T Z T

ω
ω ω ω ω

∞

=
+

 (5.27)

This ratio is a receiving sensitivity called the open-circuit, blocked force 
receiving sensitivity, ( );

B

B
VFM ω∞  [5.3]. However, comparing Eq. (5.27) with 

Eq. (4.20) where we defined the sensitivity, ( )B
vIS ω , for this transducer 

when used as a transmitter, we see that: 
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( ) ( );
B

B B
VF vIM Sω ω∞ =  (5.28)

and it follows that the Thévenin equivalent voltage is just 

( ) ( ) ( ) ,B
s vI BV S Fω ω ω=  (5.29)

which reduces the transducer and its driving sources to the simple circuit 
shown in Fig. 5.12. Since in Chapter 7 we will show that it is possible to 
obtain B

vIS  and ;B e
inZ  by purely electrical measurements, those measure-

ments will determine completely the role of the transducer when acting as 
both a transmitter and receiver of sound.  

 The equality of the two sensitivities in Eq. (5.28) is not accidental. 
In fact, it is directly a consequence of the fact that the transducer is 
assumed to be a reciprocal device. Thus, Eq. (5.28) can be considered as a 
statement of transducer reciprocity (see [5.5] for further discussions of 
transducer reciprocity). This fact can be easily demonstrated by again 
starting from the transfer matrix of a transducer B when it is acting as a 
transmitter (Eq. (4.5)) and then obtaining the transfer matrix relationship 
of Eq. (5.23) but without assuming that the transducer is reciprocal ( i.e. let 
det B⎡ ⎤⎣ ⎦T

22 12

21 11

1 .
det

B B

B BB

F VT T
v IT T

⎡ ⎤⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥⎡ ⎤⎩ ⎭ ⎩ ⎭⎣ ⎦⎣ ⎦T

 (5.30)

Thus, when we relate the force and velocity in Eq. (5.30) to the open-circuit 
receiving voltage, V ∞ , in place of Eq. (5.26) we obtain 

( ) ( ) ( )
( ) ( ) ( )

22

21

/ det

/ det ,

B B

B B

F T V

v T V

ω ω ω

ω ω ω

∞

∞

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

T

T
 (5.31)

which, when placed into Eq. (5.24), gives 

( )
( ) ( ) ( ) ( )

;
;

22 21

det

det ,

B

B
B

VF B B a B
B r

B B
vI

V
M

F T Z T

S

ω
ω ω ω ω

∞
∞

⎡ ⎤⎣ ⎦= =
+

⎡ ⎤= ⎣ ⎦

T

T

 (5.32)

where we have also used the definition of the transmitting sensitivity B
vIS  

given  by  Eq. (4.20). Equation (5.32) shows  that  the  equality  of  the two  
 

≠1). In place of Eq. (5.23) we then find during reception that 
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Fig. 5.13. A two port model of the receiving cable. 

sensitivities as stated by Eq. (5.28) is then equivalent to requiring 
det 1B⎡ ⎤ =⎣ ⎦T , i.e. the transducer must be reciprocal. 

5.5 The Cable and the Receiver in the Reception Process 

The role of the cable in the reception process is exactly the same as its role 
in the sound generation process. We can characterize the cable by a 2x2 
reciprocal transfer matrix, [ ]R , where (see Fig. 5.13) 

1 11 12 2

1 21 22 2

V R R V
I R R I

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎣ ⎦ ⎩ ⎭
 (5.33)

and the reversing of the current directions does not affect this relationship 
if the cable is reciprocal ( [ ]det 1=R ) and 11 22R R=  as found in a trans-
mission line model of the cable. If the cable does not exactly satisfy these 
requirements of the transmission line model then we can take such 
behavior into account by replacing Eq. (5.33) by  

[ ]
1 22 12 2

1 21 11 2

1 ,
det

V R R V
I R R I

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎣ ⎦ ⎩ ⎭R
 (5.34)

where ( )11 12 21 22, , ,R R R R  are the measured transfer matrix of the cable 
when it is transferring signals from the pulser/receiver to the transducer 
during the sound generation process. These components of the receiving 
cable transfer matrix can again be found through the electrical measure-
ments described in Chapter 3. 

 The receiver part of a pulser/receiver amplifies the received signals 
and can also  filter  them. Figure 2.1  shows these  types of  controls on the  
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Fig. 5.14. Model of a receiver as an electrical impedance and an amplification 
factor. 

 
Fig. 5.15. A measurement setup where the waves driving a receiving transducer 
are used as inputs to the receiver. The input voltage, ( )0 tν , and current, ( )0i t , are 
measured at the input port of the receiver, as is the receiver output voltage, ( )Rv t . 

right side of the front panel of a spike pulser and Fig. 2.4 shows similar 
gain and filtering settings that can be made on under computer control of a 
square wave pulser. Here, any filtering operations of the receiver will not 
be modeled as they can be easily applied to the unfiltered output at a later 
stage if desired. In many quantitative studies filtering may be detrimental 
because it removes frequency components that may contain useful 
information.  

 Since the receiver provides an electrical termination at one end of 
the cable, we will model the receiver as an electrical impedance, ( )0

eZ ω  
(Fig. 5.14). The amplifier action of the receiver will be modeled by an 
amplification (gain) factor, ( ) ( ) ( )0/RK V Vω ω ω= , as shown in Fig. 5.14, 
where ( )RV ω  is the output voltage frequency components of the receiver 
and ( )0V ω  is the corresponding voltage at the receiver's input port. By 
measuring the voltages and currents at the input and output of the receiver 
when it  is receiving  signals  from  a  receiving  transducer  (see Fig. 5.15) 

www.iran-mavad.com 
ایران مواد



5.5 The Cable and the Receiver in the Reception Process      85 

 
Fig. 5.16. The measured magnitude (solid line) and phase (dashed line) of the 
electrical impedance, ( )0

eZ ω , of the receiver portion of a Panametrics 5052PR 
pulser/receiver when driven by a 2.25 MHz transducer in a pitch-catch mode. 

 
Fig. 5.17. The measured magnitude (solid line) and phase (dashed line) of the 
amplification (gain) factor, ( )K ω , of the receiver portion of a Panametrics 
5052PR pulser/receiver when driven by a 2.25 MHz transducer in a pitch-catch 
mode. 
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and calculating their Fourier transforms, the quantities ( )0V ω , ( ) ( )0 , RI Vω ω  
can be found for a specific gain setting of the receiver. From these 
measurements both the impedance, ( )0

eZ ω , and the amplification factor, 
( )K ω , can be obtained since 

( ) ( )
( )

( ) ( )
( )

0
0

0

0

,

e

R

V
Z

I

V
K

V

ω
ω

ω

ω
ω

ω

=

=

 (5.35)

where a Wiener filter can be used to desensitize these divisions to noise 
(see Appendix C). Figure 5.16 shows the measured impedance of a 
Panametrics 5052PR pulser/receiver determined in this fashion when the 
pulser/receiver is operating in a pitch-catch mode. Fig. 5.17 gives the 
corresponding measured amplification (gain) factor. There is little 
structure seen in the impedance plot as a function of frequency. It is nearly 
a constant, having a value of approximately 500 ohms. This is consistent 
with the circuit diagrams of this particular instrument in a pitch-catch 
mode. The amplification factor also has little structure, having a value near 
10 which corresponds well with the 20dB gain setting at which the 
measurements were taken. Since the 2.25 MHz receiving transducer used 
in these measurements band limits the received response the results shown 
in Figs. 5.16 and 5.17 can only be reliably estimated over the bandwidth 
present. If the transducer used in such a calibration is the same as the one 
used in an actual inspection, this may not be an issue since the same 
bandwidth constraints will also be present in the inspection. Otherwise, we 
may need to excite the receiver with a wider bandwidth source or combine 
the measurements made with several different transducers to obtain 

( ) ( )0 ,Z Kω ω  over a larger range of frequencies. 
 In a pulse-echo mode the received signals must pass through some 

of the circuits of the pulser section so it is not surprising that in this case 
the properties of the receiver are affected by the pulser settings. 
Figure 5.18 (a) shows the behavior of the amplification factor, ( )K ω , of a 
spike pulser/receiver computed at two different damping settings and 
Fig. 5.18 (b) gives the receiving impedance, ( )0

eZ ω , as measured over a 
range of different damping settings. The receiver was driven in these cases 
by waves received from a broadband 5 MHz transducer in a pulse-echo 
setup of the type shown in Fig. 5.5. 
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Fig. 5.18. (a) Magnitude of the amplification factor for the receiver section of a 
spike pulser/receiver in a pulse-echo mode obtained at a damping setting of 2 
(solid line) and a damping setting of 9 (dashed line). (b) The equivalent 
impedance of the spike pulser/receiver at a range of damping settings from 0 to 7 
(the arrow indicates the trend of the curves for changing damping settings). 

 Figure 5.19 shows the results of measurement of the amplification 
factor and receiving impedance of a square wave pulser/receiver when 
operated in a pitch-catch mode while Fig. 5.20 shows these same para-
meters when the square wave pulser is operated in a pulse-echo mode. In 
both cases the receiver was being driven by a broadband 5 MHz transducer. 
In the pulse-echo mode it can be seen that there is some dependency of the 
square wave receiver parameters on the pulse width setting in pulse-echo 
but these changes are not large. 
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Fig. 5.19. (a) The magnitude (solid line) and phase (dashed line) of the amplification 
(gain) factor of the receiver section of a square wave pulser/receiver in a pitch-catch 
mode. (b) The magnitude and phase of the equivalent impedance of the receiver 
section of a square wave pulser/receiver in a pitch-catch mode. 

5.6 A Complete Reception Process Model 

By combining our transducer, cabling and receiver models we have the 
complete reception process shown in Fig. 5.21. From Fig. 5.21 we have 

;
2 2

B B e
vI B inS F V Z I− =  (5.36)
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Fig. 5.20. (a) The magnitude of the amplification factor of the receiver section of 
a square wave pulser/receiver in a pulse-echo mode obtained at a pulse width 
setting of 10 (solid line) and a pulse width setting of 50 (dashed line). (b) The 
magnitude of the receiving impedance of the receiver section of a square wave 
pulser/receiver in a pulse-echo mode for a range of pulse width settings (the arrow 
indicates the trend of the curves for changing pulse widths). 

02 22 12

02 21 11

VV R R
II R R

⎧ ⎫⎧ ⎫ ⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎣ ⎦ ⎩ ⎭
 (5.37)

 

0RV K V=  (5.38)
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Fig. 5.21. A model of the entire sound reception process. 

 
 

Fig. 5.22. (a) All the electrical and electromechanical elements of both the sound 
generation and sound reception parts of an ultrasonic measurement system, and (b) 
their representation by equivalent  sources, impedances, sensitivities, amplification 
factors, and transfer matrix elements. All the wave propagation and scattering 
processes are shown in terms of the acoustic/elastic transfer function, ( )At ω . 
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0 0 0 ,eV Z I=  (5.39)

where the components of the cabling transfer matrix are those obtained 
considering ( )0 0,V I as the input side of the cabling and we have assumed 

[ ]det 1=R (i.e. the cable is reciprocal) but have not assumed that 11 22R R=  
(see the discussion leading to Eq. (5.34)). Using Eqs. (5.36 - 5.39) it is 
easy to show that the transfer function for this entire reception process, 
( )Rt ω , is given by [5.4] 

( ) ( )
( ) ( ) ( ); ;

11 12 21 22

e B
R o vI

R B e B e e
B in in o

V K Z St
F Z R R Z R R Z

ω
ω

ω
= =

+ + +
 (5.40)

in terms of all the parameters defined earlier. Recall the transfer function 
for the sound generation process, ( )Gt ω , was given by Eq. (4.21) as 

( ) ( )
( ) ( ) ( )

;

; ;
11 12 21 22

.
A a A

t r vI
G A e A e e

i in in i

F Z St
V Z T T Z T T Z

ω
ω

ω
= =

+ + +
 (5.41)

All the electrical and electromechanical components in an ultrasonic 
measurement system are shown in Fig. 5.22 (a). The corresponding models 
are shown in Fig. 5.22 (b). It can be seen from Fig. 5.22 (b) that both the 
complex sound generation and reception processes models are combined in 
very similar ways, reflecting the close similarity between the sound 
generation and receptions transfer functions in Eqs. (5.40) and (5.41). 
Figure 5.23 shows an example where the magnitude and phase of a sound 
reception transfer function, ( )Rt ω , was experimentally determined by char-
acterizing all the components contained in Eq. (5.40). In this case the receiver 
was the receiver section of a Panametrics 5052 PR pulser/receiver (measured 
at a specific gain setting). The cabling consisted of 1.83 m of flexible 50 
ohm coaxial cable connected to a 0.76 m fixture rod. The rod also contained 
internal cabling and was terminated by a right-angle adapter to which the 
transducer was connected. The transducer was a relatively broadband 6.35 mm 
diameter, 5 MHz immersion transducer. The sensitivity and impedance of 
the transducer were obtained by the methods which will be discussed in 
Chapter 6. 

 In Chapter 7 it will be shown that these sound generation and 
reception  transfer  functions  can  be   combined  with  the  pulser  voltage  
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Fig. 5.23. A sound reception transfer function obtained experimentally. (a) 
Magnitude versus frequency and (b) phase versus frequency. 

source term, ( )iV ω , to form what is called the system function. It will also 
be shown in that Chapter that the system function can be obtained either by 
measuring of all its electrical and electromechanical components or by 
performing a single voltage measurement in a calibration setup. Thus, the 
acoustic/elastic transfer function, ( )At ω , shown in Fig. 5.22 is the only 
remaining part of the ultrasonic measurement system that is needed to 
completely characterize an entire ultrasonic measurement system. Since 
this acoustic/elastic transfer function involves the wave fields inside of 
solid components that are being inspected, it is not practical to measure 
this transfer function experimentally. Instead, accurate beam models and 
flaw scattering models are needed to describe ( )At ω for an ultrasonic flaw 
measurement system. In Chapters 8-10 such ultrasonic beam models and 
flaw scattering models will be described in detail. In Chapter 11 these 
beam models and scattering models will be combined with a general 
reciprocity relationship to obtain the acoustic/elastic transfer function for 
many ultrasonic flaw measurement setups. 
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5.8 Exercises 

1. Using Eqs. (5.21) and (5.22b) write a MATLAB function t_a that 
computes the acoustic/elastic transfer function for the pulse-echo setup 
shown in Fig. 5.5, where the fluid is water at room temperature. The calling 
sequence for this function should be: 

 
>> t =t_a(f, a, d, d1, d2,c1,c2); 

 
where f is the frequency (in MHz), a is the radius of the transducer (in 
mm), d is the distance from the transducer to the plane surface (in mm), d1 
is the density of the fluid (in gm/cm3), c1 is the compressional wave speed 
of the fluid (in m/sec), d2 is the density of the solid (in gm/cm3), and c2 is 
the compressional wave speed of the solid (in m/sec).  

 Using this function, obtain a plot of the magnitude of this transfer 
function versus frequency similar to Fig. 5.6 for a = 6.35 mm, d = 100 mm, 
d1 = 1.0 gm/cm3, c1 = 1480 m/sec, d2 = 7.9 gm/cm3, c2 = 5900 m/sec 
(steel). Let the frequencies range from 0 to 20 MHz. On the same plot, 
show the magnitude of this transfer function versus frequency when the 
attenuation of the fluid is neglected, so that the effects of attenuation on 
this function can be demonstrated. 

foundations. Research in Nondestructive Evaluation 14: 141-176  
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6 Transducer Characterization 

The sending and receiving transducers are some of the most important 
parts of an ultrasonic measurement system and also some of the most 
challenging components to completely characterize. To date there is no 
practical way to determine the complete transfer matrix components of a 
transducer, but as we have shown the role of the transducer as both a 
transmitter and a receiver in an ultrasonic measurement can be completely 
described in terms of its electrical impedance and sensitivity.  In this 
Chapter we will describe methods to obtain a transducer’s electrical imped-
ance and sensitivity and also obtain a transducer’s effective geometrical 
parameters such as effective radius and effective focal length.  

6.1 Transducer Electrical Impedance 

The transducer electrical impedance, ( );A e
inZ ω , of a given transducer A is 

relatively simple to determine in the calibration setup shown in Fig. 6.1. 
The transducer is connected by a short cable to the pulser and the input 
voltage, ( )1v t , and current, ( )1i t , are measured at point a as shown in 
Fig. 6.1 for the short time that the pulser is exciting the transducer and 
generating waves in the fluid but before any reflected waves have arrived 
back at the transducer. Taking the Fourier transform of these 
measurements to obtain ( ) ( )1 1,V Iω ω  then gives the impedance directly 
since for a short cable the transfer matrix of the cable is just the unit matrix 
and ( ) ( )1 inV Vω ω= , ( ) ( )1 inI Iω ω= , where ( ) ( ),in inV Iω ω  are the voltage 
and current directly at the transducer electrical input port (point b in 
Fig. 6.1) and 

( ) ( )
( )

; .inA e
in

in

V
Z

I
ω

ω
ω

=  (6.1)

As discussed earlier for other measurements of this type, in implementing  
Eq. (6.1) it may be  necessary to use a Wiener filter to desensitize the division 
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Fig. 6.1. A calibration setup for measurement of a transducer's electrical 
impedance. 

process to noise (see Appendix C). The voltage measurement can be made 
by inserting a T-connector in the cable and measuring the voltage on the 
connector while the current can be measured directly by tapping the cable 
and using a commercial current probe (Tektronix CT-2, Tektronix, Inc., 
Wilsonville, OR) attached to the central conductor of the cable. A current 
probe of this type is shown in Fig. 6.2. If it is not practical to use a very 
short cable, then the measurements at point a must be compensated for 
cabling effects. This is easy to do since in this case 

[ ]
122 12

21 11 1

1 ,
det

in

in

V VT T
T TI I

−⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥−⎣ ⎦ ⎩ ⎭⎩ ⎭ T

 (6.2)

where [ ]T is the transfer matrix for the cable between points a and b in 
Fig. 6.1 (considering a as the input port and b the output port). If the 
cabling acted as an ideal reciprocal device the determinant of the transfer 
matrix would be unity, i.e. [ ]det 1=T . In practice, the measured determinant 
is normally close to but not identically unity so those small differences are 
accounted for by using Eq. (6.2) with the determinant calculated directly 
from the measured component values. If the cable transfer matrix has been 
measured, we can use Eq. (6.2) to determine ( ) ( ),in inV Iω ω  from 
( ) ( )1 1,V Iω ω  and use Eq. (6.1) to obtain the impedance.  
 Figure 6.3 shows a measured transducer impedance plotted versus 

the frequency, f. To first order the magnitude of the impedance varies like 
1/f and the phase is approximately 90 degrees. Figure 6.4 shows the 
corresponding  frequency  response of  a  capacitor, which  we see  has  the  
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Fig. 6.2. A probe for measuring the current in a cable. 

 
Fig. 6.3. The measured electrical impedance of a transducer showing the magni-
tude of the impedance (solid line) and the phase (dashed line) versus frequency. 

same overall behavior. This is not surprising since a piezoelectric crystal 
that is plated on its faces will act to first order much like an ordinary 

 
capacitor. We cannot always expect to see purely a capacitor-like behavior  
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Fig. 6.4. The magnitude (solid line) and phase (dashed line) of the impedance, 

( )1/ 2eZ i f Cπ= − , of a capacitor versus frequency,  f , where  C is the capacitance. 

for the impedance, however, if a commercial transducer contains additional 
internal electrical “tuning” elements. 

6.2 Transducer Sensitivity 

With a new pulse-echo technique that has been recently developed, 
determining the transducer sensitivity of transducer A, ( )A

vIS ω , is only 
slightly more involved than finding the impedance [6.1]. In this case we 
use a calibration setup such as the one shown in both Figs. 6.5 and 6.6 
where the waves from the transducer are reflected from a solid block at 
normal incidence and the acoustic/elastic transfer function, ( )At ω , is 
known (see Eq. (5.18)). We first measure the input voltage, ( )1v t , and 
current, ( )1i t , when the transducer is firing and before any reflected waves 
arrive at the transducer (Fig. 6.5). After a time delay of approximately 

12 / pt D c= , where 1pc is the wave speed in the water, we measure the 
received voltage, ( )2v t , and current, ( )2i t  generated by the waves 
reflected from the block (Fig. 6.6). In Fig. 6.7 we show the sound 
generation process model corresponding to Fig. 6.5, where the frequency 
components  of  ( ) ( )1 1,v t i t   at  point  a  are  labeled ( ) ( )1 1,V Iω ω  and  the  
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Fig. 6.5. Measurement of voltage and current when transducer A is radiating 
waves. 

 
Fig. 6.6. Measurement of voltage and current when transducer A is receiving the 
waves reflected from the block. 

port ( ) ( ),in in ω

( ) ( )1 1,v t i t must by physical necessity be made outside the water tank so 
that there may be a non-negligible length of cable between the 
measurement point a and the electrical port of the transducer (point b). 
Again, however, if the transfer matrix [T] of the cabling is known, the 
voltages and currents measured in these two setups can be related directly 
to the corresponding voltages and currents at the transducer electrical input 
port. During the sound generation process, we can again use Eq. (6.2). 
Note that ( )inV ω  and ( )inI ω here are identical to those used in Eq. (6.1) so  

are labeledV Iω . It is likely that the measurements of 
frequency components of the voltage and current at the electrical input 
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Fig. 6.7. The generation process model for the measurement of voltage and 
current when transducer A radiates waves. 

 
Fig. 6.8. The reception process model for the measurement of the voltage and 
current when transducer A receives waves reflected from the block. 

that the impedance can also be calculated directly in the setup of Fig. 6.5 
from ( ) ( ) ( ); /A e

in in inZ V Iω ω ω= . In Fig. 6.8 we show the sound reception 
process model corresponding to Fig. 6.6 where the frequency components 
of ( ) ( )2 2,v t i t  at point a are labeled ( ) ( )2 2,V Iω ω  and the frequency 
components of the voltage and current at the electrical input port are 
labeled ( ) ( ),T TV Iω ω . To compensate for the cabling in this case we note 
that ( ),T TV I−  in the reception process (Fig. 6.8) replaces ( ),in inV I  in the 
generation process (Fig. 6.7) and similarly  ( )2 2,V I  replaces ( )1 1,V I  so we 
find 

[ ]
222 12

21 11 2

1 .
det

T

T

V VT T
T TI I

−⎧ ⎫ ⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥−− ⎣ ⎦⎩ ⎭ ⎩ ⎭T

 (6.3)

Note that 1I  and 2I  are taken to be in the same direction in both cases 
since  these  currents  are  both  measured  by  the current probe in Fig. 6.2. 
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Fig. 6.9. The measured sensitivity of a 5MHz, 6.35 mm radius planar transducer. 
The magnitude of the sensitivity versus frequency (solid line) and phase versus 
frequency (dashed line). 

 
Fig. 6.10. The measured sensitivity of a transducer as determined with compensation 
for cabling effects (solid line) and where cabling effects are ignored (dash-dot line). 
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This probe is directional and is oriented so that it measures the current 
flowing into the cable at point a during both the sound generation and 
reception processes (see Figs. 6.5 and 6.6). 

Now, consider determining the sensitivity from these measurements. 
From Fig. 6.8 we have 

;A A e
vI B in T TS F Z I V= +  (6.4)

and also 

;

t tB
B in

t t in
A a A

A r vI in

F vFF I
F v I
t Z S I

=

=

 (6.5)

so that by combining these two relations and using ; /A e
in in inZ V I=  we obtain 

; 2 .A in T T in
vI A a

A r in

V I V IS
t Z I

+
=  (6.6)

Since we know the acoustic/elastic transfer function for this setup and we 
can take the acoustic radiation impedance as its high frequency value 

;
1 1

A a
r p AZ c Sρ= , measurements of ( ) ( ) ( ) ( ), , ,in in T TV I V Iω ω ω ω  are suffi-

cient to determine the transducer sensitivity. Since Eq. (6.6) involves 
division of frequency domain values, a Wiener filter can be used here also 
to handle noise issues.   

 Figure 6.9 shows a plot of a measured sensitivity. The dimensions 
of the sending sensitivity A

vIS  are velocity/current while the open-circuit  
receiving sensitivity, ;

B

A
VFM ∞ , has the dimensions of voltage/force. Since these 

two sensitivities are equal we can use either set of dimensions. We choose 
here to use Volts/Newton in the SI system to characterize these sen-
sitivities. Figure 6.10 shows the differences in the measured sensitivity 
obtained when cabling effects are accounted for and when they are 
ignored. In most immersion setups such as the one used here there will 
likely be more than a meter of cable between where the voltages and 
currents are measured and the transducer electrical port, so that the cabling 
effects cannot be ignored, as shown in Fig. 6.10. It is important to realize 
that when the measured signals and modeled parameters are combined 
they determine the square of the transducer sensitivity, not the sensitivity 
itself. This can be seen from Eq. (6.6) if we rewrite it as 
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Fig. 6.11. A generic pitch-catch setup that can be used with three transducers (in 
various pairs) to determine the sensitivity of one of those transducers. 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2

; 2
in T T inA

vI A a
A r in

V I V I
S

t Z I
ω ω ω ω

ω
ω ω ω

+
⎡ ⎤ =⎣ ⎦  (6.7)

Thus, when the square root is taken of these values there is always an 
ambiguity about the sign that should be chosen. In a pulse-echo 
experiment, the sign is immaterial in predicting the measured voltage 
output of the system since the output voltage is proportional to the 
sensitivity squared (same transducer is both sender and receiver). In a 
pitch-catch experiment, however, two different transducers are used and 
this ambiguity in sign could affect the polarity of the predicted output 
voltage. There is no way to resolve the sign with the procedures discussed 
here, but there are two ways to deal with this issue. In a pitch-catch 
situation, the measured sensitivities of the two transducers involved could 
be combined with measurements of the other system components to 

( )
measurement setup where the acoustic/elastic transfer function, ( )At ω  was 
known (such as the setup shown in Fig. 5.4) then the output voltage, 

( ) ( ) ( )R AV s tω ω ω= could be obtained and Fourier transformed into the 
time domain and compared to the experimentally observed signal. If the 
predicted polarity of the time domain signal was correct (i.e. agreed with 
the experimental voltage), one could say that the signs of the two 
sensitivities were consistent. If the polarities did not agree, one could 
change the sign on one of the sensitivities to make them consistent. To 
determine the sign in a more fundamental  manner one could instead  place  

predict the system function s ω . If the transducers were placed in a  
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Fig. 6.12. A model for the generic pitch-catch setup of Fig. 6.11, showing the 
transmitting and receiving transducers and the acoustic/elastic transfer function 
that defines the wave processes occurring between them. 

Fig. 6.13. Three separate pitch-catch setups and measurements for determining the 
sensitivity of transducer A. In this case we have assumed the transducers are all of 
the same diameter and the distance, D, is fixed for all three setups. 

the transducer in a setup where the input current driving the transducer was 
measured as well as the pressure in the transducer wave field (such as the 
on-axis pressure measured with a separate calibrated probe). Such a 
measurement setup would only be needed, however, if it was essential to 
predict in an absolute sense the generated pressure wave field.  

 There exists another reciprocity-based measurement procedure to 
determine the open-circuit receiving sensitivity, ;

B

A
VFM ∞ , that is commonly 

described in the acoustics literature [6.2-6.10]. That method requires one to 
make measurements with three different transducers in three separate 
pitch-catch setups of the generic type shown in Fig (6.11) where the 
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transmitting transducer is transducer X and the receiving transducer is 
transducer Y. The input current to transducer X measured at point P in 

XI  and the open-circuit voltage measured at point Q 
received by transducer Y due to the waves generated by transducer X is 
labeled YXV∞ . If the effects of cabling between point P and the transmitting 
transducer X and between transducer Y and point Q are both negligible, 
then the measured current at the input port of transducer X is the same as 

XI  and the open-circuit voltage at Q is the same as the open-circuit voltage 
directly at the receiving transducer electrical port. In this case the sound 
generation and reception model for the pitch-catch setup of Fig. 6.11 is as 
shown in Fig. 6.12, Note that the acoustic/elastic transfer function, At , for 
this pitch/catch configuration is known for a pair of circular, plane piston 
transducers (see Eq. (5.10) for the case where the transducers are of dif-
ferent size, or Eq. (5.12) when the transducers are of the same size). Since 
the open-circuit voltage at the receiving transducer electrical port is just  
the equivalent source term for transducer Y given by ;

B

Y
B VFF M ∞  (see Chapter 5) 

we find 
;

;

; ; .

B

B

B

YYX
B VF

X X

YtB
VFX

t
X a X Y

A r vI VF

F MV
I I

FF M
F I
t Z S M

∞
∞

∞

∞

=

=

=

 (6.8)

As shown in Chapter 5 the transmitting sensitivity Z
vIS  and the open-circuit 

receiving sensitivity, ;
B

Z
VFM ∞ , are the same for any reciprocal transducer Z 

(where Z  = X or Y), so we can express the voltage over current ratio in 
Eq. (6.8) in terms of either of these sensitivities. We will choose the open-
circuit receiving sensitivity here, as that is the choice normally made in the 
acoustics literature. Then Eq. (6.8) becomes 

; ; ; .
B B

YX
X a X Y

A r VF VFX

V t Z M M
I

∞ ∞∞ =  (6.9)

Now, apply Eq.(6.9) to the three separate pitch-catch setups involving 
three transducers A, B, and C shown schematically in Fig. 6.13, where we 
have assumed that the distance, D, between transducers is held fixed for all 
three setups and the diameters of all three transducers are the same so that 
there is only one  acoustic/elastic transfer function, At , for all three setups. 

Fig. 6.11  is labeled 
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In setup one transducer X = C is firing and transducer Y = A is receiving 
while for setup two transducer X = C again is firing and transducer Y  = B 
is receiving. In setup three, transducer X = B is firing and transducer Y = A 
is receiving. Applying Eq. (6.9) to each of these cases individually we 
have 

; ; ;

; ; ;

; ; ; .

B B

B B

B B

AC
C a A C

A r VF VFC

BC
C a B C

A r VF VFC

AB
B a A B

A r VF VFB

V t Z M M
I

V t Z M M
I

V t Z M M
I

∞ ∞∞

∞ ∞∞

∞ ∞∞

=

=

=

 (6.10)

From Eq. (6.10) we see we can eliminate the sensitivities of transducers B 
and C by considering the particular combination of ratios 

2; ;
B

AB AC

B C
B a A

A r VFBC

C

V V
I I

t Z M
V
I

∞ ∞

∞

∞

⎛ ⎞
⎜ ⎟
⎝ ⎠ ⎡ ⎤= ⎣ ⎦⎛ ⎞
⎜ ⎟
⎝ ⎠

 (6.11)

so solving for the open-circuit receiving sensitivity of transducer A we find: 

;
;

1 .
B

AB AC
A A

VF vI BC B B a
r A

V VM S
V I Z t

∞ ∞ ∞

∞

= =  (6.12)

Equation (6.12), which is similar to the expression commonly found in the 
acoustics literature, is very much like Eq. (6.6) for our pulse-echo method. 
Instead of the two voltage and two current measurements needed for the 
pulse-echo method, Eq. (6.11) requires that we make three open-circuit 
voltage methods and one current measurement from the three pitch-catch 
setups of Fig. 6.13. For acoustic transducers operating at kHz frequencies 
or less, Eq. (6.12) has been commonly used in the acoustics community for 
many years to obtain transducer sensitivity. In fact, for transducers at those 
frequencies there exists a commercially available calibration system that 
can implement the measurements required in Eq.(6.12) and extract the 
sensitivity [6.11]. Dang. et al. [6.12] have also used this three transducer  
method to obtain the sensitivity of  NDE transducers operating at MHz 
frequencies. However, Dang et al. [6.12] found that at MHz frequencies it 
was important to consider the effects of the cabling present. They defined a  
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Fig. 6.14. The magnitude and phase of the sensitivity, vIS , of a 5 MHz, 6.35 mm 
diameter planar transducer as calculated by the pulse-echo method (solid line) and 
the three transducer pitch-catch method (dashed line). 

generalized sensitivity that took into account those cable effects and 
applied a modified version of Eq. (6.12). 

 The three transducer pitch-catch method is also a viable approach 
to obtaining sensitivity but the pulse-echo method has several advantages. 
First, the three-transducer method requires one to make measurements in 
three separate pitch-catch setups while only one setup is needed in the 
pulse-echo method. This makes the pulse-echo method faster and avoids 
any delicate re-alignment issues for the transducers. Second, we note that 
both the pulse-echo and the three transducer pitch-catch procedure for 
obtaining sensitivity are model-based approaches. This means that the 
model assumptions made on transducer behavior must be satisfied for all 
three transducers for the three transducer method but only for the 
transducer whose sensitivity is to be determined for the pulse-echo 
method. Figure 6.14 shows the sensitivity of a 5 MHz, 6.35 mm diameter 
planar transducer obtained via either the pulse-echo method or the three-
transducer pitch-catch method. It can be seen that there is little difference 
between the results obtain with either method over the bandwidth of the 
transducer.  

 There is also a pulse-echo technique for determining sensitivity 
called the self-reciprocity method that has been developed in the acoustics 
literature [6.13-6.17]. The  self-reciprocity  method  applies  Eq. (6.9)  to  a  
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Fig. 6.15. A circular piston transducer of radius a receiving the waves reflected 
from the front surface of a spherical reflector located on the central axis of the 
transducer. 

pulse-echo setup involving a single transducer, A, and solves for the 
sensitivity of A in the form 

;
;

1 ,
B

AA
A A

VF vI A A a
A r

VM S
I t Z

∞ ∞= =  (6.13)

where AAV∞  is the open-circuit voltage received by A due to the waves 
generated by A and AI  is the current driving transducer A when it is 
radiating into the fluid. Equation (6.13) is very similar to our pulse-echo 
expression, Eq. (6.6). In fact under open-circuit conditions 0TI =  in 
Eq. (6.6) and that equation simply reduces to Eq. (6.13). However, in order 

actual conditions present in a pulse-echo setup, so it is significantly more 
convenient to use than Eq. (6.13). 

6.3 Transducer Effective Radius and Focal Length 

It would appear that geometrical parameters such as the transducer radius 
and focal length are parameters that are well-defined and need no experi-
mental determination. In practice, however, it has been found that if one 
simply uses these parameters (as specified by the transducer manufacturer) 

to apply Eq. (6.13) directly one needs to measure the received voltage 
under open-circuit conditions. Since inherently in a pulse-echo setup 

Equation (6.6) can be applied directly from measurements taken under the 
or special matching networks to infer the open-circuit response. 

the transducer will be loaded by the receiver and cabling on reception, this 
has forced some authors to use rather complicated measurement systems 
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Fig. 6.16. The magnitude of the on-axis normalized pressure versus normalized 
distance /z N  for a ½ inch diameter circular piston transducer radiating waves at 
5 MHz  into a fluid, where N is the near field distance given by 2 /N a λ= . As 
shown the last on-axis null occurs at one-half a near field distance. 

in transducer beam models, one often does not get good agreement with 
theory when the behavior of the transducer beam is examined experi-
mentally [6.18], [Fundamentals]. This is perhaps to be expected since, for 
example, a transducer crystal cannot have piston-like behavior over its 
entire face as the crystal is supported and constrained at its edges. Thus, 
one might define an effective radius for the transducer where a piston 
model agrees better with experiments. Similarly, the geometrical focal 
length of a focused transducer is determined in reality by a number of 
other unknown parameters such as the material properties and geometry of 
the focusing lens. Again, one might deal with these unknowns by defining 
an effective focal length that matches experiments.  

 First, consider the problem of determining the effective radius of a 
circular, planar immersion transducer. One configuration that can be used 
to determine the effective radius of this transducer is shown in Fig. 6.15. A 
spherical reflector is placed on the axis of the transducer and the 
transducer is scanned so that the sphere remains on the transducer's central 
axis at different distances, z. At each value of z, iz z=  the received time 
domain voltage response, ( ),R iv t z , from the front surface of the sphere is 
recorded and Fourier transformed to obtain its spectrum, ( ),R iV f z . Then 
the magnitude of these frequency domain responses are plotted versus z at 
a single fixed frequency, 0f , which is usually taken near the center 
frequency  of  the  transducer. Since  the  front  surface  reflection from the  
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Fig. 6.17. The magnitude of the normalized on-axis pressure versus normalized 
distance z/R for a spherically focused piston transducer of radius a and 
geometrical focal length, R, radiating into water. The location of the null and 
maximum that are used in the determination of the effective focal length and 
radius are shown. 

 

sphere is proportional to the square of the on-axis pressure of the transducer, 
the magnitude of the frequency domain plot of ( )0 ,R iV f z has the same 
behavior as the on-axis pressure squared of the transducer when it is driven 
harmonically at frequency 0f  [Fundamentals]. In Chapter 8, an explicit 
expression for the on-axis pressure of a circular plane piston transducer at 
a fixed frequency is obtained analytically. This on-axis pressure is plotted 
in Fig. 6.16 versus the non-dimensional distance z/N, where 2 /N a λ=  is 
called the near field distance and 0/pc fλ =  is the wave length. It can be 
seen that in the region near the transducer there are a series of maxima and 
nulls. The last null (the one farthest from the transducer) can be shown to 
be located at the distance 2

min / 2z a λ= . Since this is a null of the pressure 
field the squared pressure will also have a null at this position, as will 

( )0 ,R iV f z . If, from the plot of  ( )0 ,R iV f z  versus z one obtains an estimate 
of the distance to that null then one can define the corresponding effective 
radius, effa , as 

min2 .effa zλ=  (6.14)
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This last on-axis null position is used because it is relatively simple to 
determine experimentally and does not require knowledge of the absolute 
amplitude of the on-axis pressure wave field. Some authors have used 
multiple on-axis nulls to obtain a better estimate of the effective radius or 
have used a least squares fitting to theory of many points, both on- and off-
axis, in the transducer wave field to determine effa . All of these methods 
have the same goal – namely to obtain an estimate of a radius value that 
will match the theoretical wave field better than simply using the nominal 
radius. In principle the determination of effa  in this fashion can be done at 
any fixed frequency and the result should not depend on the frequency 
chosen. In practice some variations of the effective radius value with 
frequency are found [Fundamentals]. Often these variations are not severe 
and a simple averaging of effa values over the bandwidth of the transducer 
gives good results.  

For a spherically focused transducer one can use the same setup 
shown in Fig. 6.15 and the same procedures to obtain ( )0 ,R iV f z , which is 
proportional to the on-axis pressure squared wave field, but in this case we 
must obtain estimates of both the effective radius, effa ,  and the effective 
geometrical focal length, effR [6.19], [6.20]. Figure 6.17 shows a plot of a 
model prediction of the on-axis pressure of a circular, spherically focused 
piston transducer radiating into water. Again one sees nulls and maxima in 
the region close to the transducer and a very large peaked response due to 
focusing. Only the distance, minz , to the last on-axis null can generally be 
obtained reliably, however, since at other nulls the response rapidly gets 
very small. One could also measure the distance, maxz , to the maximum 
value of ( )0 ,R iV f z , which also occurs when the magnitude of the 
pressure is a maximum. In this case, models show that the effective focal 
length is given in terms of minz   and maxz by [Fundamentals] 

( )max
max min

,
/eff

xR z
x z z
π

π
⎧ ⎫−⎪ ⎪= ⎨ ⎬−⎪ ⎪⎩ ⎭

 (6.15)

where x is a solution of the transcendental equation 

( ) ( ) ( )max min/
cos sin .

x z z
x x x

x
π

π
−

=
−

 (6.16)
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Once the effective focal length is found from these relations the effective 
radius is given by 

min

min

2
,eff

eff
eff

z R
a

R z
λ

=
−

 (6.17)

which we see reduces to the planar transducer case (Eq. (6.14)) when 
effR →∞ . In practice it has been found that the location of the distance to 

the transducer peak response, maxz , is difficult to determine precisely and the 
results for effR  are sensitive to those errors. It has been found better to use 
a range of estimates for maxz  and choose the best combination of effR  and 

effa  values that match (in a least squares sense) the predicted and measured 
on-axis pressure values around the transducer focus. The details of these 
procedures can be found in [6.20]. There are other fitting methods that can 
be used to obtain these effective parameters but we will not discuss those 
alternatives here. As in the planar case, the effective parameters have been 
found to depend somewhat on the frequency one chooses, so one might 
need to take an average of their values over the bandwidth of the 
transducer. 

Table 6.1. Effective radii and focal lengths found for some commercial 
transducers. 

Transducers     Manufacturer's    
          Specs 
   R                    a 
(mm)              (mm) 

       Effective  
      Parameters 
   effR                effa  
 (mm)              (mm) 

Center Frequency 
         (MHz) 

A 76.2                 4.76 134.7               4.51            10 
B 76.2                 6.35 207.4               5.56              5 
C 76.2                 4.76   74.5               4.69            15 

 
 Equation (6.15) shows that the effective geometrical focal length, 

effR , is always larger than maxz . The distance maxz , which is the distance to 
the maximum on axis pressure, is often called the location of the “true 
focus”. The difference between effR  and maxz occurs because of wave 
diffraction effects at finite frequencies. It is only in the limit when the 
frequency goes to infinity that max min/ 1z z → , and one finds maxeffR z= . 
 Table 6.1 gives some example values of the effective parameters 
obtained for several commercial transducers. It can be seen that in some 
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cases the effective values are considerably different from the nominal 
values given by the transducer manufacturer. Those differences can lead to 
large errors if the nominal values are used in model calculations. 
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6.5 Exercises 

1. The MATLAB function transducer_x(z) returns the time-domain sampled 
voltage received from a spherical reflector in water (c = 1480 m/sec) 
located at a distance z (in mm) along the axis of a planar transducer as 
shown in Fig. (6.15). There are 1024 samples in this waveform, each 
separated by a sampling time interval ∆t =.01 µsec. First, let z be the 
vector of values: 

 
>> z = linspace (25, 400, 100); 

 
Use this set of values in the transducer_x function, i.e. evaluate 

 
>> V = transducer_x(z); 

 
The matrix V will contain 100 waveforms calculated at each of these 

z-values. Use FourierT to generate the frequency spectra of these waveforms. 
Note that FourierT can operate on all of these waveforms at once as long 
as they are in columns (which is the case) and will return a matrix of the 
corresponding spectra, also in columns. Examine the magnitude of some of 
these spectra versus frequency to determine the range of frequencies over 
which there is a significant response. Pick one frequency value near the 
center frequency in this range and plot the magnitude of the spectra at that 
value versus the distance z.  
 Locate the last on-axis minimum in this plot and use Eq. (6.14) to 
determine the effective radius of this transducer. Try using a different fre-
quency value within the transducer bandwidth to determine the effective 
radius. Does your answer vary with the frequency chosen?  
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7 The System Function and Measurement System 
Models 

7.1 Direct Measurement of the System Function 

In the previous Chapters we have obtained explicit expressions for the 
transfer functions ( ) ( ),R Gt tω ω  that define all the electrical and electro-
mechanical components of an ultrasonic measurement system and we gave 
some examples of simple calibration setups where we can also obtain 
explicit expressions for the acoustic/elastic transfer function, ( )At ω . When 
all these transfer functions are combined with the Thévenin equivalent 
voltage of the pulser, ( )iV ω , we have a model of the entire ultrasonic 
measurement system  where the output voltage, ( )RV ω , is given by 

( ) ( ) ( ) ( ) ( ).R G R A iV t t t Vω ω ω ω ω=  (7.1)

In section 7.3 we will give some examples of combining all of these 
models and measurements to synthesize the output voltage of an ultrasonic 
measurement system. Of course this type of synthesis requires a considerable 
number of measurements since we must obtain the equivalent voltage and 
electrical impedance of the pulser, the transfer matrices of the cabling, the 
impedances (electrical and acoustical) and sensitivities of the transducers, 
and the electrical impedance and amplification factor of the receiver. 
However, there is an alternative approach where we combine ( ) ( ), ,R Gt tω ω  
and ( )iV ω  into a single factor, ( )s ω , called the system function, where 

( ) ( ) ( ) ( ).R G is t t Vω ω ω ω=  (7.2)

In terms of the system function Eq. (7.1) reduces to simply: 
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( ) ( ) ( ).R AV s tω ω ω=  (7.3)

For any calibration setup where we can model the transfer function ( )At ω  
explicitly and where we measure the frequency components of the received 
voltage, ( )RV ω , Eq. (7.3) shows that we can obtain the system function by 
deconvolution, i.e. 

( ) ( )
( )

.R

A

V
s

t
ω

ω
ω

=  (7.4)

In practice, to reduce the sensitivity of the deconvolution to noise, we use a 
Wiener filter (see Appendix C) and obtain the system function from 

( ) ( ) ( )
( ) ( ){ }

*

2 22
,

max
R A

A A

V t
s

t t

ω ω
ω

ω ε ω
=

+
 (7.5)

where ε  is a constant that is used to represent the noise level present and 
( )*  indicates the complex-conjugate. 

The system function contains all the electrical and electromechanical 
components of the ultrasonic measurement system, so with one measurement 
of ( )RV ω  in a well characterized calibration experiment, Eq. (7.5) allows 
us to characterize the effects of all those components at once. This is 
obviously a very convenient alternative to having to measure all the 
elements that make up ( )s ω . This method of determining the system function 
is done at a fixed set of system settings (e.g. energy and damping settings 
on a spike pulser, gain settings on the receiver) and with a given set of 
cables and transducers. If another experiment such as a flaw measurement 
is performed at exactly the same settings and with the same components 
the system function obtained from the calibration setup will be the same as 
for the flaw measurement. This fact allows us to quantitatively determine 
the effects that all the electrical and electromechanical parts of the 
measurement system have on a flaw measurement. Since ( )s ω has nothing 
to do with the response of a flaw being measured, it is important to be able 
to characterize (and eliminate) those parts of the measured signals that are 
not flaw dependent so that we can determine a response more directly 
related to the flaw being examined. 

Another way that we can use knowledge of ( )s ω  is to combine it 
with  beam  propagation  and  flaw  scattering  models  that  can  model the  
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Fig. 7.1. A system function, ( )s f , measured directly by deconvolution (dashed line) 
or synthesized by measuring all the electrical and electromechanical components 
contained in ( )s f  (solid line). 

acoustic/elastic transfer function, ( )At ω  explicitly. In later Chapters we will 
show just how to develop such detailed models. By combining a modeled 
( )At ω  and a measured ( )s ω , Eq. (7.3) shows that we can predict the actual 

measured voltage, ( )RV ω , in a flaw measurement setup in an absolute 
sense. This capability gives us a powerful engineering simulation tool to 
design and evaluate ultrasonic NDE inspections.  

 In using a directly measured system function, one must re-measure 
that function whenever a system setting or system component is changed 
and this approach does not permit us to determine the significance of 
individual changes, such as a replacement of a transducer, for example, 
without such a re-measurement. Determining ( )s ω  by combining a know-
ledge of ( )iV ω  and all the components that make up ( )Rt ω  and ( )Gt ω , 
however, does allow us to examine the effects of such changes. Of course, 
either a directly measured system transfer function or one synthesized 
from its components should agree with each other. This is the case, as 
illustrated in Fig. 7.1, where a system function was both directly measured 
by deconvolution and constructed from individual measurements of all the 
electrical and electromechanical components [7.1]. 
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7.2 System Efficiency Factor  

In [Fundamentals] a quantity which is closely related to the system function 
was defined called the system efficiency factor, ( )β ω . This system efficiency 
factor is related to the measured voltage, ( )RV ω , as follows: 

( ) ( ) ( )
( )0

,ave
R

p
V

cv
ω

ω β ω
ρ ω

=  (7.6)

where ( )avep ω  is the average pressure generated by the incident waves at 
the receiving transducer, ( )0v ω  is the output velocity of the transmitting 
transducer (which is assumed to act as a piston) and cρ  is the specific 
acoustic impedance of the material into which the transmitting transducer 
radiates. The blocked force ( ) ( )2B ave RF p Sω ω= , where RS  is the area of 
the receiving transducer, and the force transmitted by the sending 
transducer ( ) ( ) ( ) ( );

0 0
T a

t r TF Z v cS vω ω ω ρ ω= =  for a piston transducer at 
high frequencies, where TS  is the area of the transmitting transducer. 
Thus, combining these relations with the two equivalent forms 

( ) ( ) ( )
( ) ( ) ( )

( )0

B ave
R

t

F p
V s

F cv
ω ω

ω ω β ω
ω ρ ω

= =  (7.7)

we see that the system function and the system efficiency factor are just 
proportional to one another, where 

( ) ( ) ,
2

T

R

Ss
S

ω β ω=  (7.8)

so it makes no difference if we characterize our measurement system with 
either of these quantities. 
 In determining the system function or system efficiency factor 
experimentally by deconvolution in a reference experiment, the values of
( )s ω or ( )β ω

( )At ω
demonstrated this fact by using a number of different reference setups to 
calculate the system efficiency factor. Some of the simple calibration 
setups where  the transfer  function ( )At ω  is known  are shown in Fig. 7.2. 
 

ment and it’s corresponding transfer function, .  Schmerr et al. [7.2] 
should not depend on the choice of that reference experi-
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Fig. 7.2. Reference experiments that can be used to determine the system function 
or system efficiency factor where circular planar transducers are involved: (a) 
reflection from a plane front surface of a block at normal incidence, (b) reflection 
from the back surface of a block at normal incidence, (c) reflection from an on-
axis flat-bottom hole at normal incidence, (d) reflection from an on-axis solid 
cylinder at normal incidence, (e) reflection from an on-axis side-drilled hole at 
normal incidence, and (f) two transducers (not necessarily the same) whose axes 
are aligned. 

 
Cases (a) and (f) were discussed in Chapter 5. Cases (b), (c), (d) and (e) 
can be found in [7.2] and [Fundamentals].  All the cases shown in Fig. 7.2 
are suitable for determining the system function for circular, planar 

can be used for circular, planar transducers in immersion pitch-catch 
setups. In Chapter 8 we will develop an explicit expression for ( )At ω  in 
the setup shown in Fig. 7.2 (a) for a circular, spherically focused 

( )  for that  type of transducer  s ωtransducer  that can be used to determine 

transducers in pulse-echo immersion setups except Fig. 7.2 (f) which  

www.iran-mavad.com 
ایران مواد



120      The System Function and Measurement System Models 

 
Fig. 7.3. Reference experiments that can be used to determine the system function 
for (a) an angle beam probe test setup where the waves are reflected from the 
curved surface of a calibration block, and (b), a contact setup where the waves are 
reflected from a curved surface of a block. 

as well as transfer functions for planar rectangular transducers and cylin-
drically focused rectangular transducers. In Chapter 13 we will show how 
a multi-Gaussian beam model can be used to numerically determine the 
transfer function ( )At ω  for the pulse-echo contact angle beam shear wave 
setup of Fig. 7.3 (a) where the waves are reflected from the cylindrical 
interface of a standard calibration block. That same approach can also be 
used for other contact testing setups such as the one shown in Fig. 7.3 (b) 
or in other contact setups with planar or curved surfaces. In contact 
problems, however, one must be aware of the fact that changes of the thin 
fluid couplant layer between the transducer and the component being 
inspected (or between the transducer wedge and the component) and non-
uniform component surface conditions can produce measured response 
variabilities that must be carefully considered. 

7.3 Complete Measurement System Modeling 

The ultimate test of the ability of all these models and measurements to 
simulate an ultrasonic measurement system is to compare the measured 
output voltage of a particular setup with one that is synthesized from the 
models/measurements we have discussed in previous Chapters. Consider, 
for example, a calibration setup of the type shown in Fig. 7.2 (f) where  
two planar transducers of the same nominal radius are placed opposite  
to each other in an immersion tank with their axes aligned. An explicit 
acoustic/elastic transfer function for this configuration was given in 
Eq. (5.12) for an ideal lossless fluid. Adding attenuation into this ideal 
model as shown in Chapter 5 (see Eq. (5.22a)) we have a complete 
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acoustic/elastic transfer function for this example. Combining this transfer 
function with a measured system function gives the frequency components 
of the measured output voltage (Eq. (7.3)). Finally, taking an inverse 
Fourier transform out this output voltage spectrum then yields a time 
domain A-scan signal for the entire system. We can simulate this A-scan 
signal using a system function that is calculated from Eq. (7.2), using 
measurements of all the components that make up ( )Gt ω  and ( )Rt ω  
together with ( )iV ω . Recall, these transfer functions were given by 

( ) ( ) ( ); ;
11 12 21 22

e B
o vI

R B e B e e
in in o

K Z St
Z R R Z R R Z

ω =
+ + +

 (7.9)

and 

( ) ( ) ( )
;

; ;
11 12 21 22

.
A a A
r vI

G A e A e e
in in i

Z St
Z T T Z T T Z

ω =
+ + +

 (7.10)

The pulser used here was a Panametrics 5052 PR pulser/receiver operating 
at an energy setting of 1 and a damping setting of 7. The open-circuit 
voltage of the pulser was measured to obtain ( )iV ω  and the pulser 
impedance, ( )e

iZ ω ,was measured by placing a 50 ohm resistor across the 
pulser output and measuring the resulting voltage across this resistance, as 
outlined in Chapter 2. The transfer matrix components, [ ]11 12 21 22, , ,T T T T  of 
the cabling between  the pulser and transmitting transducer A and the cable 
components, [ ]11 12 21 22, , ,R R R R   for the cabling between the receiving 
transducer B and the receiver were both measured as functions of 
frequency using different cabling termination conditions as discussed in 
Chapter 3. The receiver gain, ( )K ω , and impedance, ( )0

eZ ω , were 
obtained from measurements of voltage and current at the receiver inputs 
and outputs, as described in Chapter 5, at receiver gain and attenuation 
settings of 20 dB and 12 dB, respectively, and with the filter control of the 
receiver set to “off”. The two transducers used in this pitch-catch setup 
were two nominally identical 5 MHz, 6.35 mm diameter planar 
transducers. Their electrical impedances, ( );A e

inZ ω  and ( );B e
inZ ω , and their 

sensitivities, A
vIS  and B

vIS , were found using the electrical measurements 

( );A a
rZ ω , which appears in the 

sound generation transfer function, was computed from the high frequency  

which were discussed in Chapter 6. Finally, the acoustic radiation impe- 
dance of the transmitting transducer A, 
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Fig. 7.4. Directly measured output voltage signal of an ultrasonic pitch-catch measure-
ment system (solid line) and the voltage synthesized by measurement and modeling 
of all the ultrasonic components (dashed-dotted line) for a pair of 5 MHz, 6.35 mm 
diameter planar transducers in the configuration of Fig. 7.2 (f). 

 
Fig. 7.5. Directly measured output voltage signal of an ultrasonic pitch-catch 
measurement system (solid line) and the voltage synthesized by measurement and 
modeling of all the ultrasonic components (dashed-dotted line) for a pair of 2.25 
MHz, 12.7 mm diameter planar transducers in the configuration of Fig. 7.2 (f). 
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Fig. 7.6. Directly measured output voltage signal of an ultrasonic pitch-catch measure-
ment system (solid line) and the voltage synthesized by measurement and modeling 
of all the ultrasonic components (dashed-dotted line) for a pair of 10 MHz, 6.35 mm 
diameter planar transducers in the configuration of Fig. 7.2 (f). 

limit expression for a piston transducer, ;A a
r AZ cSρ= , using the density, 

1ρ =  gm/cm3, and measured wave speed, 1481c =  m/sec, of the water 
and a transducer area, 2

AS aπ= , calculated from the nominal radius of the 
transducer, 3.175a =  mm. The distance, D, between the two transducers 
was set at 67D =  mm and the attenuation of the water (at room 
temperature) was taken as the value given by Eq. (5.21). Figure 7.4 shows 
a comparison of the directly measured output voltage for this configuration 
with the voltage synthesized from the measurement and modeling of all the 
system components. Figure 7.5 shows the corresponding results when a 
pair of 2.25 MHz, 12.7 mm diameter planar transducers were used instead 
in the same setup and Fig. 7.6 shows the results for a pair of 10 MHz, 
6.35 mm diameter planar transducers. For the 5 MHz transducers a 

response of the synthesized signal to that of the measured signal. The 
predicted waveform using 2.25 MHz transducers shows a difference of 
−1.1 dB in the peak-to-peak voltage with respect to that of the corres-
ponding measured output voltage. For the 10 MHz transducers a somewhat 
larger difference (−2.5 dB) was observed. In all cases the predicted 
waveforms had very similar shapes to the measured ones. 

 Figure 7.7 shows some similar comparisons between a synthesized 
signal and a measured signal for the pulse-echo setup shown in Fig. 7.2 (a)  

–difference of 0.7 dB was observed between the peak-to-peak voltage 
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Fig. 7.7. Directly measured output voltage signal of an ultrasonic pulse-echo measure-
ment system (solid line) and the voltage synthesized by measurement and modeling 
of all the ultrasonic components (dashed-dotted line) for (a) a 5 MHz, 6.35 mm 
diameter planar transducer in the configuration of Fig. 7.2 (a) ,and (b) a 10 MHz, 
6.35 mm diameter planar transducer in the configuration of Fig. 7.2 (a). 

where a planar transducer is receiving the signals reflected from the planar 
front surface of a solid. The acoustic/elastic transfer function is also available 
for this configuration (see Eq. (5.16)) in an explicit form. In this case a 
UTEX 320 square wave pulser/receiver was used in the measurements and  
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again we compared the received measured signals with a voltage synthesized 
by combining the acoustic/elastic transfer function, the measured Thévenin 
equivalent source voltage of the pulser, and the sound generation and 
reception transfer functions obtained by measuring all the components 
contained in those functions. Figure 7.7 (a) shows a comparison of the 
measured and synthesized received voltage when a 5 MHz planar 
transducer was used in this setup. Figure 7.7 (b) shows the corresponding 
comparison for a 10 MHz transducer. In both cases the peak-to-peak 
values of the measured signals agreed with the synthesized wave forms to 
within about 0.2 dB. 

7.4 References 

7.1 Dang CJ, Schmerr LW, Sedov A (2002) Modeling and measuring all the 
elements of an ultrasonic nondestructive evaluation system. II: Model-based 
measurements. Research in Nondestructive Evaluation 14: 177-201  

7.2 Schmerr LW, Song SJ, Zhang H (1994) Model-based calibration of ultrasonic 
system responses for quantitative measurements. In: Green RE Jr., Kozaczek 
KJ, Ruud CO (eds) Nondestructive characterization of materials, VI. Plenum 

7.5 Exercises 

1. The beam of a planar immersion transducer is reflected off the front surface 
of a steel block (see Fig. 7.2 (a)) and this reference signal can be used to 
determine the system function. The file FBH_ref contains a sampled reference 
signal of this type and its corresponding sampled times. Place this file  
in your current MATLAB directory and then load it with the MATLAB 
command 

 
>> load( ‘ FBH_ref ' )  

 
This command will place in the MATLAB workspace 1000 sampled time 
values in the variable t_ref, and a 1000 point reference time domain 
waveform in the variable ref. Plot this waveform. Take the FFT of this 
reference waveform and keep only the first 200 values of the resulting 
1000 point spectrum (from 0 to 20 MHz) in a variable, Vc. Plot the 
magnitude of Vc from 0 to 20 MHz. Use Vc and the data given below to 
determine the system function via deconvolution (using a Wiener filter) 
and plot the magnitude of this system function versus frequency from zero 

Press, New York, NY, pp 111-118  
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to 20 MHz. Compare this system function with Vc.  Use the acoustic/elastic 
transfer function for this configuration as: 

( ) ( )
( ) ( ){ }

2
12 1 1

2 2
0 1 1 1

2 exp 2 1 exp / 2

/ 2 / 2

A p p

p p

t R D ik a D

J k a D iJ k a D

α ⎡= − −⎣
⎤⋅ − ⎦

 

where we have dropped the phase term ( )exp 2 pik D  as it only produces a 

time delay and the plane wave reflection coefficient is: 

2 2 1 1
12

2 2 1 1

p p

p p

c c
R

c c
ρ ρ
ρ ρ

−
=

+
 

 

The parameters for this setup are: 
 

1 1.0ρ = ,  2 7.86ρ = : density of the water and steel, respectively (gm/cm3) 

1 1484pc = , 2 5940pc = : P-wave speeds of the water and steel, respectively 
(m/sec) 

6 2
1 24.79 10p fα −= × : water attenuation (Np/ mm) with f the frequency (in 

MHz) 
50.8D = : distance from the transducer to the block (mm) 
6.35a = : radius of the transducer (mm) 
0.3e = : noise coefficient for the Wiener filter 

 
Note that the Bessel functions are available directly in MATLAB. The Bessel 
function of order zero, ( )0J x , is given by the MATLAB function besselj(0, x) 
and the Bessel function of order one, ( )1J x , is given by the MATLAB 
function besselj(1, x). 
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8 Transducer Sound Radiation 

In this Chapter, we will examine models that can describe the radiated 
sound field generated by an ultrasonic transducer and some of the 
important parameters that govern the behavior of that field. We will 
demonstrate most of these results for immersion transducers but many of 
the concepts introduced also are valid for contact transducers as well. We 
will also discuss some of the major differences between immersion and 
contact transducers. 

8.1 An Immersion Transducer as a Baffled Source 

Figure 8.1 (a) shows a circular planar (non-focused) immersion transducer 
radiating into a fluid medium, where we have placed the face of the 
transducer in the x-y plane so that it is pointing in the positive z-direction. 
When this transducer is driven by the pulser the underlying piezoelectric 
crystal will move. That motion, in turn, will produce a transient velocity 
field on the face of the transducer which we will assume is a normal 
motion (in the z-direction). This velocity field we will write as ( ), ,zv x y t . 
Since the pulser drives the transducer with a very short voltage pulse, the 
motion of the face of the transducer that is generated by this excitation will 
also be a short time duration pulse. However, we will not model this 
mechanical motion directly, but instead will deal with its Fourier 
transform, ( ), ,zv x y ω . Such a frequency domain response can alternately 
be viewed as the result of assuming that the velocity field on the face of 
the transducer has a harmonic motion given by ( ) ( ), , expz zv v x y i tω ω= −  
which generates a radiated sound pressure field in the fluid given 
by ( ) ( ), , , expp x y z i tω ω− . Since all the variables for harmonic motion 
problems have the same common time factor, ( )exp i tω− , it is customary 
to drop this time factor and assume it implicitly, a convention we will 
often follow here.  
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Fig. 8.1. (a) A planar immersion transducer radiating waves into a fluid produced 
by a harmonic velocity field ( ), ,zv x y ω on its face, and (b) a transducer model 
consisting of the same velocity field in (a) surrounded by a motionless baffle on 
the z = 0 plane. 

Most transducer models do not directly deal with the geometry of 
Fig. 8.1 (a) but instead consider the alternate geometry of Fig. 8.1 (b) 
where it is assumed that there is an infinite plane at z = 0 over which the 
velocity is specified [Fundamentals]. On the surface, S, of the transducer, 
which lies in this plane, the velocity is given as ( ), ,z zv v x y ω= . For the 
remainder of the plane one takes 0zv = . These conditions would correspond 
to having the transducer face embedded in an infinite, motionless, plane 
baffle. This modified geometry should still represent well our original 
problem, however, since the transducer will generate a sound field that is 
significant only in the region ahead of the transducer anyway and the 
actual fields in the fluid on the plane z = 0 outside of the surface S will be 
very small, if not identically zero. Mathematically it is more convenient to 
use the baffled geometry of Fig. 8.1 (b) rather than the original geometry 
since we then need only to find how a specified velocity field on z = 0 
generates fields in the fluid half-space z > 0.  

 Determining what the velocity field distribution is on the face of a 
commercial  transducer  is  not  a  trivial  task. Although  in  principle  it  is  
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Fig. 8.2. A transducer radiating a perfectly collimated beam at high frequencies. 

possible to determine this field experimentally, the measurements are time-
consuming and require expensive equipment. Fortunately, for many commer-
cial transducers we can avoid this difficulty by assuming a velocity 
distribution. The most common assumption is to treat the transducer as a 
piston transducer where the velocity is taken to be spatially uniform over 
the entire transducer face, i.e. ( ) ( )0, ,zv x y vω ω= . This simple piston model 
has proven to work well as a basis for characterizing many commercial 
transducers so it is the model we will adopt here. One should be aware that 
the validity of this assumption, however, depends on the construction 
details of the transducer and may be violated in some cases.  

 If the frequency, ω, was infinitely large a transducer would emit a 
beam of sound that is confined only to the cylinder of fluid  0,z r≥ ≤  
ahead of the transducer as shown in Fig. 8.2. Such a beam is said to be 
perfectly collimated. In reality the frequency is not infinite so that the 
beam will spread beyond this cylinder, but at the MHz frequencies found 
in NDE testing a transducer beam will still remain fairly well collimated. 

 
 

 
Fig. 8.3. A 5 MHz, ½ inch diameter circular piston transducer radiating sound into 
water.  

a

This fact is demonstrated in  Fig. 8.3 where the  magnitude of the  pressure 
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field in the x-z plane is shown for a one half inch radius planar piston 
transducer radiating at 5 MHz into water. There are strong pressure vari-
ations in the pressure field, particularly in the region near the transducer. 
These variations show that one cannot consider the transducer beam to be 
a simple uniform and well collimated beam as seen, for example, in a 
flashlight beam. Modeling these pressure variations, therefore, is a non-
trivial task. 

8.2 An Angular Plane Wave Spectrum Model 

Although a transducer does not generate only a plane wave, one way to 
model a transducer (as a baffled source) is to treat it as the superposition of 
an infinite number of plane waves, all traveling in the positive z-direction 
but with different x- and y- component directions. This is basic idea behind 
an angular plane wave spectrum model, where the pressure wave field at a 
point, ( ), ,x y z=x , is represented in the form of a 2-D integral given by 
[Fundamentals], [8.1] 

( ) ( ) ( )
21, , exp .

2 x y x y z x yp P k k i k x k y k z dk dkω
π

+∞ +∞

−∞ −∞

⎛ ⎞ ⎡ ⎤= + +⎜ ⎟ ⎣ ⎦⎝ ⎠ ∫ ∫x  (8.1)

Since the time-domain pressure, ( ),p tx , must satisfy the 3-D wave 
equation 

2 2 2 2

2 2 2 2 2

1 0p p p p
x y z c t

∂ ∂ ∂ ∂
+ + − =

∂ ∂ ∂ ∂
 (8.2)

for ( ) ( ) ( ), , expp t p i tω ω= −x x  we must have ( ),p ωx  satisfy 

2 2 2
2

2 2 2 0,p p p k p
x y z

∂ ∂ ∂
+ + + =

∂ ∂ ∂
 (8.3)

which is called  the Helmholtz equation.  Clearly, ( ),p ωx  will satisfy 
Eq. (8.3) if all of the exponential terms in Eq. (8.1) also satisfy that 
equation. Placing ( )exp x y zi k x k y k z⎡ ⎤+ +⎣ ⎦  into Eq. (8.3), we find as a 

requirement that 2 2 2
z x yk k k k= ± − − . In order to have waves traveling in 

the  positive  z-direction  (as they must, physically,  for our problem),  only  
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Fig. 8.4. Model of a transducer as a superposition of plane and inhomogeneous 
waves radiating into the region 0z ≥ . 

the positive value is acceptable and so we choose 2 2 2
z x yk k k k= − − . Terms 

such as ( )2 2 2exp x y x yp ik x ik y i k k k z= + + − − are just plane harmonic 

waves as long as 2 2 2
x yk k k> + is satisfied. In Eq. (8.1), however, all values of 

,x yk k  are superimposed so that there will be values of those variables in the 

integrations where 2 2 2
x yk k k+ >  and zk  will be imaginary. For those cases if 

we take 2 2 2
z x yk i k k k= + −  we will no longer have plane waves propagating 

into the half-space z > 0 but instead will have waves that propagate in the 
x- and y-directions from the transducer but that are exponentially decaying 

in the z-direction of the form ( )2 2 2exp x y x yp ik x ik y k k k z= + − + − [note: 

2 2 2
z x yk i k k k= − + −  cannot be used since then we would obtain waves 

that grow exponentially in the z-direction away from the transducer, which 
is not physical]. Such waves are called inhomogeneous waves. Thus, strictly 
speaking, Eq. (8.1) represents the pressure wave fields as a superposition 
of both plane wave and inhomogeneous wave fields (see Fig. 8.4) where 
we must have 

2 2 2 2 2 2

2 2 2 2 2 2

,
.

,

x y x y
z

x y x y

k k k k k k
k

i k k k k k k

⎧ − − ≥ +⎪= ⎨
+ − < +⎪⎩

 (8.4)

Appendix D gives a discussion of inhomogeneous waves found when 
solving plane wave transmission/reflection problems. 
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In order for Eq. (8.1) to represent the solution to our baffled trans-
ducer model, we must determine the unknown ( ),x yP k k  so that the velocity 

boundary conditions are satisfied on the plane z = 0. From the equation of 
motion for the fluid (see Appendix D) we have 

( ) ( )1, , 0, , , 0, ,z
pv x y z x y z

i z
ω ω

ωρ
∂

= = =
∂

 (8.5)

where ρ is the density of the fluid. Placing Eq. (8.1) into this relationship 
we find 

( ) ( )

( )

2 ,1, , 0,
2

exp

z x y
z

x y x y

ik P k k
v x y z

i

i k x k y dk dk

ω
π ωρ

+∞ +∞

−∞ −∞

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

⎡ ⎤⋅ +⎣ ⎦

∫ ∫  (8.6)

To see what Eq. (8.6) means, let ( ) ( ), , /x y z x yV k k ik P k k iωρ= . Then Eq. 

(8.6) becomes simply 

( ) ( )

( )

21, , 0, ,
2

exp .

z x y

x y x y

v x y z V k k

i k x k y dk dk

ω
π

+∞ +∞

−∞ −∞

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

⎡ ⎤⋅ +⎣ ⎦

∫ ∫  (8.7)

Equation (8.7) is in the form of two inverse Fourier transforms where the t 
and ω  parameters in the time and frequency domains (see Appendix A) 
are replaced by wave numbers and spatial parameters, i.e.  ,xk t xω → − →  
for one transform and ,yk t yω → − → for the other transform. Thus, Eq. (8.7) 
is called an inverse 2-D spatial Fourier transform. By the properties of the 
Fourier transform it then follows that we must have 

( ) ( ) ( ), , , 0, exp ,x y z x yV k k v x y z i k x k y dxdyω
+∞ +∞

−∞ −∞

⎡ ⎤= = − +⎣ ⎦∫ ∫  (8.8)

which shows that ( ),x yV k k  is just the 2-D spatial Fourier transform of the 

velocity field on the plane z = 0. For a circular piston transducer of radius 
a, for example, where 

( ) ( ) 2 2 2
0

2 2 2
, , 0,

0
z

v x y a
v x y z

x y a

ω
ω

⎧ + ≤⎪= = ⎨
+ >⎪⎩

 (8.9)
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the 2-D spatial Fourier transform in Eq. (8.8) can be obtained explicitly as 

( ) ( )
( )2 2

12
0 2 2

, 2 ,
x y

x y

x y

J k k a
V k k a v

k k a
π ω

+
=

+
 (8.10)

where 1J  is a Bessel function of order one. Similarly, for a rectangular piston 
transducer of length xl  in the x-direction and length yl  in the y-direction 
we find 

( ) ( )0

sin sin
2 2

, .

2 2

y yx x

x y x y
y yx x

k lk l

V k k l l v
k lk l

ω

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠=
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

 (8.11)

Thus, for any given velocity distribution on z = 0, the pressure wave field 
from the transducer can be found explicitly as 

( ) ( )

( )

2 ,1,
2

exp

x y

z

x y z x y

i V k k
p

ik

i k x k y k z dk dk

ωρ
ω

π

+∞ +∞

−∞ −∞

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎡ ⎤⋅ + +⎣ ⎦

∫ ∫x
 (8.12)

once the 2-D spatial Fourier transform of the velocity field at z = 0 is 
known. Equation (8.12) is an exact result that can be used directly for 
numerical modeling of transducer wave fields. However, it is a model that 
is numerically very challenging to implement since one still needs to 
perform two infinite integrations of rapidly varying functions. In practice, 
it has been found that the inhomogeneous waves contribute little to the 
pressure wave field except in a region very close to the transducer, which 
is usually not of great interest. Thus, most numerical evaluations of 
Eq. (8.12) simply ignore all the inhomogeneous waves and compute 
instead the finite integrals over all the plane wave terms 

( ) ( )

( )

2

2 2 2

,1,
2

exp .

x y

z

x y z x y

x yk k k

i V k k
p

ik

i k x k y k z dk dk

ωρ
ω

π + ≤

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎡ ⎤⋅ + +⎣ ⎦

∫∫x
 (8.13)

Equation (8.13) is now a more tractable transducer model, but it still 
requires a significant amount of computation (i.e. many plane wave 
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components need to be superimposed) in order to adequately simulate the 
transducer beam. Also, Eq. (8.13) does not explicitly show us much about 
the physics of the sound generation process. Thus, we will consider 
another transducer model that remedies some of these deficiencies. 

8.3 A Rayleigh-Sommerfeld Integral Transducer Model 

In discussing linear systems in Appendix C, we saw that the convolution 
theorem played a crucial role. In that case, we showed that a 1-D time 
domain convolution of two functions was equivalent to taking the inverse 
Fourier transform of a product of their Fourier transforms. Since here 
Eq. (8.12) is in the form of a 2-D inverse spatial Fourier transform of a 
product of 2-D transforms, we could expect that a 2-D form of the 
convolution theorem might play an equally important role here. This 
indeed turns out to be the case. First, we state the following 2-D (spatial) 
convolution theorem [8.2]: 

 
If 

    ( ) ( ) ( ) ( )
21, , , exp

2 x y x y x y x yf x y H k k G k k i k x k y dk dk
π

+∞ +∞

−∞ −∞

⎛ ⎞ ⎡ ⎤= +⎜ ⎟ ⎣ ⎦⎝ ⎠ ∫ ∫  
 

 
then 

( ) ( ) ( ), , ,f x y h x y g x x y y dx dy
+∞ +∞

−∞ −∞

′ ′ ′ ′ ′ ′= − −∫ ∫  
 

where ( ),x yH k k  is the 2-D spatial Fourier transform of ( ),h x y  and 
( ),x yG k k is the 2-D spatial Fourier transform of ( ),g x y . We can use this 

theorem directly for Eq. (8.12) if we make the following definitions 

( ) ( )

( ) ( ) ( )
, ,

exp
, , , .

x y x y

z
x y x y

z

H k k i V k k

ik z
G k k G k k z

ik

ωρ= −

≡ =
−

 (8.14)

Then it follows that 
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( ) ( )

( ) ( )
2 2 2

2 2 2

, , , 0,

exp
, , , .

2

zh x y i v x y z

ik x y z
g x y g x y z

x y z

ωρ ω

π

= − =

⎡ ⎤+ +⎣ ⎦≡ =
+ +

 (8.15)

The expression for h in Eq. (8.15) follows directly from the fact that 
( ),x yV k k  is the 2-D spatial Fourier transform of ( ), , 0,zv x y z ω= . The 

expression for g in Eq. (8.15) comes from Weyl’s representation of a 
spherical wave in terms of an angular plane wave spectrum integral 
[Fundamentals]. In particular, Weyl showed that 

( )

( ) ( )

2 2 2

2 2 2

2

2

exp

2

1 1 exp
2

exp1 exp .
2

x y z x y
z

z
x y x y

z

ik x y z

x y z

i k x k y k z dk dk
ik

ik
i k x k y dk dk

ik

π

π

π

+∞ +∞

−∞ −∞

+∞ +∞

−∞ −∞

⎡ ⎤+ +⎣ ⎦
+ +

⎛ ⎞ ⎡ ⎤= + +⎜ ⎟ ⎣ ⎦−⎝ ⎠

⎛ ⎞ ⎡ ⎤= +⎜ ⎟ ⎣ ⎦−⎝ ⎠

∫ ∫

∫ ∫

 (8.16)

From Eqs. (8.12), (8.14) and (8.15) and the 2-D convolution theorem then 
it follows that we have an alternate representation for the pressure wave 
field of a transducer given by 

( ) ( )

( ) ( )

( ) ( )

2 2 2

2 2 2

, , , 0,
2

exp
,

z
ip v x y z

ik x x y y z
dx dy

x x y y z

ωρω ω
π

+∞ +∞

−∞ −∞

− ′ ′= =

⎡ ⎤′ ′− + − +⎢ ⎥⎣ ⎦ ′ ′⋅
′ ′− + − +

∫ ∫x

 (8.17)

which is called the Rayleigh-Sommerfeld integral. Just as Eq. (8.12) gave 
us a transducer model in terms of a superposition of plane (and 
inhomogeneous) waves traveling in different directions, the Rayleigh-
Sommerfeld integral represents the transducer radiation as a superposition 
of spherical waves radiating from point sources distributed on the plane 
z = 0. Since any transducer only generates a non-zero velocity over some 
finite area, S ,  (see Fig. 8.5), we can rewrite Eq. (8.17) more compactly  as 
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Fig. 8.5. A transducer modeled as a superposition of radiating point sources. 

( ) ( ) ( )exp
, , , 0,

2 z
S

ikrip v x y z dS
r

ωρω ω
π

− ′ ′= =∫∫x  (8.18)

where ( ) ( )2 2 2r x x y y z′ ′= − + − +  (see Fig. 8.5) is the distance from an 

arbitrary point ( ), ,0x y′ ′=y on the transducer surface, S, to a point, 

( ), ,x y z=x , in the fluid and dS is an element of area on the transducer 
surface. For the particular case of a piston transducer the Rayleigh-
Sommerfeld integral reduces to an even simpler form given by 

( ) ( ) ( )0 exp
, .

2 S

i v ikr
p dS

r
ωρ ω

ω
π

−
= ∫∫x  (8.19)

The Rayleigh-Sommerfeld integral for a piston source, Eq. (8.19), is used 
in many texts to discuss transducer radiation in a fluid [Fundamentals]. In 
general, it still requires a significant amount of numerical effort to evaluate 
since although one now only has to integrate over the finite face of the 
transducer, the complex exponential term in the integrand of Eq. (8.19) has 
a rapidly varying phase for the frequencies and transducer sizes used in 
NDE tests that makes the 2-D numerical integrations lengthy. However, as 
we will see, the Rayleigh-Sommerfeld integral does allow us to examine 
more directly the physics of the transducer radiation problem than 
Eq. (8.12) permits and we can even extract exact results in some important 
special cases. 
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Fig. 8.6. Geometry for a circular planar piston transducer radiating direct and edge 
waves to a point x on the axis of the transducer. 

 
Fig. 8.7. The direct and edge waves generated by an impulsively excited circular 
piston transducer. 

8.4 On-Axis Behavior of a Planar Circular Piston 
Transducer  

Consider first the special case where we wish to obtain the pressure wave 
field on the central axis of a circular piston transducer of radius a as shown 
in Fig. 8.6. In this case because of symmetry we can take the area element 
as 0 02dS dπρ ρ= , where 0ρ  is the radial distance on the plane z = 0 from 
the center of the transducer to an arbitrary point on the transducer surface. 
Since 2 2 2

0r zρ= +  it follows that 2dS rdrπ= . Placing this result into 
Eq. (8.19) then allows us to integrate the remaining complex exponential 
term to obtain an exact expression for the on-axis pressure given by 
[Fundamentals] 

( ) ( ) ( ) ( )2 2
0, exp exp .p z cv ikz ik z aω ρ ω ⎡ ⎤= − +⎢ ⎥⎣ ⎦

 (8.20)
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Fig. 8.8. On-axis normalized pressure versus normalized distance z/N for a 
5 MHz, 1/2 inch diameter planar transducer radiating into water, where N is the 
near field distance. 

The first term is a wave that has traveled a distance z directly from the face 
of the transducer to the point on the transducer axis while the second term 
is a wave that has traveled a distance  2 2z a+  so that it appears to have 
come from the edge (rim) of the transducer, as shown in Fig. 8.6. Indeed, if 
one examines the pulses which travel from an impulsively excited 

wave) that travels normal to the face of the transducer and a doughnut-like 
wave front that comes from the transducer rim (the “edge” wave). Except 
very near the transducer and for very short pulses, however, we will likely 
not see these two waves separately. Indeed, at large distances from the 
transducer where z a>> , an expansion of the edge wave term gives 

2 2 2 21 / 2z a z a z⎡ ⎤+ ≈ +⎣ ⎦ . If we also assume 2 / 2 1ka z <<  it follows to 

first order that 

( ) ( ) ( )2
0 exp

, ,
2

i a v ikz
p z

z
ωρ ω

ω
−

=  (8.21)

which now looks like a single, spherically spreading wave. This result is 
reasonable since at sufficiently large distances from the transducer the 
transducer should act like a point source. Distances that satisfy this 
criterion are said to be in the transducer far field or in the spherically 
spreading region of the transducer. 

transducer, as shown in Fig. 8.7 , one sees a plane wave front (the “direct” 
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 If one plots the magnitude of the on-axis pressure versus z that one 
obtains from Eq. (8.20), then one sees two distinct types of behavior for 
the on-axis response (Fig. 8.8). Near the transducer one sees a series of 
nulls and maxima. In this near field region, one can show from Eq. (8.20) 
that the maxima are located approximately at the distances 

( )/ 2 1 0,1,2,...z N m m= + =  while the nulls are at approximately 
/ 2 1,2,3,...z N n n= =  where 2 /N a λ=  (the ratio of the radius squared 

of the transducer to the wave length, λ ) is called the near field distance 
and distances z N<  are said to be in the transducer near field 
[Fundamentals]. As the distance z increases, the last on-axis null occurs at 

/ 2z N=  and the last on-axis maximum occurs at z N= . Beyond z N=  
the pressure field simply decays monotonically. At a distances greater than 
approximately three near field distances from the transducer the exact on-
axis response begins to agree very well with the far field expression of Eq. 
(8.21) so that 3z N= is generally taken as the start of the transducer far 
field region. 

8.5 The Paraxial Approximation 

Having the exact on-axis behavior of the transducer also enables us to 
discuss an important concept called the paraxial approximation. If we 
examine the direct and edge waves we see (Fig 8.6) that they are separated 
by the angle θ. At a distance z approximately equal to a transducer diameter 
(2a), this angle begins to become small enough so that we can assume 

2 2 2 21 / 2z a z a z⎡ ⎤+ ≈ +⎣ ⎦ . However, unlike the far field case, we will not 
also assume 2 / 2 1ka z << (which is equivalent to z Nπ>> , i.e. under this 
condition we must be many near field distances away from the transducer), 
so that we are not necessarily in the transducer far field. This means that in 
the present case we are only assuming that the angle θ is small enough so 
that all the waves in the transducer beam can be considered to be traveling 
in approximately the same direction (which in this case is along the z-axis). 
This is the essence of the paraxial approximation. For this approximation 
we have 

( ) ( )
2

0, exp 1 exp .
2

ikap z cv ikz
z

ω ρ
⎡ ⎤⎛ ⎞

= −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 (8.22)
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Fig. 8.9. On-axis normalized pressure versus normalized distance z/N for a 5 MHz, 
1/2 inch diameter planar transducer radiating into water (paraxial approximation). 

Equation (8.22) still contains the direct and edge waves of the original 
exact response but it is in the form of a quasi-plane wave since it can be 
written as 

( ) ( ) ( )0, , , exp .p z C z a cv ikzω ω ρ= ⎡ ⎤⎣ ⎦  (8.23)

The term in the brackets in Eq. (8.23) is just a plane wave traveling in the 
z-direction. The coefficient ( ), ,C z a ω  that multiplies this plane wave is 
called a diffraction coefficient. It accounts for all the deviations in 
amplitude and phase of the on-axis response in the actual transducer beam 
from that of a plane wave. In this case we simply have 

( ) ( )2, , 1 exp / 2 .C z a ika zω = −  (8.24)

Figure 8.9 plots the on-axis response in the paraxial approximation 
(Eq. (8.22)) for the same case shown in Fig. 8.8. It can be seen from those 
figures that the paraxial approximation captures well both the near and far 
field on-axis behavior of the transducer. Only within approximately a 
transducer diameter, a region not shown in these figures, does the paraxial 
approximation begin to lose accuracy. This means that for most NDE 
testing situations where we are not concerned with the wave fields imme-
diately adjacent to the transducer, the paraxial approximation should work 
well. The importance of the paraxial approximation is that it can also work  
well in much more general testing situations where we are considering 
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Fig. 8.10. An immersion transducer radiating at normal incidence through a planar 
fluid-solid interface. 

off-axis transducer responses and where the transducer beam itself has 
been transmitted or reflected from various parts of a component’s geometry. 
These types of complicated interactions occur frequently in NDE tests, so 
that if the paraxial approximation is valid, we may still treat the sound 
beam approximately as a quasi-plane wave and all the complicated 
interactions of the transducer sound beam with the component geometry 
can be treated approximately as interactions of a plane wave with that 
geometry. Plane wave interactions are much easier to deal with than inter-
actions involving more general wave types so that the paraxial approxi-
mation gives us a powerful tool for accurately simulating many complex 
problems. The key, of course, is in being able to efficiently determine the 
diffraction coefficient (either analytically or numerically) for a given 
testing problem. Fortunately, this is possible, as we will see, in many 
cases. We will outline here one example where the paraxial approximation 
can be used in a more general testing setup to determine the transducer 
wave field. Consider a planar circular piston transducer of radius a radiating 
through a planar fluid-solid interface at normal incidence (see Fig. 8.10). 
In this case the compressional waves (P-waves) in the fluid generate primarily 
P-waves in the isotropic elastic solid and the on-axis velocity in the solid is 
given by [Fundamentals] 

( ) ( )
2

1;
2 0 12 1 1 2 2, exp 1 exp ,

2
pP P

p p p

ik a
z v T ik z ik z

z
ω

⎡ ⎤⎛ ⎞
= + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

v d
%

 (8.25)

where ( )/ 1,2pj pjk c jω= = are wave numbers for P-waves in the fluid and 
pd

 
solid,  respectively,  is  a unit  vector  (polarization  vector)  along   the  
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Fig. 8.11. Propagation of an edge wave through a fluid-solid interface to an on-
axis point x in the solid and the corresponding “virtual” point V that the edge wave 
would travel to in the solid if it's angle was not changed upon refraction through 
the interface. 

propagation direction, ;
12
P PT  is a plane wave transmission coefficient for  

P-waves in the solid due to P-waves in the fluid (the ratio of the velocity at 
the interface on the solid side to the velocity on the fluid side) and 

1 2 2 1/p pz z c z c= +% . The combined leading terms multiplying the bracketed 
expression in Eq. (8.25) represent a plane wave that has traveled from the 
transducer to a depth, 2z , in the solid while the bracketed term itself is the 
diffraction coefficient for this problem. Interestingly, this diffraction 
coefficient is in exactly the same form as for the on-axis response for a 
single fluid medium so that all of the near and far field on-axis behavior 
we discussed previously for the single fluid case remain valid for this 
problem if we replace the z-distance in the fluid by the equivalent distance 

1 2 2 1/p pz c z c+ . This result can be explained by the behavior of the edge 
wave at the interface as shown in Fig. 8.11. From that figure we see that 

2 2 1sin sinp pd dε θ θ= =  where 2d is the path length of the edge wave in 
the solid and d is the distance from the interface to a “virtual” point, V, on 
the axis of the transducer in the solid, which is where the edge wave would 
arrive on the axis if it had not had its direction changed upon refraction. 
Solving for d, we find 2 2 1sin / sinp pd d θ θ= . However, from Snell's law for 
refracted waves we have 2 1 2 1sin / sin /p p p pc cθ θ =  so ( )2 1 2/p pd c c d= . If 
we now define the corresponding distance to the virtual point along the z-
axis as z% , in the paraxial  approximation  this virtual point distance is given  
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Fig. 8.12. Geometry parameters for defining the far field behavior of a transducer. 

by ( ) ( )1 1 2 1 2 1 2 1 2/ /p p p pz d d d c c d z c c z≅ + = + ≅ +% . We see that for the inter-

face problem, in the paraxial approximation the refracted waves appear to 
go through a z-distance, z% , to the virtual point on the axis in exactly the 
same manner as for a single medium problem where the interface is absent. 
In the diffraction correction for a single medium, therefore, one can simply 
replace the z-distance by the equivalent distance, z% , to obtain the diffraction 
correction for this case. 

8.6 Far field On-Axis and Off-Axis Behavior 

In section 8.4 we obtained an explicit expression (Eq. (8.21)) for the on-axis 
far field wave field of a circular planar piston transducer. Here, we will 
show that it is possible to obtain an expression for the entire far field 
transducer behavior for both on- and off-axis points for planar transducers. 
This expression is often referred to as the Fraunhoffer approximation for 
the transducer wave field. First, we express the radius r in Eq. (8.18) in 
terms of the distance R and unit vector e pointing from the center of the 
transducer to point x as (see Fig. 8.12) 

( ) ( )
( ) ( ).

r

R R

= − ⋅ −

= − ⋅ −

x y x y

e y e y
 (8.26)

In the far field R<<y  so we can expand the square root in Eq. (8.26) to 
obtain: 
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Fig. 8.13. The unit vector, e, and its cylindrical components, where ze is along the 
z-axis and ρe  is in a radial direction in a plane parallel to the circular transducer 
of radius a. 

1 2 /
.

r R R
R

≅ − ⋅

≅ − ⋅

e y
e y

 (8.27)

Both terms in Eq. (8.27) are used to approximate r in the phase part of the 
spherical wave term in Eq. (8.18) while only the leading term is used to 
approximate the 1/r amplitude term. The reason for this difference in the 
number of terms retained is that the phase is much more sensitive to 
approximation than the amplitude since in the phase not only must a term 
that is neglected be smaller than those terms retained but the neglected 
term must also be much less than 2π. These approximations reduce Eq. (8.18) 
to the form 

( ) ( ) ( ) ( )exp
, , ,0, exp ,

2 z
S

ikRip v x y ik dS
R

ωρω ω
π

− ′ ′= − ⋅∫∫x e y  (8.28)

which can be rewritten as 

( ) ( ) ( ){

( ) }

exp
, , ,0,

2

exp ,

z
S

x y

ikRip v x y
R

i k x k y dx dy

ωρω ω
π

− ′ ′=

⎡ ⎤ ′ ′⋅ − +⎣ ⎦

∫∫x
 (8.29)

where ,x x y yk ke k ke= = . From Eq. (8.8) we recognize the integral in 
Eq. (8.29) as just the 2-D spatial Fourier transform of the velocity field, 
( ),x yV k k , so that we have, finally 

 
 

www.iran-mavad.com 
ایران مواد



8.6 Far field On-Axis and Off-Axis Behavior      145 

Fig. 8.14. The far field variation of the normalized pressure versus radial distance, 0ρ , 
for a circular transducer at three and six near field distances, showing the spreading 
of the angular lobes of the response and the decay in amplitude with increasing 
distance from the transducer. 

 
Fig. 8.15. The contours of the  far field pressure distribution in a plane parallel to 
the face of a 3mm x 6 mm rectangular transducer radiating into water at 5 MHz 
and at a distance of 70 mm. 
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( ) ( ) ( ), exp
, .

2
x yi V k k ikR

p
R

ωρ
ω

π

−
=x  (8.30)

For a circular piston transducer, we have, using Eq. (8.10) and 
2 2 sinx ye e eρ θ= + =  (see Fig. 8.13) 

( ) ( ) ( ) ( )12
0

sin exp
, ,

sin
J ka ikR

p i a v
ka R

θ
ω ωρ ω

θ
= −x  (8.31)

which represents a spherical pressure wave in the far field whose 
amplitude is angular dependent. Figure 8.14 plots the magnitude of the 
normalized pressure, 0/p cvρ , at different fixed distances, z, from the trans-
ducer face as a function of the radial distance, 0ρ , from the transducer’s 
central axis, where  0sin / zθ ρ= . For both 3z N=  and 6z N=  one sees 
the lobe structure generated by the ( )1 /J u u  angular directivity term of the 
response in the far field. At 6z N= , however, the lobes are broader than at 

3z N= due to beam spreading and the amplitude is also smaller because of 
the 1/R spherical wave decay term. 

 For a rectangular transducer with length xl  in the x-direction and 
length yl  in the y-direction, Eqs. (8.11) and (8.30) give the far field behavior 
as 

( ) ( ) ( ) ( )
( )( )

( )0 sin / 2 sin / 2 exp
, .

2 / 2 / 2
x x y yx y

x x y y

k l k li l l v ikR
p

Rk l k l
ωρ ω

ω
π

−
=x  (8.32)

Figure 8.15 gives a 2-D cross sectional plot of the magnitude of the 
normalized pressure, 02 /p cvπ ρ , as a function of the distances x and y for 

a given distance z, where 2 2 2/ /xk kx R kx x y z= = + +  and 
2 2 2/ /yk ky R ky x y z= = + + . This figure shows the complex 2-D lobe 

structure present for a rectangular transducer. 
 

 8.7 A Spherically Focused Piston Transducer 

Many commercial focused transducers produce a focused acoustic sound 
beam by incorporating an acoustic lens into the  transducer  design. Modeling 
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Fig. 8.16. The O’Neil model for a spherically focused piston transducer. 

 
Fig. 8.17. Geometry parameters that appear in the on-axis response of a spheri-
cally focused transducer. 

same focusing effect by considering the transducer to be a piston 
transducer where a constant (radial) velocity is placed on a spherical 
surface instead of a plane one. In this case one still uses the Rayleigh-
Sommerfeld integral (Eq. (8.19)) but now the integration is over a finite 
radius, a, of a spherical surface S whose radius of curvature is 0R , as 

[Fundamentals]. While the replacement of the integration over a plane 
surface in the Rayleigh-Sommerfeld integral by integration over a 
spherical surface is an ad-hoc approach that is not valid in a strict 

long as the focusing is not too severe. Such severe focusing can be found 
in practice, for example, in acoustic microscopes. Most commercial 
focused NDE transducers, however, are not tightly focused so that the 

a  point x in the fluid on the  axis of the spherically  focused transducer one  
O’Neil model should work well in practice for most NDE applications. For 

mathematical sense the O’Neil model has been shown to be accurate as 

shown in Fig. 8.16. This focused transducer model is due to O’Neil [8.3], 

in detail such a configuration is very difficult but one can induce the 
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Fig. 8.18. The on-axis normalized pressure for a 6.35 mm radius spherically 
focused piston transducer radiating into water at 10 MHz with a geometric focal 
length of 76.2 mm. 

can show that the element of area ( )02 /dS q rdrπ=  where 0 01 /q z R= −  

model, can be integrated exactly for this case. We find 

( ) ( ) ( )0

0

, exp exp ,e
cvp z ikz ikr
q
ρ

ω = ⎡ − ⎤⎣ ⎦  (8.33)

where ( )2 2
er z h a= − +  and 2 2

0 0h R R a= − − . These distances are 
shown in Fig. 8.17. 

 Figure 8.18 shows a plot of the normalized pressure, 0/p cvρ , 
versus normalized distance, 0/z R , for a 6.35 mm radius transducer with 
geometrical focal length of 76.2 mm radiating into water at 10 MHz. It can 
be seen from that figure that for distances where 0z R<  the response has a 
series of nulls and maxima which eventually produce a single large peak 
near 0z R=  (the geometrical focal length). There is another null at 
approximately 02.25z R=  and a very small response thereafter. It can be 
shown that the nulls are located approximately at distances nz  given by 
[Fundamentals] 

[Fundamentals]. Thus, the O’Neil model, like the Rayleigh-Sommerfeld 
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0 ,n
hz R

h nλ
⎛ ⎞= ⎜ ⎟±⎝ ⎠

 (8.34)

where λ  is the wave length and the plus sign is for nulls satisfying 0z R<  
while the minus sign is for nulls where 0z R> . For nulls beyond the geo-
metrical focus, however, there is an additional restriction h nλ≥ that must 
be satisfied for those nulls so that in some cases such nulls may not exist at 
all. Unfortunately, one cannot write down a simple relationship for the 
location of the on-axis maxima as done for the planar transducer case. The 
most one can do is state that they are determined by the roots of a transcen-
dental equation which is [Fundamentals] 

( ) ( ) ( )
( )0 0

2 sin / 2
cos / 2 ,

z k
k

kR h q
δ δ

δ
δ

+
=

+
 (8.35)

where ( )2 2
er z z h a zδ = − = − + − . 

Note that due to wave diffraction effects the maximum response 
(true focus) at finite frequencies occurs at a distance somewhat less than 
the geometric focal length (geometric focus), as shown for this case. It is 
only at infinitely large frequencies that the maximum on-axis response 
occurs at 0z R= . 

 With some algebra we can express the distance er  also in the form 

( )2 2 2
0er z a h q z= + + − [Fundamentals]. In the paraxial approximation 

we must have h a<<  (not too severe focusing) and z a>>  (not too near 
the transducer). In this approximation we find 

2 2
0

2
0

2

2
0

1 ...
2

2

er z a q z

a qz z
z

a q
z

≅ + −

⎛ ⎞
≅ + + −⎜ ⎟

⎝ ⎠

=

 (8.36)

so that the on-axis response in Eq. (8.33) becomes 

( ) ( ) ( )2
0 0

0

1, exp 1 exp / 2 ,p z cv ikz ika q z
q

ω ρ
⎧ ⎫⎡ ⎤= −⎨ ⎬⎣ ⎦⎩ ⎭

 (8.37)
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Fig. 8.19. The on-axis response calculated with the paraxial approximation for the 
same spherically focused transducer shown in  Fig. 8.18. 

which shows that the on-axis diffraction coefficient for a spherically focused 
piston transducer is given by 

( ) ( )2
0 0

0

1, , , 1 exp / 2 .C z a R ika q z
q

ω ⎡ ⎤= −⎣ ⎦  (8.38)

For a planar transducer 0 1q →  and Eq. (8.38) reduces to Eq. (8.22). As in 
the planar case the paraxial approximation works very well in describing 
the ultrasonic beam from a spherically focused transducer as long as the 
focusing is not too severe and one is not too close to the transducer. 
Figure 8.19 shows the on-axis pressure plot predicted in the paraxial 
approximation for the same case shown in Fig. 8.18. It can be seen that the 
two responses are nearly identical. 

 The paraxial approximation also can be used as a means for 
illustrating a relatively simple way to incorporate focusing into a 
transducer beam model. Consider a planar circular piston transducer. Since 
the velocity is uniform over the face of the transducer, the phase of this 
velocity field is constant (zero) on this aperture. In contrast, if the 
transducer had generated a spherically converging wave which focuses at z 
= 0R on the axis of the transducer the phase of the velocity field on the 
aperture would not be a constant (see Fig. 8.20). On the plane z = 0 we 
would instead  have a phase  term given, in the paraxial  approximation, by 
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Fig. 8.20. Geometry for defining the phase variations on the plane z = 0 of a spheri-
cally converging wave that focuses at z = 0R . 

[ ]( )
( )

2 2
0 0 0 0

2
0 0

exp exp

exp / 2 .

sik r R ik R R

ik R

ρ

ρ

⎡ ⎤⎡ ⎤− − = − + −⎢ ⎥⎣ ⎦⎣ ⎦

≅ −
 (8.39)

[Note: we have included the 0ikR  term in Eq. (8.39) so that the phase of the 
wave is zero at the origin ( )0 0zρ = = , i.e. the wave starts out from that 
point at time t = 0. The sikr−  term has a negative sign because sr  decreases 
as the time t increases, i.e the wave is a spherical wave converging to point 
O on the axis]. Now, suppose we take the Rayleigh- Sommerfeld integral 
model of a planar piston transducer and simply include the phase term 
given in Eq. (8.39) over the planar transducer surface S. From Eq. (8.19) 
we would have 
 

 
Fig. 8.21. Geometry variables for defining the field behavior at a plane located a 
distance from the transducer equal to the geometrical focal length. 
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( ) ( ) ( ) ( )0 2
0 0

exp
, exp / 2 .

2 S

i v ikr
p ik R dS

r
ωρ ω

ω ρ
π

−
= −∫∫x  (8.40)

Consider now the on-axis response. For a circular transducer we can take 

0 02dS dπρ ρ= . But 2 2 2
0 0 / 2r z z zρ ρ= + ≅ +  in the paraxial approximation 

so that we obtain an integral that can be done explicitly, giving 

( ) ( ) ( )

( ) ( )

0 2
0 0 0 0

0

0 2
0

0

exp
, exp / 2

exp
1 exp / 2 .

ai v ikz
p z ik q z d

z
cv ikz

ika q z
q

ωρ ω
ω ρ ρ ρ

ρ

−
⎡ ⎤≅ ⎣ ⎦

⎡ ⎤= −⎣ ⎦

∫
 (8.41)

Equation (8.41) is identical to the paraxial result of Eq. (8.38) obtained 
from the O’Neil model. Thus, in the paraxial approximation, the effect  
of spherical focusing can be modeled by including a phase term 

( ) ( )2 2 2
0 0 0exp / 2 exp / 2ik R ik x y Rρ ⎡ ⎤− = − +⎣ ⎦ on the aperture plane z = 0 of 

a planar transducer model. In a similar manner one could introduce bi-
cylindrical focusing (different focal lengths xR  and yR  in the x- and y- 
directions, respectively) by including a phase term of the form 

( )2 2exp / 2 / 2x yik x R y R⎡ ⎤− +⎣ ⎦ . 

8.8 Wave Field in the Plane at the Geometrical Focus 

The wave field of a spherically focused piston transducer in a plane 
located at a distance z = 0R can also be obtained explicitly from the O’Neil 
model. One finds (see Fig. 8.21) that [Fundamentals] 
 

( ) ( ) ( )0 1 02
0

0 0

exp /
, ,

/
ikR J kay R

p i v a
R kay R

ω ωρ= −x  (8.42)

where 0R is the distance from the origin to a point x in the wave field. 
Since for most focused transducers the beam at the geometric focus is 
confined to a relatively small region near the transducer axis, in most cases 
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Fig. 8.22. The pressure distribution (due to the ( )1 /J u u  function) on a plane parallel 
to the transducer face at a distance from the transducer equal to the geometric 
focal length. 

we can take, approximately, 0 0R R= . It is interesting to note that the form 
of Eq. (8.42) is identical to that of the far field behavior of a circular planar 
piston transducer (see Eq. (8.31)). In this case, Eq. (8.42) gives us an 
explicit expression from which we can obtain an estimate of the beam 
width at the geometric focus. Usually that width is specified as the width 
of the main lobe when the magnitude of the response has dropped 6 dB 
from the maximum on-axis response, as shown in Fig. 8.22. Using Eq. (8.42), 
this beam width is given as [Fundamentals] 

0
6

4.43 1.41f dB

RW F
ka

λ= =  (8.43)

where 0 / 2F R a=  is called the transducer F-number. 

8.9 Radiation of a Focused Transducer through an 
Interface 

If one uses a focused transducer in an immersion setup, the transducer 
beam will be affected by the fluid-solid interface and focus at a shortened 
distance in the solid, as shown in Fig. 8.23 where a spherically focused 
piston  transducer  of  radius a and focal  length 0R is radiating  P-waves at  
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Fig. 8.23. A spherically focused piston transducer radiating a sound beam at 
normal incidence through a fluid-solid interface. 

normal incidence to a planar fluid-solid interface. It can be shown that in 
the paraxial approximation the on-axis velocity wave field in the solid again 
can be expressed as a plane wave multiplied by a diffraction coefficient, C, 
i.e.[Fundamentals] 

( ) ( ) ( );
0 12 1 1 2 2 1 2 0, exp , , , , ,P P

p p pv T ik z k z C z z a Rω ω= +v x d  (8.44)

 
where 

( )
2

1 0
1 2 0

0

1, , , , 1 exp
2

pik a q
C z z a R

q z
ω

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

%

% %
 (8.45)

is of the same form as the diffraction coefficient for the single fluid medium, 
but with the distance z replaced by 1 2 2 1/p pz z c z c= +%  as in the planar 
transducer case and where 0 01 /q z R= −% % . 

8.10 Sound Beam in a Solid Generated by a Contact 
Transducer 

All the examples discussed to this point have been for immersion trans-
ducers. In contact testing a P-wave transducer, like an immersion transducer, 
has an element whose motion is primarily normal to the face of the 
transducer. This transducer is placed in direct contact with the surface of 
the solid and a small layer of liquid couplant such as water, oil, or glycerin 
is placed between the transducer and the surface to ensure good coupling  
of the  transducer to the  solid. Under  these  conditions the transducer 
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Fig. 8.24. The waves generated by a contact P-wave transducer radiating into a solid. 

cannot drive the solid with a piston-like uniform velocity, since the solid is 
as stiff (or stiffer) than the transducer crystal and its wear plate. Instead,  
it is more reasonable to assume that the transducer generates a uniform 
pressure, 0p , over the transducer face. Even though this transducer is called 
a P-wave transducer, this pressure will actually launch a complicated set of 
waves of various types, as shown in Fig. 8.24 where a circular P-wave 
transducer is shown in contact with a stress-free planar surface of a solid. 
As in the fluid case, there will be a direct P-wave, PD , that exists in a 
cylindrical region ahead of the transducer and an edge P-wave, PE , that 

SE
will generate a “Head” wave, H, (also called a von Schmidt wave) that 
radiates in a conical-like fashion from the interface and links up to the 
edge S-wave. Finally, the transducer also generates a surface Rayleigh 
wave, R, which moves radially from the transducer along the free surface 
at a wave speed slightly smaller than the shear wave velocity of the solid 
and is confined to a region between the free surface and the edge S-wave. 
Although it appears that the wave field of the contact transducer in  
Fig. 8.24 is considerably more complicated than the immersion transducer 
case, not all of the waves in Fig. 8.24 are of equal importance in 
determining the wave field below the transducer in the solid. The Rayleigh 
waves, for example, do not affect the wave field except in a region very 

. When the edge P-wave grazes along the stress-free surface, it S-wave, 
radiates from the transducer edge. However, there will also be an edge 

close to the free surface. The head  waves do travel  into the  solid but they  
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Fig. 8.25. A model of a contact P-wave transducer as a uniform pressure, 0p , 
acting on the free surface of an elastic solid. 

radiate outwards at an angle from the transducer and generally are very 
weak. Thus, the predominant waves that one needs to consider are the direct 
P-wave and the edge P-waves and S-waves. A Rayleigh-Sommerfeld 
integral type of model can also be developed for these direct and edge 
waves, where the displacement vector, u, due to the waves in the solid is 
given by (see Fig. 8.25) [Fundamentals] 

( ) ( ) ( ) ( )

( ) ( ) ( )

10
12

1 1

10
12

1 1

exp
,

2

exp
,

2

T

T

ss
s

s S

pp
p

p S

ik Dp K dS
c D

ik Dp K dS
c D

ω θ
πρ

θ
πρ

′ ′ ′′=

′ ′′+

∫

∫

u x d x

d x

 (8.46)

where D ′ ′′= −x x , 1ρ  is the density of the solid, the compressional and 
shear wave speeds are 1 1,p sc c , respectively, and 1 1,p sd d  are the polarization 
vectors for the P-waves and S-waves. Unlike the immersion transducer 
case, the integrals also contain angular dependent directivity functions, 

( ) ( ),p sK Kθ θ′ ′  for the P-waves and S-waves. These functions are given 
by the expressions [Fundamentals] 
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Fig. 8.26. The directivity functions for a contact P-wave transducer. 

( ) ( )
( )

( ) ( )

2 2 2
1 1

3 2 2
1 1

1

cos / 2 sin
2 sin

cos sin 1 sin
,

2 sin

p

s

K
G

K
G

θ κ κ θ
θ

θ

κ θ θ κ θ
θ

κ θ

′ ′−
′ =

′

′ ′ ′−
′ =

′

 (8.47)

where ( ) ( )22 2 2 2 2 2
1 1/ 2 1G x x x x xκ κ= − + − −  and 1 1 1/p sc cκ = . The 

directivities are plotted in Fig. 8.26. Near the central axis of the transducer 
1, 0p sK K≅ ≅  so that Eq. (8.46) reduces to 

( ) ( )10
2

1 1

exp
, ,

2
T

p

p S

ik Dp dS
c D

ω
πρ

′ = ∫
nu x  (8.48)

which now only contains the direct and edge P-waves in a form almost 
identical to the expression for an immersion transducer. When such a 
transducer is used to interrogate a material for flaws, it is likely that the 
response will be “peaked up” by moving the transducer so that the flaw 
will be on or near the central axis of the transducer. In that case we see 
from Eq. (8.48) that a Rayleigh-Sommerfeld integral may also be an 
appropriate model. 
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Fig. 8.27. A contact P-wave transducer on a wedge which is contact with another 
material that is to be inspected. 

 
Fig. 8.28. An equivalent “fluid” model of an angle beam shear wave transducer. 
When the incident P-wave in the wedge is beyond the first critical angle, primarily 
a refracted S-wave only is generated in the solid with polarization sd , as shown. 
Since for the configuration shown sd  lies in a vertical plane, the S-wave in the solid 
is called a vertically polarized shear wave (SV-wave). There is a small transmitted 
P-wave as well in this configuration that can generally be neglected, as indicated 
by the dashed arrow in the figure. 
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8.11 Angle Beam Shear Wave Transducer Model 

A contact P-wave can also be placed on a solid wedge and used to generate 
a shear wave in the solid by the process of mode conversion. In general, as 
shown in Fig. 8.27 the P-wave transducer generates in the wedge primarily 
the compressional and shear waves we have just discussed. These waves 
then mode convert to each generate compressional and shear waves in the 
solid, as shown. However, studies of this configuration have shown that 
again the only significant wave in the wedge is the compressional wave 
[Fundamentals]. If the angle of the wedge is chosen so that the compress-
ional wave traveling along the central axis of the transducer is beyond the 
first critical angle, then primarily a shear wave is generated in the solid, a 
configuration in which the transducer is called an angle beam shear wave 
transducer. Since the only significant wave in the wedge is the P-wave, an 
angle beam shear wave transducer can be modeled by replacing the wedge 
by an equivalent fluid that has the same density and compressional wave 
speed of the wedge material, as shown in Fig. 8.28 and model the waves 
transmitted across the interface by using the transmission coefficients for 
two solids in smooth contact (see Appendix D). Thus, one can use an 
immersion transducer model as the basis for also modeling an angle beam 
shear wave transducer. 

8.12 Transducer Beam Radiation through Interfaces 

In immersion testing, the transducer sound beam inherently must pass 
through a fluid-solid interface. This causes the beam in the solid to be 
distorted from its behavior in the fluid. We have seen how at normal 
incidence to a plane interface we can model the on-axis behavior of these 
distortions in a simple manner for both planar and spherically focused 
transducers (see Eqs. (8.25) and (8.44)). For curved interfaces and oblique 
incidence, the models become much more complex. We can gain some 
understanding of these cases by using high frequency ray concepts. 
Consider, for example, a planar piston transducer radiating at oblique 
incidence to a curved interface, as shown in Fig. 8.29. If we model the 
wave field in the fluid by a Rayleigh-Sommerfeld integral, then in that 
model we are radiating a distribution of spherical waves to the interface. 
From an element of area dS at point y on the transducer surface a spherical 
wave  generates  a  pressure at a general point 1x  on the  interface given by 
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Fig. 8.29. An immersion transducer radiating a sound beam of type α  ( ),p sα = in 
a solid through a curved fluid-solid interface, showing a ray path from a point y on 
the transducer surface to a point x in the solid through the interface. In the 

zation of the transmitted waves is defined by the unit vector αd . For a transmitted 
P-wave, the polarization will be along the direction of propagation while for a 
transmitted S-wave it will be perpendicular to the direction of propagation. Both 
polarizations are shown along the refracted ray but for a given wave type only one 
will be present. 

( ) ( )1 10
1

1

exp
, .

2
pik ri vdp dS

r
ωρ

ω
π

−
=x  (8.49)

At high frequencies, the corresponding velocity in this spherical wave is 
given by 

( ) ( ) ( )1 11 0
1 1 1 1

1

exp
, , ,

2
pp

p p

ik rik v
d dv dS

r
ω ω

π
= = −v x x e e  (8.50)

where 1pe  is a unit vector along a line from point y on the transducer face 
to point 1x  on the interface and 1 1r = −x y . By high frequency ray theory, 
this velocity is propagated into the solid as a bulk wave of type α , where 

transducer beam model, this ray path must satisfy generalized Snell’s law. The polari-
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( ),p sα = , to generate a velocity at point x in the solid of the form 
[Fundamentals] 

( ) ( )

( )

;
10 12

1 2
2 20

1 20 2 20

, ,

exp ,

p

v v

v v

d dv T

ik r i
r r

α α α

α α
α α

αα α α α

ω ω

ρ ρ
φ

ρ ρ

=

⋅ +
+ +

v x d x

 (8.51)

where 10 10 20 10,r rα α α α= − = −x y x x  are distances from point y on the trans-

ducer surface to an interface point, 10
αx  and from that interface point to 

point x in the solid along a ray path that satisfies Snell's law for a wave of 
type α in the solid (see Fig. 8.29), i.e. we must have 

( ) ( )1 2

1 2

sin sin
.p

pc c
α

α

θ θ
=  (8.52)

We will assume that there is only one such path for the present argument, 
although that may not be true in general for complex curved interfaces. 
The term ;

12
pTα  is just the plane wave transmission coefficient (based on 

velocity ratios) for a wave of type α in the solid generated by the P-wave 
in the fluid traveling along this ray path. The factor 

1 2

1 20 2 20

v v

v vr r

α α

α α α α

ρ ρ

ρ ρ+ +
 

 

that appears in Eq. (8.51) involves two “virtual” source distances 1 2,v v
α αρ ρ  

and represents the amplitude changes predicted by ray theory. Essentially 
this factor distorts the incident spherical wave fronts in the fluid to more 
general curved wave fronts in the solid. Ray theory also predicts that there 
are additional phase changes, αφ  in the wave traveling in the solid beyond 
the term, 2 20k rαα  due to solely propagation in the solid. The vector αd  in 
Eq. (8.51) is a unit vector that describes the polarization of the transmitted 
wave. It is identical to the polarization defined for a transmitted plane 
wave of type α  generated by the interaction of a plane P-wave with a 
plane interface at point 10

αx  where the normal to the plane interface coincides 
with the actual interface normal of the curved interface at that point.  
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Fig. 8.30. (a) A planar transducer radiating  through a curved fluid-solid interface 
that spreads (defocuses) the waves in the solid, and (b) a curved interface that 
focuses the waves in the solid. 

By integrating the expression in Eq. (8.51) over the face of the 
transducer one then obtains a beam model for the total velocity in the 
transmitted waves: 

( ) [

( ) ( )

1 2;
12

1 20 2 20

2 20 10

,

exp , .

v vp

S v v

T
r r

ik r i dv

α α
α α α

α α α α

α α
α

ρ ρ
ω

ρ ρ

φ ω

=
+ +

⎤+ ⎦

∫v x d

x

 (8.53)

There are, however, some difficulties with this model [Fundamentals]. As 
long as the curved interface is of a defocusing type, as shown in Fig. 
8.30 (a), where the rays from a point on the transducer surface traveling 
into the solid do not touch or cross, Eq. (8.53) is well-behaved and can be 
used, like the Rayleigh-Sommerfeld equation, to calculate the sound beam 
in the solid. However, if the curved interface is of a focusing type, as 
shown in Fig. 8.30 (b), the rays can touch or cross and the ray theory 

resulting expressions become much more complex. This difficulty arises 
mathematically because we have modeled the transducer beam as a 

amplitude term becomes infinite. There are uniform ray theory appro- 
ximations that can remove those singularities but the analysis and 
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superposition of spherical waves arising from point sources, and spherical 
waves can become singular, for example, when focused at a point by a 
curved interface. Similar focusing singularities can occur for plane waves 
incident on a curved interface so that an angular plane wave spectrum 
model will also have these same difficulties when focusing curved inter-
faces are present. In the next Chapter, we will show that these problems 
can be eliminated by expanding the transducer wave field in terms of 
Gaussian beams which always remain non-singular.  

 There is an important special case when Eq. (8.53) is always well-
behaved [Fundamentals]. That case is when the planar piston transducer is 
incident at oblique incidence on a planar interface. In that case we have 

0αφ =  and 
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v
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=

 (8.54)

so Eq. (8.53) becomes, explicitly, 
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⎡= ⎣
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⎤⋅ ⎦+ +

∫v x d

 (8.55)

Equation (8.55) is in a form very similar to the Rayleigh-Sommerfeld 
equation. Instead of superimposing spherical waves traveling directly from 
the transducer to the point in the fluid, we now need to superimpose a 
more general set of waves with elliptical wave fronts in the solid that travel 

transmission coefficient of the interface. Since both that transmission 
coefficient and the polarization vector depend on that ray path, they are 
both implicit functions of point y on the transducer surface and so must 
remain inside the integral. In general the integral in Eq. (8.55) must be 
performed numerically, so that like the Rayleigh-Sommerfeld integral the 
highly oscillatory complex exponentials in Eq. (8.55) make this evaluation 
a rather intensive computation. Fortunately, the Gaussian beam models 
discussed in the next Chapter will also be much more numerically efficient 
than these types of Rayleigh-Sommerfeld integral models. 

along rays satisfying Snell’s law and are modified by the plane wave 
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Fig. 8.31. An experimental setup for a spherically focused transducer of radius a 
and focal length 0R  where one can obtain the acoustic/elastic transfer function 
explicitly. 

8.13 Acoustic/Elastic Transfer Function – Focused 
Transducer 

In Chapter 7 it was shown that the acoustic/elastic transfer function is needed 
in order to determine experimentally the system function. In Chapter 6 the 
acoustic/elastic transfer function also played a key role in determining the 
transducer sensitivity. In Chapter 5 we obtained an acoustic/elastic transfer 
function for both a pitch-catch and a pulse-echo immersion setup. In 
Chapter 13 a general procedure is given for using a multi-Gaussian beam 
model to determine the acoustic/elastic transfer function in cases where the 
transfer function cannot be obtained analytically (angle beam testing and 
contact testing setups with curved surfaces, etc.).  A number of other 
acoustic/elastic transfer functions can be derived from results given in 
[Fundamentals]. All of those cases, however, are for planar piston 
transducers. The acoustic/elastic transfer function for a spherically focused 
piston transducer in a pulse-echo immersion configuration is also available 
[8.4], [8.5], a case we will develop here as a simple application of the 
paraxial approximation and the use of the phase term discussed in Eq. 
(8.39). This approach will also lead to the transfer function for planar and 
cylindrically focused rectangular piston transducers in the following 
section. 

The configuration we will consider is the pulse-echo setup shown 
in Fig. 8.31 where a spherically focused piston transducer of radius a and 
focal length, 0R , radiates waves into a fluid and receives the waves reflected 
from a plane fluid-solid interface. The distance from the transducer to inter-
face is made equal to the geometrical focal length in this configuration.  
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As discussed in section 8.7, in the paraxial approximation we can use the 
Rayleigh-Sommerfeld equation to represent the wave field of a spherically 
focused transducer in the form (see Eq. (8.40)) 

( ) ( ) ( )

( )

1 0 2 2
1 0

1

, exp / 2
2

exp
,

p
S

p

i v
p ik x y R

ik r
dS

r
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π
− ⎡ ⎤= − +⎣ ⎦

⋅

∫∫x % %

 (8.56)

where ( ), , 0x y z =% % % are coordinates of a point on a plane at the transmitting 

transducer and ( ) ( )2 2 2
l l lr x x y y z= − + − +% %  is the distance from that 

point to a point ( ), ,l l lx y z in the fluid. Let the point in the fluid lie on the 

interface as shown in Fig. 8.31. Then ( ) ( )2 2 2
0l lr x x y y R= − + − +% % .We 

also apply the paraxial approximation to this distance function to obtain 

( ) ( )2 2
0 0/ 2l lr R x x y y R⎡ ⎤≅ + − + −⎣ ⎦% %  and Eq. (8.56) becomes 
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 (8.57)

Equation (8.57) is in the form of a quasi-plane wave so at high frequencies 
the pressure in the reflected wave at the interface, ( )0, , ,R l lp x y R ω , can be 
obtained by the plane wave relationship 

( ) ( )

( )

0 12 0

2 2 1 1
0

2 2 1 1

, , , , , ,

, , , ,

R l l l l

p p
l l

p p

p x y R R p x y R
c c

p x y R
c c

ω ω
ρ ρ

ω
ρ ρ

=

−
=

+

 (8.58)

where 12R  is the reflection coefficient (based on a pressure ratio). The normal 
velocity at the interface in the rz  direction, rv , (see Fig. 8.31) is also given 
by the plane wave relationship 

( ) ( )0 12 0 1 1, , , , , , / .r l l l l pv x y R R p x y R cω ω ρ=  (8.59)
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Using this velocity field as specified on the entire interface, we can again 
use the Rayleigh-Sommerfeld integral (with the paraxial approximation 
applied again to the radius, r, in that integral) to obtain the reflected waves 
that are incident on the transducer from the interface. We find 
 

( ) ( ) ( )

( ) ( )

1 12
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2 2

1

exp
, , , , , ,

2

exp .
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p r
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 (8.60)

 
For a spherically focused transducer, this pressure is received not at the 
plane 0rz R= but instead over the curved spherical surface given by 

( )2 2
0 0/ 2r r rz R x y R= − + . Placing this distance into the plane wave phase 

term in Eq. (8.60) (and using 0rz R=  elsewhere in Eq. (8.60)), the average 
pressure, avep , over the area, S, of the transducer is given by 
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(8.61)

 
Substituting the expression for the pressure at the interface (Eq. (8.57)) 
into Eq. (8.61), we obtain an explicit expression for the average pressure 
acting on the transducer. Then from this average pressure we can find the 
blocked force, 2B aveF p S= , received by the transducer as 
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 (8.62)

Since 1 1 0t pF c Svρ=  is the force transmitted by the transducer acting as a 

/foc
A B tt F F=  is given by 
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 (8.63)

Equation (8.63) is a rather formidable looking expression, but we can 
proceed as follows. First, we note that the acoustic/elastic transfer function 
for a planar transducer of the same size as our spherically focused trans-
ducer, planar

At  is given by exactly the same expression as Eq. (8.63) without 
the first two phase terms: 

transmitter, the acoustic/elastic transfer function for our focused transducer,  
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In Eqs. (8.63) and (8.64) the integrals over the interface are identical for 
the focused and planar cases. These integrals can be rewritten as 
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 (8.65)

The remaining integrals can be performed exactly because we have [8.2] 
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∫  (8.66)

where Im[ ] indicates “imaginary part of ”. In Eq. (8.65) the corresponding 
A terms are purely real but if we add a small amount of “damping” by 
letting A A iε= +  and then take the limit as 0ε → , the result is the same 
as  using Eq. (8.66)  directly on the forms  given  in Eq. (8.65) and  we find 
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( ) ( )

( ) ( )

2 2 2 2
0

1 1
1 0 0

2 2

1 1
0 0

exp exp
2 2

exp exp .
4 4

r r
p p

p

r r
p p

x y x yi RI ik ik
k R R

x x y y
ik ik

R R

π ⎛ ⎞ ⎛ ⎞+ +
⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞+ +
⎜ ⎟ ⎜ ⎟⋅ − −
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

% %

% %
 (8.67)

In the focused case, we see that the first two phase terms in Eq. (8.67) 
simply cancel the first two phase terms in Eq. (8.63) and we obtain 
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However, we note that for a circular, spherically focused transducer the 
integrations in Eq. (8.68) are over symmetrical intervals in both rx  and ry so 
that we can make the replacements r rx x→−  and r ry y→−  in Eq. (8.68) 
without affecting the end result. With those, replacements, we have, 
finally, 

( ) ( )

( )

2
1

12 1 0 1
0 0

2

1
0

2 exp 2 exp
4 4

exp
4

p rfoc
A p p

S S

r
p r r

ik x x
t R ik R ik

R S R

y y
ik dx dy dxdy

R

π

⎛ ⎡ ⎤− −
⎜= −⎢ ⎥
⎜ ⎢ ⎥⎣ ⎦⎝
⎞⎡ ⎤−
⎟−⎢ ⎥
⎟⎢ ⎥⎣ ⎦ ⎠

∫∫ ∫∫
%

%
% %

 (8.69)

In the planar transducer case, we can place Eq. (8.67) into Eq. (8.64) to find 
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which, when the exponential terms are combined, gives 
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In Chapter 5, we obtained an explicit expression for acoustic/elastic transfer 

can write the transfer function for a planar transducer in terms of the 
diffraction correction, pD% , used in Chapter 5 (see Eq. (5.20)) as 

( ) ( ) ( )2
1 0 12 1 0/ 2 exp 2 ,planar

A p p pt D k a R R ik Rω = %  (8.72)

where  

( ) ( ) ( ) ( ){ }0 12 1 exp .pD u iu J u i J u ⎤= ⎡ − −⎣ ⎦
%  (8.73)

Comparing Eqs. (8.69) and (8.71) and using Eq. (8.72) for the planar case, 
we see that for the focused case we have 

( ) ( ) ( )*2
1 0 12 1 0/ 2 exp 2foc

A p p pt D k a R R ik Rω ⎡ ⎤= − ⎣ ⎦
%  (8.74)

where [ ]* denotes the “complex conjugate”. Thus, by making the changes 
indicated by Eq. (8.74) one can simply use the same diffraction correction 
obtained for the planar case for this focused case as well. Note, however, 
that while in the planar transducer case the interface is not restricted to 

function for the planar transducer case. For the geometry of  Fig.  8.31 we 
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being at a particular distance from the transducer the interface must be 
placed at the geometrical focal length of the focused transducer in order to 
use Eq. (8.74). 

8.14 Acoustic/Elastic Transfer Function – Rectangular 
Transducer 

The results of the previous section can also be used to obtain the acoustic/ 
elastic transfer function for a rectangular piston transducer that is either 
planar or cylindrically focused and receiving the waves reflected from the 
front surface of a block (same setup as shown in Fig. 8.31). First, consider 
a planar rectangular transducer of length 2a in the x% -direction and 2b in 
the y% -direction and let the distance 0R D=  (see Fig. 8.31). Then from  
Eq. (8.71) the acoustic/elastic transfer function, rect

At , is 
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But in this case we have 
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where ( )F x is the Fresnel integral 
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For the integral of the Fresnel function we can use the relationship [8.6] 
(which comes directly from integration by parts) 
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to obtain 
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We can express Eq. (8.80) in terms of a diffraction correction term, rect
pD% , 

where 
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(8.81)

so that  

( ) ( ) ( )2
1 12 1/ 2 exp 2 .rect rect

A p p pt D k a D R ik Dω = %  (8.82)

Figure 8.32 shows a plot of rect
pD%  versus frequency for a rectangular trans-

ducer where 50.8D =  mm and 12.7a =  mm, 6.35b =  mm. For comparison 
the corresponding diffraction correction for a 12.7 mm radius circular 
transducer (Eq. 8.73) is also plotted in Fig. 8.32. It can be see that the 
rectangular transducer has a very similar behavior to the circular probe and 
that both diffraction corrections asymptotically approach a value of two for 
high frequencies. 
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Fig. 8.32. The diffraction correction, rect

pD% , for a rectangular 25.4 x 12.7 mm 
rectangular transducer (solid line) and the corresponding diffraction correction, 

pD% , for a 12.7 mm radius circular transducer (dashed line). In both cases the 
distance D = 50.8 mm. 

We can also consider a rectangular cylindrically focused transducer 
in the same fashion as done for the spherically focused transducer. For a 
transducer with cylindrical focusing of radius R in the y% -direction, we can 
introduce the phase term ( )2

1exp / 2pik y R− %  into the Rayleigh-Sommerfeld 

equation and follow the same steps as in the spherically focused transducer 
case to obtain the acoustic/elastic transfer  function, cyl

At , in the form 
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where we must set the distance, D R=  , as in the spherically focused case. 
Again, we can express these integrations in terms of Fresnel integrals. 
Since the details are the same as for the planar case, we just give the end 
result, namely 
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( ) ( ){
( )

( ) ( )

2
12 1 1

2
12

1

*

2 2
1 12

1

4exp 2 2 /

exp / 1
2 /

2 / exp / 1 ,
2 /

cyl
A p p

p

p

p p

p

t R ik R F k a R
i

i ik a R
k a R

iF k b R ik b R
k b R

π

π π

π
π π

= +

⎫⎪⎡ ⎤− ⎬⎣ ⎦
⎪⎭

⎧ ⎫⎪ ⎪⎡ ⎤⋅ + −⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭

 
(8.84)

where again { }* indicates the complex conjugate. 
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8.16 Exercises 

1. The exact on-axis pressure for a circular piston transducer was given by 
Eq. (8.20) and the far field approximation for this same pressure was given 
by Eq. (8.21). Using MATLAB, write a script that computes these two 
pressure expressions and plots the magnitude of the normalized pressure, 

0/p cvρ , versus the normalized distance, /z N , for both of these express-
ions on the same plot, where N is the near field distance. Let the transducer 
radius a = 6.35 mm, the frequency f = 5 MHz, and the wave speed of the 
fluid c = 1480 m/sec. Show both pressure plots over the range z/N = 0.2 to  
 
 

In: Thompson DO, Chimenti DE (eds) Review of progress in quantitative 
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z/N = 4.0. What can you conclude about when Eq. (8.21) is valid? 
 
2. Equation (8.31) shows that the angular distribution of the far field 
radiation field of a circular planar piston transducer is controlled by the 
directivity function ( ) ( )1 sin / sinJ ka kaθ θ . Using MATLAB, write a func-
tion that calculates the angle where the amplitude of this directivity 
function drops by 6 dB from its maximum on-axis value. Use this function 
to determine the 6 dB angular spread of a 0.5 inch diameter piston 
transducer radiating into water at frequencies of 2.25, 5, and 10 MHz. 
 
3. Equation (8.19) is the Rayleigh-Sommerfeld integral for a planar piston 
transducer radiating into a fluid. Consider this equation for a rectangular 
transducer with width 2a in the x-direction and width 2b in the y-direction. 
In the paraxial (Fresnel) approximation we can approximate the radius 

( ) ( )2 22r z x x y y′ ′= + − + − appearing in the denominator of that equation 

as 2 2 2r R x y z≅ = + + , where ( ), ,x y z  is a point in the fluid and ( ), ,0x y′ ′  
is a point on the transducer face. In the phase term of Eq. (8.19), however, 
we approximate the radius r instead as  

( ) ( )

( ) ( )

2 2

2 2

2 2

1

2 2

x x y y
r z

z z
x x y y

z
z z

′ ′− −
= + +

′ ′− −
≅ + +

 

 

Thus, with these approximations Eq. (8.19) for a rectangular transducer is: 

( ) ( ) ( )2 2
0 exp exp exp

2 2 2

a b

a b

ik x x ik y yi vp ikz dx dy
R z z

ωρ
π

+ +

− −

⎡ ⎤ ⎡ ⎤′ ′− −− ′ ′= ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∫ ∫  
 

Show that this expression can be written as the product of the difference of 
two Fresnel integrals in the form 

( ) ( ) ( )

( ) ( )

0

exp
2

p iz k kikz F x a F x a
cv R z z

k kF y b F y b
z z

ρ π π

π π

⎡ ⎤⎛ ⎞ ⎛ ⎞−
= + − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛ ⎞
⋅ + − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
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where ( )F x is the Fresnel integral as defined in Eq. (8.77). Using the 
MATLAB function fresnel_int and the above expression, write a MATLAB 
function that computes this pressure wave field at any point ( ), ,x y z  in  
the fluid. For a 6mm by 12mm rectangular transducer radiating into water  
(c = 1480 m/sec) at 5 MHz, plot the magnitude of the normalized on-axis 
pressure for distances z = 6 mm to z = 100 mm. For the same transducer 
plot cross-axis pressure profiles in the x- and y-directions at z = 45, 70 mm. 

 
4. Write a MATLAB function that returns the normalized on-axis pressure, 

0/p cvρ , versus distance for a spherically focused piston transducer (see 
Eq. (8.37)). The input arguments of the function should be the distance 
values (in mm), the frequency (in MHz), the radius (in mm), the geo-
metrical focal length (in mm), and the wave speed (in m/sec). Use this 
function to find the location of the true focus (i.e. the distance to the 
maximum pressure) for a 12.7 mm (0.5 inch) diameter, 101.6 mm (4 in.) 
focal length transducer radiating into water at 5, 10, and 20 MHz. What 
can you conclude about the relationship between the location of the true 
focus versus the geometrical focal length? 
  
5. Equation (8.20) gives the exact on-axis pressure for a planar immersion 
transducer at a single frequency. Ultrasonic NDE transducers, however, do 
not normally operate at a single frequency but are driven by a voltage 
pulse and hence contain a spectrum of frequencies that generate a time 
domain pulse. The near field behavior of such a pulsed transducer does not 
show nearly the same strong near field structure as a single frequency 
model suggests.  

Write a MATLAB function that computes the normalized pressure, 
0/p cvρ , at a given on-axis  distance at many frequencies and multiplies this 

pressure at each frequency  by the MATLAB function spectrum1 written 
for exercise 1 in Appendix A. The function should evaluate this product at 
1024 positive frequencies ranging from 0 to 100 MHz and then use the 
Fourier transform IFourierT defined in Appendix A to obtain the time-
domain pulse generated by the transducer at the given location. Finally, the 
function should compute the peak-to-peak magnitude of this pulse and 
return that value. The inputs to the MATLAB function should be the 
distance (in mm), the transducer radius (in mm), the wave speed of the 
fluid (in m/sec), the center frequency, fc (in MHz), and the bandwidth, bw 
(in MHz).  
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Use this function to evaluate the peak-to peak response of a trans-
ducer radiating into water for 200 points ranging from 10 to 400 mm and 
plot this peak-to-peak response versus distance. Take the radius of the 
transducer to be 6.35 mm (0.25 in.), the center frequency fc = 5 MHz and 
the bandwidth bw = 2 MHz. 
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9 Gaussian Beam Theory and Transducer 
Modeling 

As seen in the last Chapter and in Appendix D plane waves and spherical 
waves are important wave types. They can be used as a means to 
understand many aspects of wave propagation and scattering and they can 
serve as building blocks to form more complex waves such as the beam of 
ultrasound generated by an ultrasonic transducer. As building blocks, 
however, plane waves and spherical waves have some disadvantages. To 
adequately represent the high frequency beams found in ultrasonic NDE 
applications, many plane wave components or spherical wave sources are 
needed, leading to computational inefficiencies. Also, as discussed in the 
last Chapter, when these wave types are transmitted or reflected through 
certain geometries at high frequencies mathematical singularities in the 
resulting approximate wave fields can be encountered that must be 
eliminated. These wave types do have the virtue of being exact solutions to 
the equations of motion for both fluids and solids so that other wave fields 
formed from them also satisfy the equations of motion exactly as long as 
the wave fields are not obtained with the use of approximations. 
 Gaussian beams are another important wave type that can elimi-
nate many of the disadvantages of plane waves and spherical waves. In this 
Chapter we will show that it is possible to accurately model the sound 
beam of an ultrasonic transducer with as few as ten Gaussian beams. 
Furthermore, we will see that it is possible to analytically define the pro-
pagation and transmission/reflection laws for these Gaussian beams even 
after they have undergone multiple interactions with curved interfaces. 
These properties of Gaussian beams will allow us to construct a multi-
Gaussian transducer beam model that is computationally efficient and 
capable of simulating sound beams generated in very complex inspection 
geometries. Unlike plane waves and spherical waves, Gaussian beams are 
only approximate paraxial solutions to the governing equations of motion. 
Similarly, a multi-Gaussian transducer beam model will also be an 
approximate paraxial solution. Thus, there will be some situations where a 
multi-Gaussian beam model will lose accuracy. We will describe those 
special cases in some detail later. Fortunately, many of those special cases 
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are not encountered in common testing setups so a multi-Gaussian beam 
model is a practical, powerful modeling tool for many NDE applications. 
 In Appendix F we have given an extensive discussion of Gaussian 
beam fundamentals for the special case of circularly symmetrical Gaussian 
beams to illustrate the important properties of Gaussian beams in a simple 
context. While circularly symmetrical Gaussian beams are very useful for 
describing many laser science problems, they are of limited use for the 
types of problems we need to model in ultrasonic inspections. In this 
Chapter we extend the treatment given in Appendix F to the more general 
Gaussian beams that are needed for ultrasonic NDE applications. 

9.1 The Paraxial Wave Equation and Gaussian Beams in a 
Fluid 

Consider first the case of wave propagation in a fluid. We know that the 
pressure, p, satisfies the wave equation. If we place a harmonic wave solution 
(of ( )exp i tω− time dependency) into the wave equation in the form of a 
quasi-plane wave traveling in the 3x -direction given by: 

( ) ( )1 2 3 3, , exp pp P x x x ik x=  (9.1)

(Note - we will not write the time dependency explicitly here or in most 
subsequent expressions) then we find that P satisfies the equation 

2 2 2

2 2 2
1 2 3 3

2 0.p
P P P Pik

x x x x
∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

 (9.2)

If we use the solution of Eq. (9.1) to represent a wave which is propagating 
primarily in the 3x -direction, then we expect that at high frequencies the 
complex exponential term in Eq. (9.1) will capture most of the wave field 
variations in the 3x -coordinate so that the wave diffraction effects associated 
with the 2 2

3/P x∂ ∂  term in Eq. (9.2) will be small in comparison to all the 
other terms in that equation, i.e. we make the paraxial approximation [9.1] 

2 2 2

2 2 2
3 1 2 3

, ,2 p
P P P Pik

x x x x
∂ ∂ ∂ ∂

<<
∂ ∂ ∂ ∂

 (9.3)

which leads to the paraxial wave equation for P: 
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Fig. 9.1. (a) Propagation of a spherical wave from a point source and (b) the behavior 
of the spherical wave in a small region around the 3x -axis. 

2 2

2 2
1 2 3

2 0.p
P P Pik

x x x
∂ ∂ ∂

+ + =
∂ ∂ ∂

 (9.4)

In Appendix F it is shown that the paraxial approximation of Eq. (9.3) places 
some physical limits on the properties of a propagating Gaussian beam.  

We can also gain some physical understanding of the meaning of 
the paraxial approximation by considering the radiation of a spherical wave 
from a point source in a fluid as shown in Fig. 9.1 (a). The pressure in the 
fluid in this spherical wave is given by 

( )exp
,pik r

p A
r

=  (9.5)

where  1 2 2
1 2 3r x x x= + +  is the radial distance from the source and 

/p pk cω=  is the wave number, with ω the frequency in radians/sec and 

pc the wave speed of the fluid.  
Now, consider this spherical wave in the neighborhood of a fixed 

direction, which we will take as the 3x -axis (see Fig. 9.1 (b)). In a small 
angular region about this axis (where 1 3 2 3/ 1, / 1x x x x<< << ) the spherical 
wave is traveling approximately in the 3x -direction and we have 

2 2 2
3 0 3 0 3/ 2r x x xρ ρ= + ≅ + , where 2 2

0 1 2x xρ = + . In this case, the 
spherical wave can be approximated by 
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Fig. 9.2. Normalized phase for a spherical wave in the neighborhood of the 3x -axis. 
Solid line: exact normalized phase, dashed line: paraxial approximation for the 
normalized phase. 

( )2
3 0 3

3

exp / 2
,

pik x x
p A

x

ρ⎡ ⎤+⎣ ⎦≅  (9.6)

which satisfies the paraxial wave equation exactly so that Eq. (9.6) is the 
paraxial approximation of the spherical wave in the neighborhood of the 

3 3

spherical wave? To answer this question, consider the phase term of the 
spherical wave ( )pk r  divided by the phase of a plane wave traveling in the 

3x -direction ( )3pk x and let ( )0 3/ x tanρ θ= , where θ defines an angle about 
the 3x -axis (Fig. 9.1(b)). [Remark - a normalized phase term is considered 
here so that we can discuss phase differences in non-dimensional terms 
and we consider the phase differences, not the amplitude differences since 
it is the former that are most sensitive to approximation] Then we have: 

exact spherical wave:   2

3

1 tanp

p

k r
k x

θ= +  (9.7a)

 
 

 
 
 

x -axis. How large of an angular neighborhood about the x -axis can we 
take before the paraxial approximation loses accuracy in describing the 
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paraxial approximation: 
2

3

tan1
2

p

p

k r
k x

θ
≅ +  (9.7b)

Figure 9.2 compares these two normalized phase terms versus θ where the 
solid line is the exact phase result and the dashed line is the paraxial 
approximation to this phase. As can be seen from that figure, the paraxial 
approximation for the phase begins to lose accuracy at an angle of approxi-
mately 30 degrees from the 3x -axis.  
 Now, apply the results for this simple example to the case of Fig. 9.3 
where a planar piston transducer radiates waves into water that travel from 
the transducer surface to a point on the transducer axis. As discussed in the 
last Chapter a Rayleigh-Sommerfeld integral model represents this transducer 
as a distribution of point sources over the face of the transducers, each of 
which generates a spherical wave of the type just discussed. Thus, if we 
apply the paraxial approximation to those distributed sources, we would 
expect that the paraxial approximation for the Rayleigh-Sommerfeld model 
also breaks down if the angle θ shown in Fig. 9.3 exceeds approximately 
30 degrees. Typically, this means that the paraxial approximation should 
begin to lose accuracy when the distance from the face of the transducer to 
the point where the wave field being evaluated is less than about a trans-
ducer diameter. This can be demonstrated by comparing the magnitude of 
the exact on-axis pressure for a circular planar piston transducer radiating 
into a fluid, as found in Eq. (8.20): 

( ) ( ) ( )2 2
0, exp expp pp z cv ik z ik a zω ρ ⎡ ⎤= − +⎢ ⎥⎣ ⎦

 (9.8)

with the same pressure in the paraxial approximation given by Eq. (8.22): 
 

 
Fig. 9.3. A transducer radiating into a fluid. 
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Fig. 9.4. A comparison of the magnitude of the normalized pressure versus on-axis  
z-distance for a 12.7 mm diameter, 5 MHz planar piston transducer radiating into 
water where the solid line is for the exact results and the dashed line is for the 
paraxial result. 

( ) ( ) ( )2
0, exp 1 exp / 2 .p pp z cv ik z ik a zω ρ ⎡ ⎤≅ −⎣ ⎦  (9.9)

Figure 9.4 plots the magnitude of these exact and approximate pressures 
versus z for the case of a 5MHz, 12.7 mm diameter transducer radiating 
into water. It can be seen from that figure that even in the near field, where 
there are significant pressure variations, the paraxial approximation repre-
sents the pressure of this transducer very well but that the approximation 
begins to have a significant shift from the exact on-axis pattern at about 
one diameter distance from the transducer which is the smallest distance 
plotted in Fig. 9.4. This distance corresponds to an angle θ in Fig. 9.3 of 30 
degrees. 

 Another way of viewing the paraxial approximation of Eq. (9.3) is 
to recall from the last Chapter that we can also use an angular spectrum of 
plane waves to represent the sound beam of a transducer. Thus, consider a 
plane wave component of this spectrum that is traveling in the 1 3x x− plane 
at an angle θ with respect to the 3x -axis (Fig. 9.5). This plane wave is 
given by 

( )1 3exp sin cos ,p pp A ik x ik xθ θ= +  (9.10)
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Fig. 9.5. A plane wave traveling in the 1 3x x− plane at an angle θ with respect to 
the x3-axis. 

which can be placed in the quasi-plane wave form of Eq. (9.1), 
( )3exp pp P ik x= , where 

( )1 3exp sin 1 cos .p pP A ik x ik xθ θ⎡ ⎤= + −⎣ ⎦  (9.11)

Then for small angles θ 

( )

( )

2
2 2 2 2

2
1

2 2 2

3
2 42

22
2
3

sin

2 2 1 cos

1 cos
4

p p

p p p

p
p

P k P k P
x

Pik k P k P
x

k PP k P
x

θ θ

θ θ

θ
θ

∂
= − ≅ −

∂
∂

= − − ≅
∂

∂
= − − ≅ −

∂

 (9.12)

so that we see that 2 2
3/P x∂ ∂  will be at least an order of magnitude smaller 

than the other derivative terms if 0.5θ <  rad, or approximately 30θ < o . 
This shows that as long as the transducer beam is sufficiently well 
collimated so that the angular plane wave spectrum components needed to 
represent the beam are very small outside a cone angle of about 30 degrees 
about the 3x -axis, we expect the paraxial approximation will be valid. 

There are number of exact solutions to the paraxial wave equation, 
Eq. (9.4). An ordinary plane wave where P = A = constant is a solution. 
Also, as mentioned previously, the paraxial approximation of a spherical 
wave given by  Eq. (9.6) is 

2
0 3

3

exp / 2
,pik x

P A
x
ρ⎡ ⎤⎣ ⎦=  (9.13)
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Fig. 9.6. A Gaussian beam of circular cross-section propagating in the 3x -direction, 
showing the wave front curvature and the beam width. The beam waist is located 
at 3 03x x= . 

which is an exact solution of the paraxial wave equation. We can also 
obtain a solution of Eq. (9.4) in the form of a Gaussian beam propagating 
along the 3x -axis. Here, we will consider a general form of a Gaussian 
beam given by: 

3 3( )exp ( ) ,
2

T
p

iP P x xω⎛ ⎞= ⎜ ⎟
⎝ ⎠

X M X  1 2[ , ]Tx x=X  (9.14)

where 3( )P x  is a complex-valued scalar, and pM  is a 2×2 complex-valued 
symmetric matrix. A circular cross-section Gaussian beam of the type 
considered in Appendix F is then a special case of Eq. (9.14). This type of 
Gaussian beam is shown schematically in Fig. 9.6 along with some of its 
defining parameters (beam width, radius of curvature). For an in-depth 
discussion of these and other defining parameters, see Appendix F. We 
will also discuss later in this Chapter how the pM  matrix is related to these 
properties of the propagating beam. Substituting Eq. (9.14) into Eq. (9.4), 
we obtain 

2

3 3

2 1( ) 0.pT
p p

p p

ddP P tr i P
c dx c dx

⎛ ⎞
+ + + =⎜ ⎟⎜ ⎟

⎝ ⎠

M
M X M X  (9.15)

In order to satisfy Eq. (9.15) for all X, we obtain the two equations 

3

2 tr( ) 0    p
p

dP P
c dx

+ =M  (9.16)
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and 

2

3

1 0,  p
p

p

d
c dx

+ =
M

M  (9.17)

where tr( )pM  is the trace of the matrix pM .  In ray theory, Eq. (9.16) is 
usually called the transport equation [9.2]. Equation (9.17) is in the form 
of a non-linear matrix Ricatti equation [9.2]. 

We can manipulate both of these equations into alternative forms 
where we can solve them directly. Consider first Eq. (9.17). We start by 
differentiating the identity 1

p p
− =M M I with respect to 3x . We obtain 

( ) ( )1 1
3 3/ / 0.p p p pd dx d dx− −+ =M M M M  (9.18)

If we use Eq. (9.17) in this result and pre-multiply by 1
p
−M , then we obtain 

1

3

0,p
p

d
c

dx

−

− =
M

I  (9.19)

where I is the 2×2 identity matrix. Equation (9.19) gives us a simple differen-
tial relationship that we will use shortly to obtain the solution of Eq. (9.17). 
Now, consider transforming the pM part of Eq. (9.16). If we pre-multiply 
Eq. (9.19) by pM  we find 

( )1
3

1 / .p p p
p

d dx
c

−=M M M  (9.20)

Using the relationship 

( ) ( )
( )

1
11

1

adj

det
p

p p
p

−
−−

−
= =

M
M M

M
 (9.21)

(which comes directly from the definition of the inverse of a matrix) in 
Eq. (9.20) yields 

( ) ( )( )1 1
31

1 adj / ,
detp p p

p p

d dx
c

− −
−

=M M M
M

 (9.22)

where [ ]adj denotes the adjoint and det[ ] the determinant. Taking the trace 
of both sides of Eq. (9.22) and applying the general matrix relationship 
[9.3] 
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( ) ( )( )

1
1 1

3
3

det
tr adj / ,

p
p p

d
d dx

dx

−

− −
⎡ ⎤⎣ ⎦ ⎡ ⎤= ⎣ ⎦

M
M M  (9.23)

it follows that 

( ) ( )
( )

( ){ }

1

1
3

1

3

det1tr
det

ln det1 .

p
p

p p

p

p

d

dxc

d

c dx

−

−

−

⎡ ⎤⎣ ⎦=

⎡ ⎤⎣ ⎦=

M
M

M

M
 (9.24)

Placing Eq. (9.24) into Eq. (9.16) then gives 

( )1

3 3

2 ln det 0.   p
dP dP
dx dx

−⎡ ⎤⎡ ⎤+ =⎣ ⎦⎣ ⎦M  (9.25)

The solutions of Eqs. (9.19) and (9.25) are now both easy to obtain. The 
solution of Eq. (9.19) by direct integration gives us the propagation law: 

( ) ( )
( ) ( )

1 1
3 3

1
3

0

0 0 .
p p p

p p p

x c x

c x

− −

−

= +

⎡ ⎤= +⎣ ⎦

M I M

M I M
 (9.26)

Taking the inverse of both sides of Eq. (9.26) gives the corresponding 
solution for pM : 

( ) ( ) ( ) 1

3 30 0 ,p p p px c x
−

⎡ ⎤= +⎣ ⎦M M I M  (9.27)

which can be rewritten as 

( ) ( ) ( )( )3 3
1 0 det 0p p p px x c ⎡ ⎤= + ⎣ ⎦∆

M M I M  (9.28)

where 

( ) ( ) ( ) ( )2

3 31 0 det 0 .p p p px c tr x c⎡ ⎤ ⎡ ⎤∆ = + +⎣ ⎦ ⎣ ⎦M M  (9.29)

The solution of Eq. (9.25) also follows directly, since we can write 
it in the equivalent form 
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( )
( )

( )
( )

1/ 21
33

3 31ln / ln det / ,
0 0

p

p

xP x
d dx d dx

P

−−

−

⎧ ⎫⎡ ⎤⎧ ⎫ ⎛ ⎞⎡ ⎤⎪ ⎪ ⎪ ⎪⎢ ⎥= ⎜ ⎟⎨ ⎢ ⎥⎬ ⎨ ⎬⎜ ⎟⎢ ⎥⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎝ ⎠⎩ ⎭ ⎣ ⎦⎩ ⎭

M
M

 (9.30)

where P(0) is ( )
3

3 0x
P x

=
. Equation (9.30) can then also be integrated, leading 

to any one of the following equivalent forms: 

( )
( )

( )
( )

( )
( )

( )

1
33

1
3

3

det 0 det
0 det 0det

1 .
det 0

p p

pp

p p

xP x
P x

c x

−

−

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= =
⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦

=
⎡ ⎤+⎣ ⎦

M M

MM

I M

 (9.31)

Using the second of these forms our Gaussian beam solution for the 
pressure, p, then can be written as 

( ) ( ) ( )
( )

3
3

3

det
, (0)exp

det 0

exp ( )
2

p
p

p

T
p

x
p P ik x

i x

ω

ω

⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

⎛ ⎞⋅ ⎜ ⎟
⎝ ⎠

M
x

M

X M X

 (9.32)

with 1 2[ , ]Tx x=X , which shows that both the amplitude and phase of the 
Gaussian beam are functions solely of the matrix ( )3p xM  and the starting 
values ( ) ( )0 , 0pP M  at 3x  = 0. The velocity in the Gaussian beam can 
also be obtained by differentiating this pressure. However, in the paraxial 
approximation the dominant term in such a differentiation comes from the 

( )3exp pik x  term so that the velocity is simply given by 

( ) ( ) ( ) ( )
( )

3
3

3

det
, 0 exp

det 0

exp ( ) ,
2

pp p p
p

p

T
p

x
V ik x

i x

ω

ω

⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

⎛ ⎞⋅ ⎜ ⎟
⎝ ⎠

M
v x d

M

X M X

 (9.33)

where ( ) ( )0 0 /p
pV P cρ= , ρ is the density of the fluid and pd  is a unit 

vector in the 3x -direction (the direction of propagation). For a proof that 
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the other terms obtained when differentiating the pressure to obtain the 
velocity are indeed negligible, see the discussion in Appendix F leading up 
to Eq. (F.25).   

Gaussian beams are often used to also represent the light beam in a 
laser. In the laser field the matrix pM is usually taken to be a diagonal matrix 
of the form (see Appendix F and [9.1]) 

( )
( )

( )

3
3

3

1 0

,
10

p
p

p

c q x
x

c q x

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M  (9.34)

where ( )3q x is a complex scalar. In this case Eq. (9.32) becomes 

( ) ( ) ( )
( )

( )
( )

2 2
1 2

3
3 3

0
, (0)exp exp

2p

ik x xq
p P ik x

q x q x
ω

⎡ ⎤+
⎢ ⎥=
⎢ ⎥⎣ ⎦

x  (9.35)

and the propagation law for pM  (Eq. (9.26)) is simply 

( ) ( )3 30 .q x q x= +  (9.36)

Equation (9.35) represents a propagating Gaussian beam of circular cross 
section. As long as the imaginary part of the starting value at 3x  = 0, ( )0q , 
has a negative imaginary part, the propagation law shows that ( )3q x  will 
also have a negative imaginary part so that Eq. (9.35) will represent a 
beam that is always localized near the axis of propagation. If we let 

( ) ( ) ( )2
3 3 3

1 1 i
q x R x w x

λ
π

= +  (9.37)

then Eq. (9.35) can be written as 

( ) ( ) ( )
( )

( )
( )

( )
( )

3
3

2 2 2 2
1 2 1 2

2
3 3

0
, (0)exp

exp exp
2

p

q
p P ik x

q x

ik x x x x
R x w x

ω =

⎡ ⎤ ⎡ ⎤+ +
⎢ ⎥ ⎢ ⎥⋅ −
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

x

 (9.38)
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which shows that ( )3R x  represents a wave front radius of curvature that 
varies as the Gaussian beam propagates while ( )3w x  represents a beam width 
parameter that defines the radial distance to which the beam amplitude 
drops by a factor 1e−  from its on-axis value. Figure 9.6 illustrates these 
quantities for a propagating Gaussian beam. From the results given in 
Appendix F (see Eq. (F.14)) one can write down relatively simple 
expressions for ( ) ( )3 3,R x w x : 

( ) ( ) ( )

( ) ( )

2
3 3 03 3 3 03

2 2
3 0 3 03 3

/

1 / ,

R

R

R x x x x x x

w x w x x x

= − + −

= + −
 (9.39)

where 0w  is the beam width at the waist (see Fig. 9.6), located at 3 03x x=  
and 2

3 0 /Rx wπ λ= is the confocal parameter, as discussed in Appendix F.
 In the laser field, most of the discussion of Gaussian beams is for 
circular cross-section beams where Eq. (9.34) is valid. This is because in 
the interactions of the Gaussian light beam in a laser (reflection from 
mirrors, etc) the cross-section of the Gaussian beam often remains circular. 
Appendix F describes similar cases where a circular cross-section Gaussian 
beam propagates in a fluid and interacts with spherical interfaces, resulting 
in transmitted and reflected beams also of circular cross-section. 

In NDE problems, although the Gaussians used to model a 
transducer may have circular cross-sections to begin with at the transducer 
face, after transmission and reflection from interfaces we must normally 
use the more general form of Eq. (9.14) and let ( )3p xM  be a complex  
2x2 symmetrical matrix. As long as the two eigenvalues of 

( ) ( ){ } ( )3 3Im 1,2I
m pM x x m≡ =M , satisfy ( )3 0I

mM x > , where { }Im  
indicates “imaginary part of”, Eq. (9.14) will represent a wave which has 
an elliptical Gaussian profile with decay away from the 3x axis and hence 
will be a localized beam traveling along that axis. If the general Gaussian 
beam of Eq. (9.14) starts out at 3x  = 0 with eigenvalues of 

( ) ( ){ }0 Im 0I
m pM ≡ M  ( )1,2m = , that satisfy  ( )0 0I

mM > , then during 
propagation the eigenvalues of ( ){ }3Im p xM  will also satisfy ( )3 0I

mM x >  
since the propagation law, Eq. (9.26), shows that only the real parts of the 
eigenvalues of 1

p
−M  (and, hence, pM ) are affected during propagation. 

Thus a localized Gaussian at 3 0x =  always generates a localized 
propagating Gaussian beam, just as in the circular cross-section case. Note  
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Fig. 9.7. The elliptical cross-section of a general propagating Gaussian beam, 
showing (a) the principal beam widths and principal beam width directions where 
the beam amplitude has fallen to 1/e of its value on the beam axis, and (b) the 
principal wave front radii of curvatures and their directions. 

that the eigenvalues of ( ){ }3Re p xM , ( )3
R
mM x  ( )1,2m = , are related to 

the principal wave front curvatures, where { }Re  denotes “real part of”. 
The directions of those principal curvatures, however, are different from 
the directions associated with the eigenvalues ( )3

I
mM x , which are related 

to the two principal beam widths for a Gaussian beam of elliptical cross-
section (see Fig. 9.7). Thus, as an elliptical cross-section Gaussian beam 
represented by Eq. (9.32) propagates the angle between the major axes of 
that elliptical cross section and the principal wave front curvatures 
changes. If we let 

( ) ( )

( ) ( )

3 2
3

3
3

1 ,

I
m

p m

R
m

p m

M x
c w x

M x
c R x

λ
π

=

=
 (9.40)

where ,m mR w  are the principal radii of curvature and beam widths, respec-
tively, the general Gaussian beam of Eq. (9.32) can be written as 

( ) ( ) ( )
( )

3
3

2 2 2 2
1 2 1 2

2 2
1 2 1 2

det
, (0)exp

det 0

exp exp ,
2

p
p

p

p

x
p P ik x

ik
R R w w

ω

η η ξ ε

⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⋅ + − +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

M
x

M
 (9.41)
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where ( )1 2,ξ ξ  and ( )1 2,η η  are the principal axes for the imaginary and real 
parts of the pM  matrix, respectively. The orientation of both these axes 
are functions of 3x . 

Another difference between the circular cross-section case 
(Eq. (9.35)) and the more general case (Eq. (9.32)) is that square roots 
appear in the latter equation. Since the matrix pM is complex and the 
principal curvature and beam width directions are not aligned in general, 
some care must be taken in evaluating those square roots. This issue 
appears to have received little attention in the literature as in many 
Gaussian beam problems discussed the pM  matrix is diagonal, i.e. 

( ) ( )
( )

1 3
3

2 3

0
.

0p

M x
x

M x
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

M  (9.42)

In this case it is easy to specify the roots since we can write Eq. (9.31) as 

( )
( )

( )
( )

( ) ( )
( ) ( )

3 1 3 2 33

1 2

det
.

0 0 0det 0

p

p

x M x M xP x
P M M

⎡ ⎤⎣ ⎦= =
⎡ ⎤⎣ ⎦

M

M
 (9.43)

Because the imaginary parts of ( ) ( )30 ,m mM M x  (m = 1, 2) are always 
positive, the individual square roots in Eq. (9.43) also must be taken to 
have positive imaginary parts.  

For the more general case where pM  is not diagonal, although the 
principal directions of the real and imaginary parts of pM  do not coincide, 
the real part of pM  is a real, symmetrical matrix and the imaginary part is 
a real, symmetrical and positive definite matrix. Under these conditions, 
matrix theory [9.5] shows that it is always possible to define a generalized 
eigenvalue problem where a real 2x2 transformation matrix, T, can be 
found that simultaneously diagonalizes both the real and imaginary parts of 

pM . Knowing  this transformation matrix we can then form up the term 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

3 3 3 1 3 2 3

1 2

det

0 0det 0 0 0

T
p

T
p

x x x M x M x

M M

⎡ ⎤⎣ ⎦ =
⎡ ⎤⎣ ⎦

T M T

T M T

% %

% %
 (9.44)

and calculate the complex ( ) ( )30 ,m mM M x% %  terms which are the diagonal 
matrix terms obtained after applying the transformation matrices to pM  as 
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shown in Eq. (9.44). We have placed the tilde over these diagonal terms to 
emphasize that these complex quantities are not the same as the complex 
values given in Eq. (9.43). However, the square roots on the right side of 
Eq. (9.44) can be found in the same fashion as done with Eq. (9.43). Then 
in terms of the remaining real determinants, we find 

( )
( )

( )
( )

( )
( )

( ) ( )
( ) ( )

33

2
1 3 2 3

2
1 23

det

0 det 0

det 0

0 0det

p

p

xP x
P

M x M x

M Mx

⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

M

M

T

T

% %

% %

 (9.45)

Many mathematical software packages such as MATLAB are available 
that obtain the transformation matrix T, so that Eq. (9.45) is easy to imple-
ment in practice.  

9.2 The Paraxial Wave Equation and Gaussian Beams in a 
Solid 

For a homogeneous, elastic solid, the displacement potentials satisfy wave 
equations so that they also have paraxial Gaussian beam solutions of the 
form 

( )

( )

3 3 3

3 3 3

( )exp exp ( )
2

( ) exp exp ( ) .
2

T
p p

T
s s

ix ik x x

ix ik x x

ωφ

ω

⎛ ⎞= Φ ⎜ ⎟
⎝ ⎠

⎛ ⎞= Ψ ⎜ ⎟
⎝ ⎠

X M X

t X M Xψ
 (9.46)

At high frequencies we can obtain the velocity, ( ),p sα α =v , for a P-wave 
or S-wave by again just differentiating the ( )3exp ik xα terms in these equa-
tions to obtain 

( ) ( )3 3 3( ) exp exp ( ) ,
2

TiV x ik x x p sα α α
α α

ω α⎛ ⎞= =⎜ ⎟
⎝ ⎠

v d X M X  (9.47)

with 2 2/ , /p s
p sV c V cω ω= Φ = Ψ  and 3 3,p s= = ×d e d e t , where 3e  is a 

unit vector in the 3x -direction. Note that these relations are identical in 
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form to those for a plane wave since in a plane wave ( )3exp ik xα  is the only 
spatially varying term present.  

 Alternatively, we can show that a formal high frequency approxi-

form 

1 2 3 3( , , )exp( )i i su U x x x ik x= %  (9.48)

leads to the paraxial wave equation 
2 2

3 3 3
2 2
1 2 3

2 0p
U U Uik
x x x

∂ ∂ ∂
+ + =

∂ ∂ ∂

% % %
 (9.49)

with 1 2 0U U= =% %  for P-waves while for S-waves 

( )
2 2

2 2
1 2 3

2 0 1,2I I I
s

U U Uik I
x x x

∂ ∂ ∂
+ + = =

∂ ∂ ∂

% % %
 (9.50)

with 3 0U =% [9.6]. Since both P-waves and S-waves in a homogeneous, 
isotropic elastic solid satisfy paraxial equations (Eqs. (9.49) and (9.50)), 
elastic wave Gaussian beam solutions can be written in vector form for the 
displacements of both wave types as 

( ) ( )3 3 3( ) exp exp ( ) ,
2

TiU x ik x x p sα α α
α α

ω α⎛ ⎞= =⎜ ⎟
⎝ ⎠

u d X M X  (9.51)

Then Eq. (9.47) again follows, where ( ) ( )3 3,i V x i U xα α α αω ω= − = −v u .  
In the solid these Gaussian beam solutions of the paraxial equation 

also must satisfy transport and Riccati equations given by [9.2] 

3

2 ( ) 0    dV V tr
c dx

α
α

α
α

+ =M  (9.52)

and 

2

3

1 0. d
c dx

α
α

α

+ =
M M  (9.53)

Following exactly the same steps outlined for the fluid case, the solutions 
of Eqs. (9.52) and (9.53) are then 

( ) ( ) ( ) 1
3 30 0x c xα α α α

−
= ⎡ + ⎤⎣ ⎦M M I M  (9.54)

mation of Navier’s equations for the displacements in the quasi-plane wave 
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and 

( )
( )

( )
( )

( )
( )

( )

1
33
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det 0 det
0 det 0det
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det 0
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α α
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α α
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⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦

=
⎡ + ⎤⎣ ⎦
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 (9.55)

so that the velocity in the solid for a Gaussian beam of type α  ( ),p sα =  
is 

( )
( )

( ) ( )

3

3 3

det
(0)

det 0

exp exp ( ) ,
2

T

x
V

iik x x p s

αα α α

α

α α
ω α

⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

⎛ ⎞⋅ =⎜ ⎟
⎝ ⎠

M
v d

M

X M X

 (9.56)

which shows that apart from the polarization vector the form of a Gaussian 
beam propagating in a solid is identical to that in a fluid (Eq. (9.33)). 

9.3 Transmission/Reflection of a Gaussian Beam at an 
Interface 

In the last section, we obtained explicit expressions for a Gaussian beam 
propagating in either a fluid or a solid. Here, we will obtain the transmission/ 
reflection laws for a Gaussian beam incident on a curved interface between 
two solids (Fig. 9.8). A fluid-solid interface as found in immersion testing 
is then merely a special case of these relations. We will consider the case 
where the Gaussian beam may interact with an interface more than one 
time so the interface shown in Fig. 9.8 will be used to represent the 
Gaussian beam on the mth interface ( m = 1, 2, …). 
 When the incident Gaussian beam strikes the interface, transmitted 
and reflected Gaussian beams of various types will be generated. In 
Fig. 9.8 we show a Gaussian beam incident on a general curved interface 
Σ  between two homogenous, isotropic media (solid or fluid) and only one 
other Gaussian beam that will be used to represent any one of the 
transmitted or reflected Gaussian beams generated. We will let the first 
medium be medium m and the second medium m+1. The wave speed of a 
Gaussian  beam  type β  ( ),p sβ = in  medium m and the  wave speed of a  
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Fig. 9.8. A Gaussian beam incident on a curved interface between two elastic 
media and one of the transmitted or reflected Gaussian beams. The origins of the 
( )1 2 3, ,x x x  and ( )1 2 3, ,y y y axes are both at the point mQ  where the central axis of 
the incident Gaussian beam meets the interface, but these origins are shown 
displaced for clarity of illustration. 

Gaussian beam of type α  ( ),p sα = in medium m+1 will be given by 
1,m mc cβ α

+ , respectively, and the corresponding wave numbers by 1,m mk kβ α
+ . 

The velocity amplitude, polarization vector, and complex phase of a 
Gaussian beam of type β  in medium m and of type α  in medium m+1 
will be designated as , ,m m mV β β βd M  and 1 1 1, ,m m mV α α α

+ + +d M , respectively. The 
propagation direction of the incident Gaussian beam will be along the 3x -axis 
in the ( )1 2 3, ,x x x coordinate system and the propagation of the generated 
wave will be along the 3y -axis in the ( )1 2 3, ,y y y  coordinates (Fig. 9.8). 
Unit vectors along both of these propagation directions are given 
by 1,m m

β α
+e e , respectively, as shown. The normal to the interface at the point 

mQ  where the central axis of the incident Gaussian beam strikes the interface 
is the unit vector, n. The origins of both the ( )1 2 3, ,x x x and ( )1 2 3, ,y y y axes 
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will be taken to be at point mQ . The origins are shown displaced from mQ  
in Fig. 9.8 for clarity of illustration only.  

In relating the Gaussian beams at the interface it will be necessary 
to perform some coordinate rotations in three dimensions [9.2]. Thus, we 
need to extend the definition of the 2x2 complex matrices involved to 3x3 
matrices in a three-dimensional space. We will denote the 3-D version of 
matrix m

βM as ˆ
m
βM , where 

( ) ( )
( ) ( )

11 12

21 22

0

ˆ 0

0 0 0

m m

m m m

β β

β β β

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

M M

M M M  (9.57)

with a similar definition for 1
ˆ

m
α

+M . 
Using the notations just given, we will write the velocity compo-

nents of the incident Gaussian beam in medium m as 

( )( ) ( ) ( ) ( ) ( ); ; ;
3 0 3 3

ˆexp ,
2

x x xT
m mj m mj

v V x i t ik x i xβ β ββ ωω⎡ ⎤= + +⎢ ⎥⎣ ⎦
x M x  (9.58)

where ( ) ( ) ( ) ( )( ); ;
3 3

x x
mj m m j

V x V x dβ ββ= . Similarly for a Gaussian beam in 

medium m+1: 

( )( ) ( ) ( ) ( ) ( ); ; ;
1 1 3 0 1 3 1 3

ˆexp
2

y y yT
m m j m mj

v V y i t ik y i yα α αα ωω+ + + +
⎡ ⎤= + +⎢ ⎥⎣ ⎦

y M y  (9.59)

where ( ) ( ) ( ) ( )( ); ;
1 3 1 3 1

y y
m j m m j

V y V y dα αα
+ + += . In both Eq. (9.58) and Eq. (9.59) 

( )1 2 3, ,x x x=x  and ( )1 2 3, ,y y y=y  are now full 3-D coordinates. We have 
placed an ( )x or ( )y  in the notation for the vector and matrix terms 
appearing in Eqs. (9.58) and (9.59) to emphasize that the components 
involved in those quantities are being calculated in the x- and y-
coordinates, respectively. This will be useful because it will become 
necessary to introduce several other coordinate systems when we solve the 
transmission/reflection problem. The term ( )0exp i tω  appearing in both 
Eq. (9.58) and (9.59) corresponds to the time delay, 0t , it has taken for the 
incident beam to reach point mQ on the interface from its starting location 
(which will be at the transducer  face  when this  Gaussian  beam is used to  
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Fig. 9.9. Plane of incidence coordinates along the incident and T/R Gaussian beam 
directions and interface coordinates ( )1 2 3, ,z z z . The origin of all these coordinates 
is taken at point mQ  but the incident and T/R axes are shown displaced for clarity 
of illustration. 

represent a transducer wave field). Point mQ is at 3 3 0x y= =  for both coordi-
nate systems, as mentioned previously. 
 Most transmission/reflection problems are solved in plane of 
incidence coordinates. The plane of incidence (POI) at interface m is the 
plane that contains both the incident wave direction, m

βe , and the normal, 
n, to the interface at point mQ  where the central axis of the incident beam 
strikes the interface (see Fig. 9.9). The POI coordinates ( )1 2 3, ,x x x′ ′ ′ for the 
incident beam are obtained from the ( )1 2 3, ,x x x axes through a 2-D rotation 
about the 3x -axis, where 3 3x x′=  is along the direction of propagation of 
the incident beam. The ( )1 3,x x′ ′  axes lie in the POI while the 2x′ -axis is 
perpendicular to the POI, as shown in Fig. 9.9. Similarly, the POI 
coordinates ( )1 2 3, ,y y y′ ′ ′ for the transmitted/reflected beam are obtained 
from the ( )1 2 3, ,y y y axes through a 2-D rotation about the 3y -axis, where 

3 3y y′=  is along the direction of propagation of the transmitted/reflected 
beam. The ( )1 3,y y′ ′  axes lie in the POI while the 2y′ -axis is perpendicular 
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to the POI. As for the ( )1 2 3, ,x x x , ( )1 2 3, ,y y y  axes, the origin of both the 

( )1 2 3, ,x x x′ ′ ′ and ( )1 2 3, ,y y y′ ′ ′  axes will be taken at point mQ  although those 
coordinates are shown displaced from mQ  in Fig. 9.9 for purposes of 
clarity of illustration. We also define the ( )1 2 3, ,z z z coordinates shown in 
Fig. 9.9, where 3z  is along the unit normal, n, ( )1 3,z z  lie in the POI, and 
the 2z -axis is perpendicular to the POI, as shown. We can express both the 
incident and transmitted/reflected waves in these z-coordinates  as 

( )( ) ( ) ( )( ) ( ); ;
0expz z

m m m m m mj j
v V d i t ik iβ ββ β β βω φ⎡ ⎤= + ⋅ +⎣ ⎦z e z z  (9.60)

and 
( )( ) ( ) ( )( ) ( ); ;
1 1 1 0 1 1 1expz z

m m m m m mj j
v V d i t ik iα αα α α αω φ+ + + + + +⎡ ⎤= + ⋅ +⎣ ⎦z e z z  (9.61)

where, to simplify the notation we have lumped all the quadratic phase 
terms in the 1,m m

β αφ φ +  terms.  
 We require that the velocity components of Eqs. (9.60) and (9.61) 
satisfy the conditions of velocity and traction matching on the interface Σ . 
These conditions are 

( ) ( )( ) ( ) ( )( )

( ) ( )
( ) ( )( ) ( ) ( )

( ) ( )( )

; ;
1

; ;
11 ,

z z
m mj j

z z
m mz m z mk k

i ijkl i ijkl
l l

v v

v v
n C n C

z z

γ δ

γ δ

γ δ

γ δ

+

++

Σ = Σ

∂ Σ ∂ Σ
=

∂ ∂

∑ ∑

∑ ∑
 (9.62)

where ( ) ( )1,m m
ijkl ijklC C +  are the elastic constants for the mth and (m+1)th media, 

respectively. The sums in Eq. (9.62) are taken over all the waves (incident, 
reflected, or transmitted) of type γ  that are present in medium m, and of 
type δ  that are present in medium (m+1). We will not satisfy the conditions 
of Eq. (9.62) exactly over the entire interface Σ . Instead, consistent with 
the paraxial approximation which treats our Gaussian beams as 
propagating quasi-plane waves confined to a region near the central beam 
axis, we will match the “amplitude” parts of Eqs. (9.60) and (9.61) only at 
point mQ , where the amplitudes are just the complex-valued coefficients of 
the complex exponentials appearing in those equations. The “phase” parts 
of Eqs. (9.60) and (9.61), however, we will match to second order in the  
z-coordinates at point mQ , where the phase are the arguments of the 
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complex exponentials in those equations [Note: we place quotes on the 
“amplitude” and “phase” terms considered here since they are in fact both 
complex quantities]. The amplitude matching conditions from Eqs. (9.60), 
(9.61) and Eq. (9.62) are then 

( )( ) ( )( )
( ) ( ) ( )

( )( ) ( )

( ) ( )

( ) ( )

1 1

;

1
1

1 1
1 1 1 1 .

m m

m m

m m m m m mj j

z m
i ijkl m k

z m m
m m m m ml

l lQ Q

m
i ijkl m k

m m
m m m m ml

l lQ Q

V Q d V Q d

n C d

Vik e V Q iV
z z

n C d

Vik e V Q iV
z z

γ γ δ δ

γ δ

γ

γ

γ γ
γγ γ γ

δ

δ

δ δ
δ δ δ δ

φ

φ

+ +

+
+

+ +
+ + + +

=

⎡ ⎤∂ ∂
⎢ ⎥⋅ + +

∂ ∂⎢ ⎥⎣ ⎦

=

⎡ ⎤∂ ∂
⎢ ⎥⋅ + +

∂ ∂⎢ ⎥⎣ ⎦

∑ ∑

∑

∑

 
(9.63)

The derivatives of the 1,m m
γ δφ φ +  terms appearing in Eq. (9.63) all vanish at 

mQ  since these terms are both quadratic functions in the z-coordinates. 
Also, at high frequencies the derivatives of the 1,m mV Vγ δ

+  terms in Eq. (9.63) 
are much smaller than the terms which only involve the 1,m mV Vγ δ

+  
themselves, since the latter terms are multiplied by the frequency terms 

1,m mk kγ δ
+ . Thus, Eq. (9.63) reduces to 

( )( ) ( )( )
( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

1 1

;

1
1 1 1 1 .

m m m m m mj j

z m z
i ijkl m m m m mk l

m
i ijkl m m m m mk l

V Q d V Q d

n C d ik e V Q

n C d ik e V Q

γ γ δ δ

γ δ

γγ γ γ

γ

δ δ δ δ

δ

+ +

+
+ + + +

=

⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤= ⎣ ⎦

∑ ∑

∑

∑

 (9.64)

But the conditions of Eq. (9.64) are just the same as if we had applied the 
boundary conditions of  Eq. (9.62) to a set of plane waves given by 

( )( ) ( )( ); ;
0expz z

m m m m mj j
v V d i t ikγ γγ γ γω⎡ ⎤= + ⋅⎣ ⎦e z  (9.65)
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( )( ) ( )( ); ;
1 1 1 0 1 1expz z

m m m m mj j
v V d i t ikδ δδ δ δω+ + + + +⎡ ⎤= + ⋅⎣ ⎦e z  (9.66)

at a plane interface that coincides with the tangent plane to the interface Σ  
at point mQ . The solution of Eq. (9.64), therefore, just yields the appropriate 
plane wave transmission/reflection (T/R) coefficients. Normally these T/R 
coefficients are found by assuming a P, SV, or SH polarization direction 
for the incident and transmitted/reflected (T/R) waves in the POI 
coordinates ( )1 2 3′ ′ ′

transmitted or reflected P, SV, or SH wave component in the POI coordinates 
( )1 2 3, ,y y y′ ′ ′

polarization that lies in the POI of the mth interface. Also, all the incident 
and T/R waves are not coupled to each other. For example, there is no 
coupling between plane P-waves or SV-waves and an SH-wave.  Thus, it 
is necessary to define a procedure so that if we have an incident beam of 
specified type β  ( ),p sβ = and a T/R beam of specified type α  ( ),p sα =  
that the velocity components of these incident and T/R waves are related 
properly to each other. We can do this by defining a T/R matrix that 
transforms the ( )1 2 3, ,x x x′ ′ ′ -components of velocity of the incident wave into 
the correct ( )1 2 3, ,y y y′ ′ ′ -components of the T/R wave [9.2]. Specifically, consi-
der the case when we have an incident wave of type S and are considering 
a T/R wave of the S-wave type ( )S S→ . Then the ( )1 2 3, ,y y y′ ′ ′ components 

of the T/R wave, ( ) ( )( ); ;
1 1 1

s y s ys
m j m m j

V V d′ ′
+ + += , and the ( )1 2 3, ,x x x′ ′ ′  components of 

the incident wave, ( ) ( )( ); ;s x s xs
mj m m j

V V d′ ′=  can be related to each other by 

( ) ( ) ( ); ;;
1 ,s y s xs s

m i m mjij
V T V′ ′

+ = %  (9.67)

where the 3x3 T/R matrix, ;s s
mT% ,is 

;

; ;

0 0
0 0 .
0 0 0

sv sv
m

s s sh sh
m m

T
T

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

T%  (9.68)

whose components are the ordinary plane wave T/R coefficients, ;
mT δ γ  

(based on velocity ratios) for a T/R plane wave of type δ  due to a plane 

x x, , x , as shown in Fig. 9.9, and solving for a corresponding 

 . However, our incident beam will not necessarily have a 
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and T/R waves used to define these coefficients are defined in Fig. 9.9. For 
example, the polarization of an incident SV-wave is assumed to be in the 

1x′  -direction. Note that this 3x3 matrix properly transforms the individual 
SV- and SH-components of the incident S-wave (i.e. components along the 

1x′  and 2x′  -axes, respectively) into corresponding SV- and SH- components 
of the T/R wave (i.e. components along the 1y′  and 2y′  -axes, respectively) 
and does not generate any P-wave ( 3y′ component) of the T/R wave, as is 
required since the T/R wave is specified to be an S-wave . In a similar fashion 
we can define T/R matrices appropriate to the ( ) ( ) ( ), ,S P P S P P→ → →  
cases as 

;

;

0 0 0
0 0 0

0 0

p s
m

p sv
mT

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

T%  (9.69)

and 
;

;

0 0
0 0 0
0 0 0

sv p
m

s p
m

T⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

T%  (9.70)

and 

;

;

0 0 0
0 0 0 .
0 0

p p
m

p p
mT

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

T%  (9.71)

With these definitions, then for the general case we can write simply 
( ) ( ) ( ); ;;
1

y x
m i m mjij

V T Vα βα β′ ′
+ = %  (9.72)

 We now need to transform this relationship back into our original 
( )1 2 3, ,x x x  and ( )1 2 3, ,y y y coordinates. Let ( )1 2 3, ,u u u  be unit vectors 
along the ( )1 2 3, ,x x x axes, respectively, and similarly let ( )1 2 3, ,′ ′ ′u u u  be 
unit vectors along the ( )1 2 3, ,x x x′ ′ ′  POI axes. Also, let ( )1 2 3, ,v v v  be unit 
vectors along the ( )1 2 3, ,y y y  axes, and ( )1 2 3, ,′ ′ ′v v v  be unit vectors along 
the ( )1 2 3, ,y y y′ ′ ′  POI axes. We can choose the ( )1 2,y y axes to have any 

wave of type γ  at the mth interface, where the polarization of the incident 

www.iran-mavad.com 
ایران مواد



204       Gaussian Beam Theory and Transducer Modeling 

convenient choice is to make the orientation ( )1 2,y y  axes relative to the 
( )1 2,y y′ ′  axes the same as the orientation of the ( )1 2,x x  axes relative to the 

( )1 2,x x′ ′  axes (this is called the “standard” choice in [9.2]). With this choice, 

simply leave the ( )1 2 3, ,y y y  components of the velocity unchanged from 
the original ( )1 2 3, ,x x x  components. Based on this choice, we can define a 

3-D rotation matrix, ˆ RG , with components ( ) ( )ˆ R
np n p n pG ′ ′= ⋅ = ⋅u u v v where 

1 1 1 2 1 1 1 2

2 1 2 2 2 1 2 2

0 0
ˆ 0 0

0 0 1 0 0 1

cos sin 0
sin cos 0
0 0 1

R

λ λ
λ λ

′ ′ ′ ′⋅ ⋅ ⋅ ⋅⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′ ′ ′ ′= ⋅ ⋅ = ⋅ ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

u u u u v v v v
G u u u u v v v v

 (9.73)

and we have 
( ) ( )

( ) ( )

; ;

; ;
1 1

ˆ

ˆ

x xR
mj jp mp

y yR
m i ir m r

V G V

V G V

β β

α α

′

′
+ +

=

=
 (9.74)

which, when placed into Eq. (9.72) gives 
( ) ( ) ( ); ;;
1

ˆ ˆ .y xR R
ir m r m jp mpij

G V T G Vα βα β
+ = %  (9.75)

If we pre-multiply Eq. (9.75) by ˆ R
ikG and use the fact that ˆ ˆR R

ik ir krG G δ= , we 
find 

( ) ( ) ( ); ;;
1

ˆ ˆy xR R
m k ik m jp mpij

V G T G Vα βα β
+ = %  (9.76)

or, equivalently 

( ) ( )( ) ( ) ( ) ( )( ); ;;
1 1 ,y x

m m m m m m mkpk p
V Q d V Q dα βα α β β

+ + = T  (9.77)

 

orientation we wish about the T/R wave direction, 3y , but a particularly 

when the material is the same on both sides of the interface Eq. (9.72) will 
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Fig. 9.10. The angles that an incident and transmitted Gaussian beam make at the 
interface in the POI coordinates. 
 

where 

( ) ( ); ;ˆ ˆR R
m jk m jpkp ij

G T Gα β α β= %T  (9.78)

Equation (9.77) gives the relationship needed to obtain the amplitude of 
the T/R Gaussian beam from the incident beam. In many NDE testing 
situations the POI for all the interfaces may be aligned and we can always 
assume that the ( )1 2 3, ,x x x and ( )1 2 3, ,y y y  coordinates are the same as the 
POI coordinates. In that case the rotation matrix, ˆ RG , is not needed and 
the wave types α  and β   range over ( ),p sv only so we write 

( ) ( );
1m m m m mV Q T V Qα α β β

+ =  (9.79)

without using a 3x3 T/R matrix. The polarization directions for the 
incident and T/R waves are then just the directions shown in Fig. 9.9. 
Figure 9.10 shows explicitly the acute angle m

βθ  that the direction of 
propagation an incident wave of type β makes with respect to the interface 
normal ( 3z -axis) and the acute angle 1m

αθ +  for a transmitted wave of type 
α . These angles will be needed as we now discuss the phase matching of 
the Gaussian beams at the interface. 
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 The total phase of the complex exponential term in Eq. (9.58) for 
the incident wave in medium m is 

( ) ( );
0 3 3

ˆ
2

xT
m m mi t ik x i xββ β ωωΦ = + + x M x  (9.80)

Similarly the total phase for a transmitted wave in medium m+1 from 
Eq. (9.59) is 

( ) ( );
1 0 1 3 1 3

ˆ .
2

yT
m m mi t ik y i yαα α ωω+ + +Φ = + + y M y  (9.81)

Here, we will match these phases at the interface, Σ ,in the ( )1 2 3, ,z z z  
coordinates in a neighborhood of the point mQ . Consider first Eq. (9.80) 
for the incident wave. To transform from the ( )1 2 3, ,x x x  coordinates to the 

( )1 2 3, ,z z z coordinates, we first use the rotation matrix previously defined 
to transform from ( )1 2 3, ,x x x  to ( )1 2 3, ,x x x′ ′ ′  POI coordinates (by rotating 
about the 3x -axis). We then transform from the ( )1 2 3, ,x x x′ ′ ′ coordinates to 
the ( )1 2 3, ,z z z  coordinates through a rotation about an angle m

βθ  about the 

2x′  -axis, i.e. we let 

ˆ

ˆ ,

R
i ki k

Z
k jk j

x G x

x G z

′=

′ =
 (9.82)

where RG  has been given previously (Eq. (9.73)) and ˆ ZG  is the rotation 
matrix 

cos 0 sin
ˆ 0 1 0 .

sin 0 cos

m m
Z

m m

α α

α α

θ θ

θ θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

G  (9.83)

If we combine the two rotation matrices into a single matrix, ˆ CG , where 

ˆ ˆ ˆC R Z
ji ki jkG G G=  (9.84)

then the total phase of the incident wave in the ( )1 2 3, ,z z z  coordinates can 
be written as 
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( )
( ) ( )( )

0 1 3

;

sin cos

ˆ ˆˆ .
2

m m m m

x C C
m m pi rj p rij

i t ik z z

i Q G G z z

β β β β

β

ω θ θ

ω

Φ = + +

+ M
 (9.85)

In the neighborhood of point mQ  for a curved interface we have to second 
order 

( )3
1 ,
2 IJ m I Jz h Q z z=  (9.86)

where the summation over capital subscripts such as the I and J in 
Eq. (9.86) is taken over the values (1,2) only. This is a convention we will 
also follow in subsequent expressions. The components of the 2x2 matrix 

IJh  in Eq. (9.86) are the curvatures of the interface at mQ  as measured in 
the z-coordinates, with 3z  along the interface normal and 1z in the plane of 
incidence, as shown in Figs. 9.9 and 9.10. 
 We now place Eq. (9.86) into Eq. (9.85), keeping only the terms 
which are at most quadratic in the ( )1 2,z z

( ) ( )( ) ( ) ( )( ) ( ) ( )( ); ; ;

3 3 33
ˆ ˆ ˆ 0.x x x

m m m m m mI I
Q Q Qβ β β= = =M M M ( )1,2I =  (9.87)

Then  Eq. (9.85) becomes 

( ) ( )( ) ( )

0 1

;

sin

cos .
2

m m m

x C C m
m m PI RJ PR m P RIJ

m

i t ik z

i Q G G h Q z z
c

β β β

β
β

β

ω θ

θω

Φ = +

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠
M

 (9.88)

In Eq. (9.88) all the capital subscripts take on the values ( )1,2 only so the 

m
αM  matrix in that equation is the 2x2 sub-matrix of ˆ

m
αM  and similarly the 

rotation matrices in Eq. (9.88) only involve 2x2 sub-matrices of ˆ CG , given 
by 

cos sincos 0
.

sin cos0 1
C Z R m

β λ λθ
λ λ

⎡ ⎤ ⎡ ⎤
= = ⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

G G G  (9.89)

Equation (9.88) is an (approximate) expression for the total phase 
of a Gaussian beam for the incident beam in medium m. For a transmitted 
wave in medium m+1 in an entirely similar fashion one obtains: 

 coordinates and use the fact that 
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( ) ( )( ) ( )

1 0 1 1 1

; 1
1

1

sin

cos ,
2

m m m

y C C m
m m PI RJ PR m P RIJ

m

i t ik z

i Q G G h Q z z
c

α α α

α
α

α

ω θ

θω
+ + +

+
+

+

Φ = +

⎛ ⎞
+ +⎜ ⎟

⎝ ⎠
M % %

 (9.90)

where 

1 cos sincos 0
.

sin cos0 1
C Z R m

α λ λθ
λ λ

+⎡ ⎤ ⎡ ⎤
= = ⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

G G G% %  (9.91)

Equating the total phases in Eq. (9.88) and Eq. (9.90) the terms 
involving 0t  cancel. We find from the term that is linear in 1z : 

1

1

sin sin ,m m

m mc c

α β

α β

θ θ+

+

=  (9.92)

quadratic terms it follows that 

( ) ( )( ) ( )

( ) ( )( ) ( )

; 1
1

1

;

cos

cos

y C C m
m m PI RJ PR mIJ

m

x C C m
m m PI RJ PR mIJ

m

Q G G h Q
c

Q G G h Q
c

α
α

α

β
β

β

θ

θ

+
+

+

+

= +

M

M

% %

 (9.93)

or, equivalently 

( ) ( )( ) ( ) ( )( )
( )

1 1; ;
1

1 1 1

1

cos cos .

y xC C C C
m m VP UR m m PI RJVU IJ

C C m m
VP UR PR m

m m

Q G G Q G G

G G h Q
c c

α β

β α

β α

θ θ

− −

+

− −
+

+

⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦

⎛ ⎞
⎡ ⎤ ⎡ ⎤+ −⎜ ⎟⎣ ⎦ ⎣ ⎦

⎝ ⎠

M M% %

% %
 (9.94)

Equation (9.94) gives the transformation law across the interface 
for the M matrix of a transmitted beam of type α in medium m+1 due to 
an incident wave of type β  in medium m. The same equation also applies 
to a reflected beam of type α  traveling in medium m if everywhere in 
Eq. (9.94) we simply replace 1mcα

+  by mcα  and  1cos m
αθ +  by cos m

αθ−  where 

m
αθ  is then the acute angle between the negative 3z -axis and the 

propagation direction of the reflected beam. This process corresponds to 
making the replacement 1m m

α αθ π θ+ → −  and then interpreting m
αθ  as the 

which is a statement of generalized Snell’s law. From equality of the 

www.iran-mavad.com 
ایران مواد



9.3 Transmission/Reflection of a Gaussian Beam at an Interface      209 

acute angle that the direction of propagation the reflected wave makes with 
the negative 3z  axis.  

Taking the real part of both sides of Eq. (9.94) gives the transfor-
mation of the wave front curvature of the Gaussian beam across the interface. 
That expression is the same as that found for wave front curvature changes 
from geometrical ray theory [9.2]. The imaginary parts of Eq. (9.94) relate 
the beam widths of the Gaussians on either side of the interface in terms  
of their projections on the interface [9.2]. To see this transformation law in 
a simple setting, consider a circularly symmetric Gaussian beam given by 
Eqs. (9.34) and (9.37) incident on a planar interface ( )0PRh =  where the 

( )1 2 3, ,x x x  axes are aligned with the POI so that the rotation angle 0λ = . 
Then we find 

( ) ( )

( ) ( )

( ) ( )

;
1

2

2 2
1

2

cos 1 0
cos

,
1 10

y
m m

m m

m m m m

m

m m m

Q

i c
c R Q f w Q

i c
c R Q f w Q

α

β β

β α

β

β

θ
θ π

π

+

+

=

⎡ ⎤⎛ ⎞
+⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠

⎢ ⎥
⎛ ⎞⎢ ⎥+⎜ ⎟⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

M

 (9.95)

where f is the frequency. Equation (9.95) shows that the circularly 
symmetric incident beam is transformed into a T/R beam of elliptical cross 
section with wave front curvatures ( )1 2,R R  and beam widths ( )1 2,w w , 
both along the ( )1 2,y y  directions, respectively, where 

( ) ( )

( ) ( )

( ) ( )

;
1

1
2

1 1 1

1
2

1 2 2

1 1 0

.
1 10

y
m m

m

m m m

m

m m m

Q

i c
c R Q f w Q

i c
c R Q f w Q

α

α

α

α

α

π

π

+

+

+

+

+

=

⎡ ⎤⎛ ⎞
+⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠

⎢ ⎥
⎛ ⎞⎢ ⎥+⎜ ⎟⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

M

 (9.96)

Equating Eqs. (9.95) and (9.96) gives the transformation laws for the wave 
front curvatures and beam widths as: 
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Fig. 9.11. The transmission of an incident circular Gaussian beam at an interface 
showing the change of beam width in the POI, where the incident and transmitted 
beams both have a common width, d, between points A and B on the interface. 
The beam width in the direction normal to the POI is unchanged. This leads to a 
transmitted beam of elliptical cross-section. 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1
1

2

2
1

1 2
1

2
1

cos
cos

cos
cos

.

m
m m

m

m m

m m
m m

m m

m
m m

m

w Q w Q

w Q w Q

cR Q R Q
c
cR Q R Q

c

α

β

β α

α β

β

α

θ
θ

θ
θ

+

+

+

+

=

=

=

=

 (9.97)

Thus, in the plane of incidence at a planar interface, Eq. (9.97) shows that 
the incident beam width w is changed to 1w  where the widths of incident 
and transmitted beams in the POI have the same projection on the 
interface, as shown in Fig. 9.11.  In contrast 2w w=  so the beam width in 
the direction normal to the POI is unchanged. The wave front curvatures 
are also changed but those changes depend on both the angles present and 
the wave speeds of the two materials. In Appendix F the special case when 
a circular Gaussian beam is normal to a planar interface was considered. 
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Setting 1 0m m
α βθ θ+ = =  in Eq. (9.97) then yields the same results found there 

(see Eqs. (F.44) and (F.46)). 
Both the propagation and transmission laws do not affect the 

symmetry of the complex M matrix, as can be seen from Eq. (9.28) and 
Eq. (9.93). Thus, an M matrix that starts out symmetric remains symmetric 
after propagation in multiple media and after interactions with multiple 
interfaces. Like the propagation law, the interface transformation law of 
Eq. (9.94) also does not affect the sign on the eigenvalues of the imaginary 
part of the M  matrix so that a localized Gaussian remains a localized 
Gaussian after interactions with the interface. For the simple case just 
discussed this is obvious since Eq. (9.97) shows that the beam widths on 
transmission or reflection remain positive, finite values. For the more 
general case, take the imaginary part of both sides of Eq. (9.93) and let 

( ) ( ){ } ( ) ( ){ }; ;
1 1Im , Imy xI I

m m m m m mQ Qα β
+ += =M M M M . Then we find 

( ) ( ) ( ) ( )1 1

1

,

TT TI R Z Z R I R Z Z R
m m

T I
m

− −

+
⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=

M G G G G M G G G G

P M P

% %
 (9.98)

where ( ) ( )TZ Z=G G , ( ) ( )TZ Z=G G% % and ( ) ( )1 1Z Z Z Z− −
=G G G G% % .  

The matrix ( ) ( ) 1TT R Z Z R−
= =P P G G G G% is non-singular since for 

any angles 1, / 2m m
β αθ θ π+ ≠  we have 

[ ] ( ) ( )

( ) ( )( )

1

1

det det det det det

11 cos 1 0.
cos

TR Z Z R

m
m

β
α θ

θ

−

+

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎛ ⎞

= ≠⎜ ⎟
⎝ ⎠

P G G G G%

 (9.99)

Because the eigenvalues of I
mM  are positive, the matrix I

mM  is positive 
definite, i.e. 0T I

m >x M x  for all real non-trivial vectors, x. Then if we let 
=x P y where 0≠y  (which implies that P is non-singular) we have 

0T T I
m >y P M P y  so it follows from Eq. (9.98) that 1

I
m+M  is also positive 

definite and its eigenvalues are positive. 
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Fig. 9.12. The transmission/reflection of a Gaussian beam through multiple media 
with curved interfaces. 

9.4 Gaussian Beams and ABCD Matrices 

Since a Gaussian beam that starts out localized remains localized during 
propagation and after interaction with general curved surfaces, the beam is 
always well behaved, unlike plane waves or spherical waves that can lead 
to caustics or singularities. Furthermore, we can easily combine the pro-
pagation and interface transformation laws to obtain the form of the Gaussian 
beam after multiple interactions with curved surfaces or interfaces. To see 
this, consider now the general case where a Gaussian beam travels through 
or is reflected from M interfaces, as shown in Fig. 9.12. If we apply the 
propagation and transmission/reflection laws just derived to each medium 
and interface, the velocity of the Gaussian beam of type α  in medium 
M+1 is then given by 

( ) ( )

( )

( )

( )

( ) ( )

1

1 1

1 1;
1

1

1
;

1

1 1 1 1
1

det

det 0

det

det 0

ˆ0 exp
2

m

m m

m

m

M My
M

M

m m
m

m M m

M
Tm

M M
m m

s

s

sV i i s
c

α
α

α

γ

γ γ

γ

γ γ α
γ

ωω

+

+ +

+

+

=

+

+ +
=

⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

⎡ ⎤⎡ ⎤⎣ ⎦⎢ ⎥⋅⎢ ⎥⎡ ⎤⎢ ⎥⎣ ⎦⎣ ⎦
⎡ ⎤

⋅ +⎢ ⎥
⎣ ⎦

∏

∑

M
v

M

M

M

d y M y

T  (9.100a)

or, equivalently 
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( )

( )

( )

( ) ( )

1

1 1

;
1

1 1 1

;1

1

1 1 1 1
1

1

det 0

det 0

ˆ0 exp ,
2

m m

m m

m

y
M

M M M

m

m M m m m

M
Tm

M M
m m

s c

s c

sV i i s
c

α

α α

γ γ

γ γ

γ γ α
γ

ωω

+

+

+ + +

=

+

+ +
=

=
⎡ ⎤+⎣ ⎦

⎡ ⎤
⎢ ⎥⋅⎢ ⎥⎡ ⎤+⎢ ⎥⎣ ⎦⎣ ⎦

⎡ ⎤
⋅ +⎢ ⎥

⎣ ⎦

∏

∑

v
I M

I M

d y M y

T  (9.100b)

where ms is the distance the beam has traveled in medium m along its central 
axis and mγ is the mode of the beam propagating in medium m and 1mγ + is 
the transmitted or reflected mode in medium m+1 after interaction with the 
m-th interface. The matrix 1;m m

m
γ γ+T  is given from Eq. (9.78) by 

( )1 1; ;ˆ ˆ .m m m m
TR R

m m
γ γ γ γ+ += G T G%T  (9.101)

As Eqs. (9.100a) and (9.100b) indicate the product of matrices is in the 
order 

1 1 2 1; ; ;
1 1... .M M M M

M M
γ γ γ γ γ γ+ −

−T T T  (9.102)

Note that at the m-th interface ( ) ( )m m
m m m ms Qγ γ=M M  if ms is the distance 

the Gaussian beam has traveled in medium m to the m-th interface and 
( ) ( )1 1

1 10m m
m m mQγ γ+ +

+ +=M M since point mQ is at the starting point for the Gaussian 
beam in medium m+1. Thus, we can use either of these notations interchange-
ably. 

Both Eq. (9.100a) and Eq. (9.100b) are remarkably compact in 
form.  The calculation of individual terms in those equations can be done 
in a highly modular and efficient way by the introduction of A, B, C, D 
matrices which are analogous to the scalar A, B, C, D terms discussed in 
Appendix F and commonly used in optics [9.7]. These matrices arise from 
the fact that both the propagation and transmission laws for m

m
γM  can be 

written in a common form. First consider the propagation law (Eq. (9.27)). 
That law can be written as: 

( ) ( ) ( )
1

0 0 ,m m md d d d
m m m m m m m msγ γ γ −

⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦M D M C A B M  (9.103)
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where , , ,d d d d
m m m mA B C D will denote the A, B, C, D matrices that characterize 

propagation (displacement) of the beam in medium m. These matrices also 
depend on the wave type, mγ , being considered in the m-th medium but for 
economy of notation we will not show that dependency explicitly. 
Comparing Eqs. (9.27) and (9.103) we find 

d d
m m= =A D I , md

m m mc sγ=B I , d
m =C O , (9.104)

where O is the zero matrix. Now, consider the transmission law (Eq. (9.94)). 
First we rewrite that equation as 

( ) ( )

( )

1

1

1

1

1

11 11

1

cos cos

m m

m m

m m

C C
m m m m

TTC C C Cm m
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m m

Q Q

Q
c c

γ γ

γ γ

γ γ

θ θ

+

+

+

−

+

−− −
+

+

⎧⎡ ⎤= ⎨⎣ ⎦⎩
⎫⎛ ⎞ ⎪⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤+ − ⎬⎜ ⎟ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪⎝ ⎠ ⎭

M G G M

G h G G G

%

% %

 (9.105)

which is also of the form 

( ) ( ) ( )1
1

1 ,m m mt t t t
m m m m m m m m m mQ Q Qγ γ γ+

−

+ ⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦M D M C A B M  (9.106)

where the transmission matrices t
mA  , t

mC  are 

1

1

1cos 0cos sin cos sin
,cos

sin cos sin cos
0 1

m

m

T Tt C C
m

m

m

γ

γ

θ
λ λ λ λ

θ
λ λ λ λ

+

−

+

⎡ ⎤⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦
⎡ ⎤

−⎡ ⎤ ⎡ ⎤⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

A G G%

 (9.107a)

 and 

( )
1

1

1

1

1 1

111

1

1

1
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1 1
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γ γ

γ γ

γ γ

γ γ γ

γ

θ θ

λ λθ θ
λ λ

θ θ θ λ λ

θ

+

+

+

+

+ +

−−
+

+

+

+

+ +

⎛ ⎞ ⎡ ⎤⎡ ⎤ ⎡ ⎤= −⎜ ⎟ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦⎝ ⎠
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(9.107b)
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and the t
mB , t

mD matrices are 
t
m =B O  (9.107c)

 

1

1

1

cos sin
sin cos

cos 0 cos sin
.cos

sin cos
0 1

m

m

t C C
m

m

m

γ

γ

λ λ
λ λ

θ
λ λ

θ
λ λ

+

−

+

−⎡ ⎤⎡ ⎤= = ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤

⎡ ⎤⎢ ⎥⋅ ⎢ ⎥⎢ ⎥ −⎣ ⎦⎢ ⎥⎣ ⎦

D G G%

 (9.107d)

The t superscript indicates these matrices are transmission matrices. They 
are also functions of the wave types 1,m mγ γ+  but again for notational simpli-
city we will not show that dependency explicitly.  Note that the equivalent 
A, B, C, D matrices for a reflected wave at the m-th interface can be 
obtained by replacing 1

1
m

mcγ +
+  by 1m

mcγ +  and 1
1cos m

m
γθ +

+  by 1cos m
m
γθ +−  in all the 

matrices of Eqs. (9.107a - d).  
We have shown that both the propagation and transmission laws 

for a Gaussian beam can be represented in identical forms in terms 
A , B , C , and D  matrices. This representation is important since if we 
propagate a Gaussian beam in medium m from  0ms =  (where the M 
matrix is ( )0m

m
γM ) over a distance ms  to interface m (where the M matrix 

is ( )m
m mQγM ) and then transmit that beam across interface m to obtain 

( )1
1

m
m mQγ +

+M , the relationship  between the ( )1
1

m
m mQγ +

+M and ( )0m
m
γM  after both 

types of interactions can also be written as 

( ) ( ) ( )1
1

1 0 0 ,m m m
m m m mQγ γ γ+

−

+ ⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦M DM C A BM  (9.108)

where the A , B , C , and D  matrices in Eq. (9.108) are given by matrix 
products of the propagation and transmission matrices in the 4x4 matrix 
form 

t t d d
m m m m
t t d d
m m m m

⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

A B A B A B
C D C D C D

 (9.109)

This result can be obtained directly by placing Eq. (9.103) into 
Eq. (9.106) and rearranging the result in the form of Eq. (9.108).  
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Fig. 9.13. Paraxial rays before and after a given wave process such as propagation, 
refraction, reflection, etc. 

Obviously, this process can be continued for any additional materials and 
interfaces present. For example, in going from medium 1 to medium M+1 
through M interfaces we can relate the M matrix in the final material at a 
distance 1Ms +  from the Mth interface directly to the starting M matrix values 
in medium 1 in terms of “global” matrices , , ,G G G GA B C D as 

( ) ( ) ( )1 1 1
1

1 1 1 10 0 ,M G G G G
M Msγ γ γ+

−

+ + ⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦M D M C A B M  (9.110)

where , , ,G G G GA B C D  are given by products of all the contributing propa-
gation and transmission matrices, i.e. 

1 1

1 1

1 1

1 1

... .

d d t tG G
M M M M
d d t tG G
M M M M

d d d d
M M
d d d d
M M

+ +

+ +

⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

⋅⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

A B A BA B
C D C DC D

A B A B
C D C D

 (9.111)

Thus, all the M matrices appearing in either Eq. (9.100a) or 
Eq. (9.100b) can be obtained via the appropriate matrix multiplications of 
the type shown in Eq. (9.111). To compute the Gaussian beam in the final 
medium we need (1) the propagation and transmission/reflection A, B, C, 
D matrices for a specified set of wave types and wave paths, (2) the plane 
wave transmission/reflection coefficients that allow us to compute the 

1;m m
m
γ γ+T matrices, and (3) the velocity, ( )1 1

1 0 iV γ γd ,and phase matrix, ( )1
1 0γM , 

of the Gaussian beam at the starting point in the first medium.  
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The A, B, C, D matrices for propagation, transmission, and reflection 
appear in Eqs. (9.103) and (9.106) in exactly the same form because these 
equations are the consequence of some fundamental paraxial ray theory 
relations. To see this, consider a wave front moving in space defined at a 
given time by the function ( ) constantT =x . As a simple example a plane 
wave traveling in the e-direction with wave speed c has the wave front 

( ) 0 0 0

components of the slowness vector by /i ip T x= ∂ ∂ . We also define the 
curvatures of the wave front as the second derivatives, 2ˆ /ij i jM T x x≡ ∂ ∂ ∂  
or, equivalently, ˆ /ij i jM p x= ∂ ∂ . In a homogeneous, isotropic medium the 
wave propagation rays are just straight lines along the slowness vector so 
we can examine a given fixed ray and some general process such as 
propagation, refraction, reflection, etc. as shown in Fig. 9.13. After such a 
process the slowness vector may be changed from ( )1

0p  to ( )2
0p . On a nearby 

(paraxial) ray, defined by its displacement vector ∆y relative to our fixed 
ray, both the displacement and slowness will change during the process 
under consideration from ( )1∆y  to ( )2∆y and  ( ) ( )1 1

0 + ∆p p  to ( ) ( )2 2
0 + ∆p p , 

respectively. Since we are considering small deviations in going from the 
fixed ray to the nearby paraxial ray, we expect that these changes are 
linearly related to one another, i.e. 

( )

( )

( )

( )

2 1

2 1
,

⎧ ⎫ ⎧ ⎫∆ ∆⎡ ⎤⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥
∆ ∆⎣ ⎦⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

y A B y
C Dp p

 (9.112)

where A, B, C, D are the “proportionality constants”. To first order we also 
relate the changes in the slowness vectors to changes in the displacement 
vectors through wave front curvatures M, i.e. 

( ) ( )

( ) ( )

1 1
1

2 2
2 .

∆ = ∆

∆ = ∆

p M y

p M y
 (9.113)

If we use the expression for ( )1∆p  in Eq. (9.113) in the expression for ( )2∆y  
in Eq.(9.112) we obtain 

( ) ( ) ( )2 1 1 .∆ = ∆ + ∆1y A y BM y  (9.114)

 

T x = T + e ⋅ x / c = T + p ⋅ x  , with T  a constant and p ≡ e / c the slow- 
ness vector. For a more general curved wave front we define the 
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Fig. 9.14. Propagation of a paraxial ray. 

Similarly, placing ( )2∆p  from Eq. (9.113) into the expression for ( )2∆p  in 
Eq. (9.112) gives 

( ) ( ) ( )2 1 1
2 1∆ = ∆ + ∆M y C y DM y  (9.115)

so that combining Eqs. (9.114) and (9.115) yields 

( ) ( ) ( ) ( )1 1
2 1 1 .+ ∆ = + ∆M A BM y C DM y  (9.116)

Since Eq. (9.116) must be true for all ( )1y∆ in the neighborhood of the fixed 
ray, we find 

[ ][ ] 1
2 1 1 ,−= + +M DM C A BM  (9.117)

which has the same structure of Eqs. (9.103) and (9.106). Thus, our 
Gaussian beam relations can be thought of as the extension of ordinary 
paraxial ray theory relations for a real wave front curvature matrix M to a 
complex-valued Μmatrix that defines a Gaussian beam and we can view 
our  A, B, C, D matrices as the terms defining the paraxial changes of the 
ray parameters in Eq. (9.112). For example, consider propagation through 
a distance s at a wave speed c along a paraxial ray which is near a fixed ray 
along the 3x -axis as shown in Fig. 9.14.  It is easy to see that ( ) ( )2 1∆ = ∆p p  
and ( ) ( ) ( )2 1 1sc∆ = ∆ + ∆y y p  ,  where  we  have ( ) ( ) ( )( )1 1 1

1 2,p p∆ = ∆ ∆p  and 
( ) ( ) ( )( )2 2 2

1 2,p p∆ = ∆ ∆p , and that this leads directly to 

( )2 1

2 1

,
0

s c∆ ∆⎡ ⎤⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥∆ ∆⎩ ⎭ ⎩ ⎭⎣ ⎦

y yI I
p pI

 (9.118)

which corresponds to the propagation  A, B, C, D matrices defined by 
Eq. (9.104). Another more mathematical way to view the ABCD parameters 
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is to recognize them as components of a propagator matrix. See Cerveny 
[9.2], who defines such propagator matrices and discusses their properties 
in detail.  

Equations (9.108) and (9.110) can also lead to a further simplifi-
cation of the amplitude terms in Eq. (9.100b), which can be rewritten in 
terms of propagation A, B matrices as 

( )

( )

( )

( ) ( )

1

1 1

;
1

1 1 1

;1

1

1 1 1 1
1

1

det 0

det 0
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=
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⎡ ⎤
⋅ +⎢ ⎥
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∏

∑

v
A B M

A B M

d y M y

T  (9.119)

To reduce this equation, we first use Eq. (9.106) and the fact that t
m =B 0  

to show directly that 

( ) ( )1
1

1 1 1 0 ,m md d t
m m m m m msγ γ+

−

+ + +⎡ ⎤ ⎡ ′ ′ ⎤ ⎡ ⎤+ = + ⎣ ⎦⎣ ⎦ ⎣ ⎦A B M A B M A  (9.120)

where 

1 1

1 1

.
d d t t
m m m m
d d t t
m m m m

+ +

+ +

′ ′ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⎢ ⎥ ⎢ ⎥⎢ ⎥′ ′⎣ ⎦ ⎣ ⎦ ⎣ ⎦

A B A B A B
C D C D C D

 (9.121)

Also, using Eq. (9.103) it follows that 

( ) ( ) ( )
1

0 0 ,m m mG G d d
m m m m m msγ γ γ −

⎡ ′ ′ ⎤ ⎡ ⎤ ⎡ ⎤+ = + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦A B M A B M A B M  (9.122)

where ,G GA B are global matrices that combine the effects of propagation 
in media m and m+1 and transmission across the m-th interface, i.e. 

1 1

1 1

.
d d t t d dG G
m m m m m m
d d t t d dG G
m m m m m m

+ +

+ +

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

A B A B A BA B
C D C D C DC D

 (9.123)

Then from Eq. (9.120) and Eq. ( 9.122) we obtain 

( )

( ) ( )

1
1 1 1

1 1

0

0 0 .

m

m m

d d
m m m

G G d d t
m m m m m

γ

γ γ

+
+ + +

− −

⎡ ⎤+⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + ⎣ ⎦⎣ ⎦ ⎣ ⎦

A B M

A B M A B M A
 (9.124)
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Now, examine two successive square root terms in Eq. (9.119) for 
medium m and m+1, i.e. 

( ) ( )1
1 1 1

1 1 .
det 0 det 0m md d d d

m m m m m m

I
γ γ+

+ + +

=
⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦A B M A B M

 (9.125)

Placing Eq. (9.124) into Eq. (9.125) we find 

( )

det
.

det 0m

t
m

G G
m

I
γ
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⎡ ⎤+⎣ ⎦

A

A B M
 (9.126)

Since this same process can be repeated for all the other pairs of amplitude 
terms in Eq. (9.119), that equation reduces to 
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1 1
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1 1 1
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where ,G GA B  are now the global matrices going from medium 1 to 
medium M+1 and 

1

1
; det .m m t

M m m
m M

γ γ+

=

⎡ ⎤= ⎣ ⎦∏ A
(

T T  (9.128)

Equation (9.127) is in the form identical in structure to that of a 
Gaussian beam propagating in a single medium. Thus, use of the ABCD 
matrices can simplify our multiple media problems to an equivalent single 
medium expression. However, to use Eq. (9.127) one must be able to 
correctly evaluate the square root of the amplitude in that equation and at 
present we do not have a direct way to do that evaluation. The difficulty 
lies in that ,G GA B are no longer positive, real, diagonal matrices as they 
are for a single medium, so that the signs of the imaginary parts of the 
eigenvalues of 1

1
γM  are affected in a manner that is difficult to explicitly 

define. Thus, while Eq. (9.127) is in the most compact form possible either 
Eq. (9.100a) or Eq. (9.100b) appear to be needed in actual calculations. Of 
course the ABCD matrices can be conveniently used to obtain all the terms 
needed in those equations. 
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9.5 Multi-Gaussian Transducer Beam Modeling 

We have seen in the previous sections how to analytically determine a 
Gaussian beam after it has propagated in multiple media and interacted 
with multiple interfaces. In NDE applications the value of those results 
would be limited if Gaussian beams were the only types of wave fields that 
we could consider since most ultrasonic transducers do not generate 
Gaussian-shaped beams. Instead, we would like to be able to model the 
wave fields from piston transducers. This is possible since in a seminal 
1988 paper Wen and Breazeale showed that one can synthesize the sound 
beam from a circular piston transducer radiating into water using the 
superposition of as few as ten Gaussian beams [9.8]. On the face of a 
transducer of radius a located on the plane 3 0x =  (and radiating into the 
region 3 0x > ) they let the normalized velocity field be given by a sum of 
Gaussians in the form 

( )
( ) ( )

10
1 2 2 2

10

, ,0,
exp / ,

p
p

r r
r

x x
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v
ω

ρ
ω =

= −∑
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d  (9.129)

where 2 2 2
1 2x xρ = +  , ( )0v ω  is the constant velocity on the transducer surface, 

and ( )3 0,0,1p = =d e . These ten Gaussians will generate ten Gaussian 

beams having starting values of ( ) ( )1 10 , 0p p
r r

V⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦M  ( )1,...10r = given by 
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where 2
1 / 2R pD k a=  is the Rayleigh distance. ,r rA B are complex-valued 

expansion coefficients that need to be determined to match the velocity 
field on the face of the transducer. For a circular planar piston transducer 
of radius a, the normalized velocity field in the 3x -direction, 3 0/v v , is given 
by the circ function, where 
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To obtain the ,r rA B  coefficients, Wen and Breazeale minimized an objective 
function, J, given by 
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and they published the ten coefficients that they obtained. Although this is 
a non-linear optimization problem that is rather computationally intensive, 
once the ,r rA B  coefficients are calculated, they can be stored in a look-up 
table and used to synthesize the wave field in very complex problems 
simply by adding up the ten contributing Gaussians. Thus, we can use 
Eq. (9.100a) to write down the wave field from a piston transducer, after 
multiple propagations and interface interactions, in the form of a multi-
Gaussian beam model, where 
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The success of this approach, of course, relies on how well the ten coeffi-
cients used here do represent a piston transducer wave field. Tests of the ten 
Wen and Breazeale coefficients show that they do a remarkably effective 
job of reproducing the piston transducer wave field to within the limits of 
the paraxial approximation. This means that they are accurate at distances 
of approximately one transducer diameter or greater from the transducer 
face. This can be easily tested by examining the normalized pressure wave 
field of the multi-Gaussian beam model for a single fluid medium given by 
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Fig. 9.15. The magnitude of the normalized on-axis pressure for a 6 mm radius piston 
transducer radiating into water at 5 MHz modeled by the Rayleigh-Sommerfeld 
integral (solid line) and by a superposition of ten Gaussian beams which are defined 
by the ten coefficients of Wen and Breazeale. 
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Comparisons of Eq. (9.134) can be made with the exact solution obtained 
from the Rayleigh-Sommerfeld equation for any point in the transducer 
wave field but the results are very similar to comparisons done for on-axis 
wave fields, where we can write down an exact solution analytically 
(Eq. (9.8)). Figure 9.15 shows such an on-axis comparison for a 6 mm 
radius planar piston transducer radiating into water at 5 MHz. The multi-
Gaussian beam model accurately models the on-axis near-field of the 
transducer down to approximately 15 mm from the transducer face.  
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Fig. 9.16. The magnitude of the normalized on-axis pressure for a 6 mm radius piston 
transducer radiating into water at 5 MHz modeled by the Rayleigh-Sommerfeld 
integral (solid line) and by a superposition of fifteeen Gaussian beams defined by 
the fifteen “optimized” coefficients of Wen and Breazeale. 

In a subsequent paper, Wen and Breazeale obtained even better 
results with a slightly larger number of optimized coefficients [9.9]. They 
used the normalized exact on-axis pressure, exactp% , defined as 
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and a 15 term multi-Gaussian beam model for this same wave field: 
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to define a modified objective function 
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where wλ  is a constant to weigh the on-axis matching conditions relative 
to the boundary matching conditions and 1z  and 2z  are near field limit 
values that  define the range where  matching to the  on-axis field is to take  
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Fig. 9.17. The magnitude of the on-axis pressure for a 6 mm radius, 76 mm focal 
length spherically focused transducer radiating into water at 5MHz. Solid line – 
exact O’Neil theory, dashed line – multi-Gaussian beam model. 

place. Fig. 9.16 shows the results of using these 15 optimized coefficients 
to calculate the on-axis field where now the multi-Gaussian beam model is 
accurate at distances from the transducer of approximately 10 mm or 
greater, matching the  exact on-axis behavior for two additional near-field 
oscillations. These fifteen optimized coefficients are listed both in [9.9] 
and [9.10] and generated by a MATLAB function gauss_c15 given in 
Chapter 12 (Code Listing 12.2).  
 One of the nice properties of this multi-Gaussian beam model is 
that one can also model focused transducers by a simple modification of 
the rB  coefficient. As shown in Chapter 8, focusing in the paraxial approxi-
mation can be modeled by including a complex exponential term with a 
quadratic spatial variation for the velocity field over the face of a planar 
transducer. For a spherically focused circular transducer of radius a and 
geometrical focal length, F, this corresponds to specifying the velocity 
field at the transducer as 

( )
( ) ( ) ( )3 1 2 2 2 2

1
0

, ,0,
/ exp / 2 .p

v x x
circ a ik F

v
ω

ρ ρ
ω
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Since we can view our multi-Gaussian beam model as approximating this 
circ function in the form 
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Eq. (9.139) shows that to include the effects of spherical focusing we need 
only to modify the rB  coefficients for the circular planar transducer case 
by making the replacement 

2
1

2
p

r r

ik a
B B

F
→ +  (9.141)

Figure 9.17 shows the on-axis wave field predicted by a multi-Gaussian 
beam model obtained in this fashion for a 6 mm radius, 76 mm focal 
length transducer radiating into water at 5 MHz and the corresponding on-

there is very little discernable difference between the two results. 
 
and the ten coefficients of Wen and Breazeale to model rectangular piston 
transducers. For a rectangular piston transducer with sides of lengths 
( )1 22 ,2a a  in the ( )1 2,x x  directions, respectively, the normalized velocity 
field on the transducer face is given by 
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where ( )1 2,T x x=x  and 
 
 
 
 
 

axis field obtained from the O’Neil model (Eq. (8.33)). It can be seen that 

Recently, Ding et al. [9.11] made a clever use of the circ function 

so if we use Eq. (9.140) in product form we have 
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Fig. 9.18. Magnitude of the on-axis pressure for a 12x6 mm rectangular piston 
transducer radiating into water at 5 MHz using the Rayleigh-Sommerfeld integral 
(solid line) and a multi-Gaussian beam model based on the ten coefficients of Wen 
and Breazeale. 

 
Fig. 9.19. Magnitude of the on-axis pressure for a 12x6 mm rectangular piston 
transducer radiating into water at 5 MHz using the Rayleigh-Sommerfeld integral 
(solid line) and a multi-Gaussian beam model based on the fifteen “optimized” 
coefficients of Wen and Breazeale. 
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and 2 2
1 1 1 2 1 2/ 2, / 2R p R pD k a D k a= = . 

 Using these results we can write a multi-Gaussian beam model for 
a rectangular planar piston transducer radiating through multiple media 
and interacting with multiple interfaces as 
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where ( ) ( )1
1 00 r qrq

V A A vγ ω⎡ ⎤ =⎣ ⎦ . 

 For a rectangular transducer radiating into a single fluid medium, 
the normalized on-axis pressure of this multi-Gaussian beam model is 
given by 
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This model has been compared to a highly accurate numerical integration 
of the Rayleigh-Sommerfeld equation for a 12x6 mm rectangular transducer 
( )1 26 , 3a mm a mm= =  radiating into water at 5 MHz as shown in Fig. 9.18. 
It can be seen from that figure that the multi-Gaussian beam model agrees 
well with the “exact” results at distances of 15 mm or greater from the 
transducer. Although the 15 optimized coefficients of Wen and Breazeale 
were specifically optimized for the circular transducer, it has been found  
that those coefficients also improve the results for rectangular transducers. 
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Fig. 9.20. Conditions under which the paraxial approximation can fail include: (a) 
transmission through an interface near a critical angle, (b) inspection through a 
surface with rapidly changing curvature, (c) for highly focused transducers, and 
(d) near grazing incidence to a surface. 

For example, Figure 9.19 shows that using these 15 coefficients the multi-
Gaussian beam model matched the exact results to within a distance less 
than 6 mm for the same transducer considered in Fig. 9.18.  
 As in the circular transducer case, it is easy to add focusing to the 
multi-Gaussian beam rectangular transducer model. For example, in the 
case of a bi-cylindrically focused rectangular transducer with geometrical 
focal lengths ( )1 2,F F  in the ( )1 2,x x  directions, respectively, one again 
merely has to modify the ,r qB B  coefficients by making the replacements 
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2
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 (9.147)

 It is possible to use the Wen and Breazeale coefficients to also 
model elliptical-shaped piston transducers [9.11]. There are also other fitting 
methods that can be used to obtain the coefficients such as the k-space 
method of Sha et al. [9.12]. However, the 15 optimized coefficients of 
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Wen and Breazeale generate about as accurate a wave field that is possible 
within the paraxial approximation [9.13].  

 Because the multi-Gaussian beam model relies on the paraxial 
approximation being valid, there are a number of testing situations where 
the model can degrade or fail. We have already seen that in the very near 
field the paraxial approximation will fail. Since most ultrasonic testing is 
not done under such very near field conditions, this limitation of the paraxial 
models may not be of practical importance.  However, the breakdown of 
the paraxial approximation can also occur under other testing conditions. 
Figure 9.20 (a) shows the case when a transducer radiates through a planar 
fluid-solid interface at an angle near the first critical angle. In this case the 
waves reaching the point in the solid may be at very small angles relative 
to the central ray but the paraxial approximation can fail because, near a 
critical angle, the transmission coefficient that defines the amplitude of the 
waves in the solid varies rapidly for even small angular changes and such 
variations are neglected when paraxial beam models are used to treat 
transmission through interfaces (recall that we used the transmission 
coefficient along a central ray only in considering the interactions with an 
interface). Figure 9.20 (b) shows the inspection of a surface at the inter-
section of a fillet and a plane surface. In this case the surface curvature, R, 
changes abruptly from R = ∞ to R = ρ at the intersection and the paraxial 
approximation fails because of this rapid change of the surface curvature. 
Figure 9.20 (c) illustrates the case of a very tightly focused transducer. The 
paraxial approximation also fails in this case as the waves reaching the 
focus do not travel in approximately the same direction as required by that 
approximation. Finally, Fig. 9.20 (d) shows the case of the inspection 
through a plane interface at high angles or near grazing incidence on the 
interface. The paraxial approximation can fail in this case also since it 
cannot capture the strong beam distortions present at these high angles and 
there may be other waves besides bulk P-waves and S-waves (head waves, 
surface waves, etc.) present near the interface that are not considered by 
our beam model. Fortunately, many of these special testing situations are 
not encountered in practice so that the multi-Gaussian beam model is a fast 
and powerful tool and gives accurate results in many cases. 
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9.7 Exercises 

1. Equation (9.134) gives the normalized pressure of a circular planar 
piston transducer as computed by a multi-Gaussian beam model. Write a 
MATLAB function that takes as its inputs the frequency, f, the wave speed 
of the water (in m/sec), the radius, a, of the transducer (in mm), and the 
distances ( )1 2 3, ,x x x  (in mm) and computes this normalized pressure in the 
water. Use the fifteen Gaussian beam coefficients (instead of the ten terms 
indicated in Eq. (9.134)) which can be obtained from the MATLAB 
function gauss_c15. Verify that your function produces the magnitude of 
the on-axis pressure plot shown in Fig. 9.16 for a 6 mm radius transducer 
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radiating into water at 5 MHz. For this same transducer, plot the magnitude 
of the normalized pressure versus 2x  for 1 30, 60x x= =  mm. 
 
2. Modify the MATLAB function written for the circular planar transducer 
of exercise 1 to model a spherically focused transducer of focal length, R, 
using the relationship of Eq. (9.141).Verify that your function produces the 
magnitude of the on-axis pressure plot for a 6 mm radius, 76 mm focal 
length focused transducer radiating into water at 5 MHz (Fig. 9.17). For 
this same transducer plot the magnitude of the cross-axis normalized 
pressure at the geometrical focal length 3 76x =  mm and compare this 
pressure to the exact result given by Eq. (8.42). 
 
3. The multi-Gaussian beam model for the normalized pressure of a planar 
rectangular transducer radiating into a fluid is given from Eq. (9.145) (for 
15 Gaussian beams) by 
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Write a MATLAB function that takes as its inputs the frequency, f, the 
wave speed of the water (in m/sec), the half-lengths ( )1 2,a a of the 
transducer (in mm), and the distances ( )1 2 3, ,x x x  (in mm) and computes 
this normalized pressure in the water. The Gaussian beam coefficients can 
be obtained from the MATLAB function gauss_c15. Verify that your 
function produces the magnitude of the on-axis pressure plot shown in 
Fig. 9.19 for a 12x6 mm transducer radiating into water at 5 MHz. Note 
that the half-lengths of the two sides are given here by 1 6a =  mm, 

2 3a =  mm. For this same transducer, plot the magnitude of the normalized 
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pressure versus distance 2x  for 1 0,x = 3 20x = mm and versus distance 1x  
for 2 0,x = 3 20x = mm. 
 
4. Modify the MATLAB function of exercise 3 to model a cylindrically 
focused rectangular transducer where the focusing is in the 1 3x x−  plane, 
by using a relationship similar to Eq.(9.141), i.e. 

2
1 1

12
.

p
r r

q

ik a
B B

F
B unchanged

→ +
 

The Gaussian beam coefficients can again be obtained from the MATLAB 
function gauss_c15. Plot the magnitude of the on-axis pressure for a 12x6 mm 
transducer with cylindrical focal length 1 80F =  mm radiating into water at 
5 MHz. 
 
5. Rewrite Eq. (9.134) for the normalized pressure wave field of a circular 
planar transducer radiating into a fluid (using 15 Gaussian beams) in terms 
of ( ), ,x y z  coordinates as 

( )
( )

( ) ( )

15

11 1 0

1 1

, , ,
1 /

1exp exp ,
2

r

rp r R

T p
p r

p x y z A
c v iB z D

ik z i z

ω
ρ ω

ω

=

=
+

⎡ ⎤⎛ ⎞⎡ ⎤⋅ ⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦

∑

x M x
 

where ( ),T x y=x  and 

( )

1

1
1

/
0

1 /
.

/
0

1 /

r p R

r Rp
r

r p R

r R

iB c D
iB z D

z
iB c D

iB z D

⎡ ⎤
⎢ ⎥+⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥

+⎢ ⎥⎣ ⎦

M  

This expression can also be written as a quasi-plane wave in the form 

( ) ( ) ( )1 1 0 1, , , exp , . , , ,pp x y z c v ik z C a x y zω ρ ω=  

where C is a diffraction coefficient. We can use the paraxial approximation 
discussion of Chapter 8 (see section 8.5) and quickly obtain a multi-Gaussian 
beam model for a planar, circular P-wave transducer radiating at normal 
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incidence to a fluid-solid interface by writing the normalized pressure in 
the solid in the quasi-plane wave form 
 

 ( ) ( ) ( )1 1 2 2
1 1 0

, , ,
exp , . , , ,p p

p x y z
ik z ik z C a x y z

c v
ω

ω
ρ

= + %  

 

where 2
1 2

1

p

p

c
z z z

c
= +%  and ( )1 2,z z  are the distances traveled normal to the 

interface in the water and solid, respectively, as discussed in Chapter 8. 
Note that this normalized pressure is also the same as the normalized velocity 

0/zv v  (see Eq. (8.25)). 
Use this result to write a MATLAB function that implements a 

multi-Gaussian beam model for a transducer radiating at normal incidence 
to a fluid-solid interface and evaluate and plot the magnitude of the 
normalized on-axis pressure for a 6.35 mm radius transducer radiating at 
5 MHz through a water-aluminum interface where the water path distance 

1 50.8z = mm, and the metal path distance, 2z , ranges from zero to 25.4 mm. 
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10 Flaw Scattering 

Ultrasonic beam models can simulate the fields incident on a flaw in an 
ultrasonic inspection. Given those incident fields, we then must also 
determine the scattered waves produced by the interactions of those fields 
with the flaw. For complex flaw morphologies numerical methods are 
generally needed to solve for these scattered waves. For a number of 
simple flaw shapes and types, however, we can model some important 
characteristics of the flaw scattering process explicitly with approximate 
methods. In this Chapter we will describe two such approximations – the 
Kirchhoff approximation and the Born approximation – and also give a 
brief overview of a number of other flaw scattering methods. 

10.1 The Far-Field Scattering Amplitude 

To describe flaw scattering we will first consider the simple case shown in 
Fig. 10.1 where a plane wave in a fluid strikes an immersed object, 
generating scattered waves that travel from the “flaw” in all directions. At 
a distance of many wavelengths from the flaw, the flaw acts like a point 
source generating a spherical wave, as shown in Fig. 10.1. We can express 
the pressure in this spherical wave as 

( ) ( ) ( )
0

exp
, ; ,p sscatt

i s
s

ik r
p p A

r
ω =y e e  (10.1)

where 0p is the pressure amplitude of the incident wave, ( );i sA e e  is the 
far-field scattering amplitude of the flaw in the se  direction due to an 
incident wave traveling in the ie  direction. The scattering amplitude is 
also a function of frequency but for economy of notation we will not show 
this frequency dependence explicitly. Note that we have implicitly 
assumed harmonic waves of ( )exp i tω−  time dependency, a factor that 
also will  not be shown  explicitly. The variable  sr   is the  distance from  a  
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Fig. 10.1. The spherical P-wave scattered in the far-field from a “flaw” in a fluid 
due to an incident wave of pressure amplitude 0p . 

fixed point at the flaw (usually taken to be the flaw “center”) to the point 
in the fluid where the scattered pressure is being determined, and pk  is the 
wave number for compressional waves in the fluid.  

 It can be shown that the far-field scattering amplitude is related to 
the total fields (incident plus scattered fields) on the surface of the flaw 
through a surface integral given by [Fundamentals]: 

( ) ( ) ( ) ( )1; exp ,
4

f

i s p s p s s s
S

pA ik p ik dS
nπ

− ∂⎡ ⎤= + ⋅ − ⋅⎢ ⎥∂⎣ ⎦∫e e e n x e x
%

%  (10.2)

where n is the unit outwards normal to the surface of the flaw pointing into 
the fluid, sx  is a general point on the surface, fS , and ( ) 0, /sp p pω= x%  is 
the pressure normalized by the incident wave pressure amplitude. Note that 
the far-field scattering amplitude as defined here has a dimension of 
length. The unit vector ie  does not appear explicitly in Eq. (10.2) but the 
fields do depend on this direction so it is included as an argument of the 
scattering amplitude. Since / np n i vωρ∂ ∂ = from the equation of motion for 
the fluid the scattering amplitude depends on both the pressure, p, and the 
normal component of the velocity, nv , on the surface. It is possible to 
specify one of these variables. For example, for a void, we can set 0p = , 
while for a rigid, immobile scatterer we would have 0nv = . For an elastic 
inclusion, we would have to instead specify conditions of continuity of the 
tractions and normal velocity at the  surface. Given the incident waves and 
a  set  of  boundary conditions  of  one  of  these  types, it  is  then  possible  
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Fig. 10.2. The spherical P- and S-waves scattered in the far-field from a flaw in an 
elastic solid due to an incident wave of displacement amplitude 0U . 

to formulate a boundary value problem and solve for the unknown fields 
on the surface of the scatterer [Fundamentals].  

 For ultrasonic NDE inspection problems the flaws of interest are 
located in an elastic solid. The scattering of elastic waves is more complex 
than the fluid case just considered, but again at a distance of many 
wavelengths from the flaw the scattered waves are just spherical waves, as 
shown in Fig. 10.2. In this case a flaw generates both scattered spherical  
P-waves and S-waves. The displacement of the solid produced by these 
scattered waves can be written as 

( ) ( ) ( ) ( ) ( )
0 0

exp exp
, ; ; ,p s s sscatt p s

i s i s
s s

ik r ik r
U U

r r
β βω = +u y A e e A e e  (10.3)

 
where 0U  is the displacement amplitude of the incident wave, 

( ),k p sα α =  are the wave numbers for P- and S-waves, and ( );i s
β αA e e is 

the vector far-field scattering amplitude for a scattered wave of type α 
( ),p sα = due to an incident wave of type β ( ),p sβ = . The vectors i

βe  
and s

αe  are unit vectors in the incident and scattered wave directions, 
respectively [Note: lower case p and s superscripts will be used here to 
denote P-waves and S-waves, respectively, while an s subscript will denote 
a “scattered” wave unit vector]. Far-field scattering amplitudes for both  
P-waves and S-waves can be written in terms of a single vector-valued 
function, ;α βf , where [Fundamentals]: 
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( ) ( )

; ;

24

exp

l l

l
lk k lkpj sk p j

S

s s s

f

n ik C e n u
c

ik dS

α β α β

α
α

α

α
α

τ
πρ

=

⎡ ⎤= − +⎣ ⎦

⋅ − ⋅

∫

f i
i

x e x

% %  (no sum on s) (10.4)

and the vector far-field scattering amplitudes for P-waves and S-waves are 
given by 

( ) ( )
( ) ( )

;

; ;

;

;

p p p p
i s s s

s s s s s
i s s s

β β

β β β

= ⋅

⎡ ⎤= − ⋅⎣ ⎦

A e e f e e

A e e f f e e
 (no sum on s) (10.5)

for ( ),p sβ = . The vectors li  are unit vectors along a set of Cartesian 
coordinate axes. The kn  terms in Eq. (10.4) are the components of the unit 
outward normal to the flaw surface (see Fig. 10.2) and ijklC  is the fourth 
order elastic constants tensor, which here is taken to be for an isotropic 
elastic material. The stress and displacement components in Eq. (10.4) are 
normalized by the displacement amplitude of the incident wave, i.e. 

0 0/ , /ij ij j jU u u Uτ τ= =% % . From Eq. (10.5) it can be seen that the polari-
zation of the scattered P-wave is in the p

se  direction while the polarization 
of the scattered S-wave is perpendicular to the s

se  direction since 
( ); 0s s

i s s
β ⋅ =A e e e .  

 In an ultrasonic flaw measurement system the output is a voltage 
which is a scalar quantity. Thus, if the scattering amplitude appears 
explicitly as part of a model for this measured voltage – which it does 
under certain conditions, as discussed in the next Chapter – there must be a 
specific scalar function of the vector scattering amplitude that is related to 
the output voltage. In the next Chapter it will be shown that the appropriate 

( ) ( ) ( ); ; .i s i sA β α β α α= ⋅ −e e A e e d  (10.6)

The unit vector αd  is the polarization vector of a wave of type α (the same 
type as the scattered wave) that travels from the receiving transducer 
(acting like a transmitter) to the flaw along a completely reversed path 
from the path that the scattered waves take from the flaw to the receiving 
transducer  (see Fig. 10.3). This  polarization vector  is  defined  when  one  

scalar function that appears in a model of the entire ultrasonic measurement 
system is the scalar component 
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Fig. 10.3. The polarization, αd , of the wave traveling from the receiver (acting as 
a transmitter) to the flaw along a path that is completely reversed from the actual 
received wave traveling from the flaw to the receiving transducer. For a scattered 
P-wave (α = p) we have s

α α= −d e while for a scattered S-wave αd  is perpendicular 
to se . 

solves for the waves propagated from the receiving transducer to the flaw. 
Note that the choice of sign of the polarization vector is arbitrary. For 
example, for a plane P-wave traveling in the e-direction with velocity 
given by V=v e , we could take the polarization p =d e  (as is normally done) 
and write pV=v d or we could choose p = −d e  and write pV= −v d instead. 
The velocity of the wave is unaffected by this choice. Choosing a different 
sign on the polarization vector will affect the sign of the amplitude, as 
shown by this simple example, or it can affect individual parts of the total 
expression for the wave field such as transmission or reflection coefficients 
since those coefficients depend on the choice of the polarization direction 
(see Appendix D where the transmission coefficients were defined for 
specific choices of P-wave and S-wave polarizations). Sign changes of the 
transmission/reflection coefficients and polarizations, however, cancel so 
again the total wave field is unaffected by the choice for the direction of 
the polarization. However, with a given choice of the polarization vector 
we must be careful to use the transmission/reflection coefficients consistent 
with that choice. 

 Using Eqs. (10.4) and (10.5) in Eq. (10.6), the scalar scattering 
component, ( );i sA β αe e  for both P-waves and S-waves is given by 
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Fig. 10.4. A crack modeled as an open surface in a solid that is obtained by letting 
the thickness, t, go to zero of a thin volumetric shape, as shown, where the stress 
vector is zero on both sides of the crack but the displacement vector is allowed to 
have a displacement discontinuity given by ( ),su ω + −∆ = −x u u , where ,+ −u u  
are displacements on opposite sides of the crack at the same location on the open 
surface. 

( )

( ) ( )

2

1;
4

exp .

i s l lk k lkpj sk p j
S

s s s

A d n ik C e n u
c

ik dS

β α α α
α

α

α
α

τ
πρ

⎡ ⎤= +⎣ ⎦

⋅ − ⋅

∫e e

x e x

% %
 (10.7)

       (no sum on s, α ) 
 

Equation (10.7) gives the far-field scalar scattering response of a general 
volumetric flaw. One can also use this result and a limiting argument to 
obtain the response of a crack-like flaw where the crack is modeled as a 

0lk kn =% . The 
displacement components, however, can be different from one face of the 
crack to the other, leading to displacement discontinuities, ( ),j su ω∆ x% , on 
the crack (see Fig. 10.4). The scattering amplitude of Eq. (10.7) then reduces 
to [Fundamentals] 
 
 
 
 

τthe crack are stress-free, we have on both faces of the crack 
zero volume open surface (Fig. 10.4). If one assumes that the faces of 

www.iran-mavad.com 
ایران مواد



10.2 The Kirchhoff Approximation for Volumetric Flaws      241 

 
Fig. 10.5. The Kirchhoff approximation, where the fields on the “lit” surface of 
the flaw are assumed to be those obtained by plane wave interactions with a plane 
(dashed-dotted line) whose normal coincides with that of the flaw surface. On the 
remainder of the flaw surface (the shaded “shadow” region shown) the fields are 
assumed to be identically zero. 

( )

( ) ( )

2

1;
4

exp ,

i s lkpj l sk p j
S

s s s

A ik C d e n u
c

ik dS

β α α α
α

α

α
α

πρ
⎡ ⎤= ∆⎣ ⎦

⋅ − ⋅

∫e e

x e x

%
 (10.8)

       (no sum on s, α ) 
 

where now S is the (open) surface of the crack and n is the unit normal to 
that open surface. 

10.2 The Kirchhoff Approximation for Volumetric Flaws 

One approximation that has been frequently used to describe the scattering 
of volumetric flaws or cracks is the Kirchhoff approximation [Funda-
mentals]. Consider first the volumetric flaw case. In this approximation, 
that part of the flaw surface where the incident wave (which is taken as a 
plane wave) can directly strike the surface is called the “lit” surface, 

litS (Fig. 10.5). On the lit surface it is assumed that the interaction of the 
incident plane wave with the surface is identical to that of the incident 
wave with a plane interface whose normal coincides locally with the 
surface normal, n. Since we can solve for the interaction of a plane  
wave with a plane interface, we can write down explicit expressions for 
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both the Kirchhoff approximation displacement components, K
ju% , and 

stresses, K
lkτ% , on the lit surface as [Fundamentals] 

( ) ( );
12

,
exp exp

/ ,

K m m m
j ij i s rj m r s

m p sv

K K
lk lkjp j p

u d ik R d ik

C u x

β β β
β

τ
=

⎡ ⎤ ⎡ ⎤= ⋅ + ⋅⎣ ⎦ ⎣ ⎦

= ∂ ∂

∑e x e x%

% %

 (10.9)

         (no sum on r,i) 
      
where i

βd is the polarization vector for an incident wave (of type β ) 
traveling in the i

βe  direction and m
rd  is the polarization of a reflected 

waves at the interface (of type m) traveling in the m
re direction. The 

reflection coefficients for a reflected wave of type m due to an incident 
wave of type β are the ;

12
mR β . On the remaining part of the flaw surface 

where the incident wave cannot strike it directly, it assumed that the fields 
are totally absent and 0j lku τ= =% % . Then Eq. (10.7) becomes 

( )

( ) ( )

2

1;
4

exp .
lit

K K
i s l lk k lkpj sk p j

S

s s s

A d n ik C e n u
c

ik dS

β α α α
α

α

α
α

τ
πρ

⎡ ⎤= +⎣ ⎦

⋅ − ⋅

∫e e

x e x

% %
 (10.10)

       (no sum on s, α ) 
 

The Kirchhoff approximation is a high frequency approximation that 
allows us to avoid having to solve a boundary value problem in order to 
determine the far-field scattering amplitude. In general, the integrations in 
Eq. (10.10) must still be done numerically, but for the special case of the 
pulse-echo response of a void one can obtain some simple and explicit 
results. In that case we consider a scattered wave of the same type as the 
incident wave and let the scattered wave direction be opposite to that of the 
incident wave so that s i

α β= −e e . Since we are considering a void we also 
have 0lk knτ =% on the surface. Then Eq. (10.10) reduces to 

( ) ( ) ( )2

1; exp .
4

lit

K
i i lkpj l ik p j s i s

S

A ik C d e n u ik dS
c

β β β β β
β β

βπρ
⎡ ⎤− = − ⋅⎣ ⎦∫e e x e x%  (10.11)

      (no sum on s, β ) 
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Fig. 10.6. Magnitude of the far-field pulse-echo P-wave scattering amplitude 
versus frequency for a 1 mm radius void in steel ( 5900pc =  m/s) in the Kirchhoff 
approximation. 

 

Equation (10.11) can be simplified even further since it can be shown by a 
combination of analytical and numerical evaluations that [10.1] 

( ) ( )2 2 exp
K

lkpj l ik p j
i i s

C d e n u
ik

c

β β
β β

β
βρ

⎡ ⎤= ⋅ ⋅⎣ ⎦e n e x  (10.12)

and the pulse-echo far-field scattering amplitude of the void becomes simply 

( ) ( ) ( ) ( ); exp 2 .
2

lit

i i i s i s
S

ik
A ik dSββ β β β

βπ
−

− = ⋅ ⋅∫e e e n x e x  (10.13)

Equation (10.13) is identical to the pulse-echo response of a void using a 
fluid model (see Eq. (10.2)) instead [Fundamentals]. It is a very important 
result since it shows that: 

 For any stress-free flaw in an isotropic elastic solid the Kirchhoff 
approximation for the pulse-echo far-field scattering amplitude component 
that appears in an ultrasonic measurement model is identical to the 
Kirchhoff approximation for the scalar scattering amplitude of a void in a 
fluid. 
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Fig. 10.7. The time domain pulse-echo impulse response of a spherical void in a 
solid in the Kirchhoff approximation, showing the leading edge delta function 
response followed by the response of the lit surface. 

 In this Chapter we will use this result to carry out the integrations 
in Eq. (10.13) explicitly for a number of important canonical scattering geo-
metries including a spherical void, a flat elliptical crack (see Eq. (10.32)), 
and a side-drilled hole (see Eq. (10.53)). For a spherical void of radius b, 
for example, Eq. (10.13) gives [Fundamentals] 

( ) ( ) ( ) ( )sin
; exp exp .

2i i

k bbA ik b ik b
k b

ββ β
β β

β

⎡ ⎤−
− = − − −⎢ ⎥

⎢ ⎥⎣ ⎦
e e  (10.14)

Figure 10.6 plots the magnitude of this scattering amplitude for a spherical 
void in steel. The characteristics of this plot can be better understood if we 
Fourier transform Eq. (10.14) into the time domain. This leads to the 
impulse response of the flaw, ( ); ,i sa tβ αe e , given by [Fundamentals] 

( ) 2 2; , ,0; ,
2 2i i

cb b ba t t U t
c b c

ββ β

β β

δ
⎡ ⎤⎛ ⎞ ⎛ ⎞− −

− = + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
e e  (10.15)

where δ is a delta function (see Appendix A) and 

( ) 1 2
1 2

1
, ; .

0
t t t

U t t t
otherwise

< <⎧
= ⎨

⎩
 (10.16)

Figure 10.7 shows a plot of this time domain scattering amplitude. When 
the incident wave first reaches the flaw, there is a delta function response 
from the point where the incident wave first touches the flaw. This leading  
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Fig. 10.8. The magnitude of the normalized scattering amplitude versus frequency 
for the pulse-echo P-wave response of a spherical void in the  the Kirchhoff 
approximation (dotted line) and for the exact separation of variables solution 
(solid line). 

edge response occurs at time 2 /t b cβ= − , where t = 0 is when the wave 
front reaches the center of the flaw, followed by a constant response that 
exists as the wave front sweeps across the lit surface. When the wave front 
reaches the boundary between the lit surface and the shadow zone of the 
flaw the response drops to zero. It is the interference of the leading edge 
response and the remaining lit surface response that causes the oscillations 
seen in Fig. 10.6. At very high frequencies, only the leading edge response 
remains, leading to the plateau seen in Fig. 10.6. 

 The sphere is one of the few shapes where we can obtain the exact 
far-field scattering amplitude by the method of separation of variables 
[Fundamentals]. Thus, we can compare the Kirchhoff approximation to the 
exact results for the spherical void just considered. Figure 10.8 shows this 
comparison made in the frequency domain for the normalized magnitude 
of the far-field scattering amplitude computed for the pulse-echo P-wave 
response of a spherical void. The two results agree at high frequencies, 
which show that the leading edge delta function response in the Kirchhoff 
approximation agrees with this same response in the exact solution. The 
frequency of oscillations in the exact solution is different from that in the 
Kirchhoff approximation because in the exact solution the oscillations are 
caused primarily by an interference of the leading edge response with a 
creeping wave that travels around the flaw and returns, as shown 
schematically  in  Fig. 10.9. This  creeping  wave can  be seen  explicitly  in  
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Fig. 10.9. The scattering from a spherical void in (a) the Kirchhoff approximation, 
where the response comes from a front surface leading edge response (solid 
arrows) and the response from the lit surface (dashed arrows), and in (b) the exact 
solution case where there are contributions from the leading edge and front surface 
but where there also exists a creeping wave that travels around the sphere as 
shown. 

 

 
Fig. 10.10. The exact time domain pulse-echo impulse response (solid line) of a 
1 mm radius spherical void in a solid as calculated from a separation of variables 
solution with the delta function removed, showing the response from the lit 
surface and a creeping wave. The same response in the Kirchhoff approximation 
(dashed line). Wave speeds: pc = 6000 m/sec, 3200sc = m/sec. 
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Fig. 10.11. The case where a stationary phase point, statx , exists on the lit surface 
of a flaw, where the scattered wave direction coincides with one of the reflected 
wave directions. 

Fig. 10.10 which shows the exact P-wave pulse-echo time domain impulse 
response of the spherical void obtained by Fourier transforming the exact 
separation of variables solution (after removal of the delta function leading 
edge response which is common to both the exact solution and the 
Kirchhoff approximation). The Kirchhoff solution is also shown in 
Fig. 10.10 for comparison purposes. 

10.3 The Leading Edge Response of Volumetric Flaws 

Although as we have seen the Kirchhoff approximation did not accurately 
represent the later arriving waves from a spherical void, it did model 
correctly the leading edge response of the flaw. This leading response is 
the dominant part of the solution at high frequencies, and in the time 
domain gives us a delta function signal from the front surface of the flaw. 
Since the delta function contains all frequencies equally whereas other 
parts of the flaw response typically go to zero as the frequency increases, 
even in real band-limited systems the leading edge response signal in the 
time domain is often the largest signal in the entire flaw response. Thus, it 
is useful to try to model this signal by itself. Fortunately, this is possible 
for general volumetric flaw types, not just voids. If we return to the 
Kirchhoff approximation (Eq. (10.10)) for a general volumetric flaw, we 
can approximate the integral in that equation at high frequencies by the 
method of stationary phase. The details are rather lengthy, but the end 
result is that in a general pitch-catch setup (which includes pulse-echo as a  
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Fig. 10.12. The case where a stationary phase point, statx , exists on the lit surface 
of a flaw, where the scattered wave direction coincides with one of the reflected 
wave directions. 

special case) the major contribution to the integral for a scattered wave of 
type α  traveling in the s

αe  direction comes from a neighborhood of a point 
on the flaw surface, called a stationary phase point, statx , where the direction 
of the reflected wave in the Kirchhoff approximation, r

αe , coincides with 
s
αe  (see Fig. 10.11). The contribution to the integral near this stationary 

phase point can then be calculated by the method of stationary phase to 
give, in the frequency domain [Fundamentals] 

( ) ( ) ( ) ( )
;

12 1 2 ;
;

; exp ,s r
i s stat

R R R
A ik

α α β α α
β α α β

αα β

⋅ ⋅
= ⋅

⋅

e n d d
e e g x

g n
 (10.17)

where ;
12Rα β  is the plane wave reflection coefficient (based on velocity 

ratios) between material 1 (the host material around the flaw) and material 
2 (the flaw) for a reflected wave of type α due to an incident wave of type 
β. 1 2,R R  are the magnitudes of the principal curvatures of the flaw surface 
at the stationary phase point, r

αd  is the polarization of the reflected wave 
and αd  is the polarization of the wave coming from the receiving transducer 
(acting as a transmitter). The vectors ;α βg  are given by 
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( ); / ,i sc cα β β α
α β= −g e e  (10.18)

where i
βe  is the incident wave direction for a wave of type β, s r

α α=e e  is 
the reflected wave direction for a wave of type α, and ,p sc c  are the 
compressional and shear wave speeds for the host material surrounding the 
flaw, respectively. Note that one can always define the reflection 
coefficient so that the reflected wave polarization, r

αd , coincides with the 
polarization αd . In that case we have 1r

α α⋅ =d d . In all the subsequent 
results we will assume that this is true. 

 The vectors ;α βg  can be written in terms of their magnitudes and a 
unit vector, ;

q
α βe  as ; ; ;

q
α β α β α β=g g e . At the stationary phase point the unit 

vector ;
q
α β = −e n  so that ; ;α β α β⋅ =g n g . We also have ; 0α β ⋅ =g t , where 

t is a unit vector in the tangent plane to the surface at the stationary phase 
point (see Fig. 10.12), which is just a statement  of Snell's law. We can 
write the quantity ; ; ;

stat er
α β α β α β⋅ = −g x g , where ;

er
α β  is the distance in the 

direction n (or, equivalently, ;
q
α β−e ) at the stationary phase point from a 

fixed point (usually taken as the flaw “center”) to the tangent plane of the 
surface at n (Fig. 10.12). The ;

er
α β  distance is called the equivalent radius 

of the flaw in the ;
q
α βe  direction. Thus, we can also write Eq. (10.17) in the 

form 

( ) ( ) ( )
;

12 1 2 ; ;
;

; exp .s
i s e

R R R
A ik r

α α β
β α α β α β

αα β

⋅
= −

e n
e e g

g
 (10.19)

 If we Fourier transform Eq. (10.19) into the time domain, the 
leading edge impulse response of the flaw is given by 

( ) ( ) ( )
;

12 1 2 ; ;
;

; , / .s
i s e

R R R
a t t r c

α α β
β α α β α β

αα β
δ

⋅
= +

e n
e e g

g
 (10.20)

For the special case of a pulse-echo (same mode) leading edge response, 
from Eqs. (10.19), (10.20) we have the even simpler expressions: 
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Fig. 10.13. Scattering geometry for an ellipsoidal flaw. 

( ) ( ) ( )

( ) ( ) ( )

;
12 1 2

;
12 1 2

0
; exp 2

2
0

; , 2 / ,
2

i i e

i i e

R R R
A ik r

R R R
a t t r c

β β
β β

β

β β
β β

βδ

− = −

− = +

e e

e e

o

o
 (10.21)

where ;
e er r β β= and now the reflection coefficient is just the normal incidence 

coefficient, as indicated in Eq. (10.21).  
 For a purely convex flaw shape such as an ellipsoid, as shown in 

Fig. 10.13, there can be at most only one stationary phase point on the lit 
surface. However, a stationary point may not exist on the lit surface at all 
for some combination of incident and scattered directions of a general 
pitch-catch setup. In that case, a leading edge response of the flaw is 
absent. For more general flaw shapes there may be multiple stationary 
phase points, in which case one must sum over all the leading edge 
responses.  
 For an ellipsoidal shaped flaw with semi-major axes ( )1 2 3, ,b b b  along 
the ( )1 2 3, ,u u u  directions as shown in Fig. (10.13) we have the Gaussian 
curvature term [Fundamentals] 

( )2;
1 2 1 2 3 / eR R b b b rα β=  (10.22)

and the equivalent radius is given by 

( ) ( ) ( )2 2 2; 2 ; 2 ; 2 ;
1 1 2 2 3 3 ,e q q qr b b bα β α β α β α β= ⋅ + ⋅ + ⋅e u e u e u  (10.23)

where, recall, ; ; ;/q
α β α β α β=e g g  (see Eq. (10.18)). 
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In this case the leading edge responses for the general pitch-catch 
setup (Eqs. (10.19) and (10.20)) become 

( ) ( )
( )

( )

( ) ( )
( )

( )

;
12 1 2 3 ; ;

2; ;

;
12 1 2 3 ; ;

2; ;

; exp

; , /

s
i s e

e

s
i s e

e

R b b b
A ik r

r

R b b b
a t t r c

r

α α β
β α α β α β

αα β α β

α α β
β α α β α β

αα β α β
δ

⋅
= −

⋅
= +

e n
e e g

g

e n
e e g

g

 (10.24)

and for the pulse-echo case Eq. (10.21)  reduces to 

( ) ( ) ( )

( ) ( ) ( )

;
12 1 2 3

2

;
12 1 2 3

2

0
; exp 2

2

0
; , 2 / .

2

i i e
e

i i e
e

R b b b
A ik r

r

R b b b
a t t r c

r

β β
β β

β

β β
β β

βδ

− = −

− = +

e e

e e

o

o
 (10.25)

For the particular case of a spherical void we have 1 2 3b b b b= = = , 
( );

12 0 1Rβ β = −o , and er b=  so the pulse-echo results of Eq. (10.25) reduce 
to the leading edge results obtained previously as part of the full Kirchhoff 
solution for the sphere (see Eqs. (10.14) and (10.15)). 

10.4 The Kirchhoff Approximation for Cracks 

Our crack scattering model (Eq. (10.8)) considers the crack as a stress-free 

( ),sx ω + −∆ = −u u u . In the Kirchhoff approximation on the lit part of the 
front surface of the crack we would have K

j ju u+ =  and on the remainder of 
the front surface and the entire back surface (assuming the crack does not 
fold over so that part of the back surface can also be a “lit” surface) we 
would have zero displacements. Thus, the Kirchhoff approximation for a 
crack in an elastic solid gives 

( ) ( ) ( )2

1; exp .
4

lit

K
i s lkpj l sk p j s s s

S

A ik C d e n u ik dS
c

β α α α α
α α

απρ
⎡ ⎤= − ⋅⎣ ⎦∫e e x e x%  (10.26)

      (no sum on s,α ) 
 

open surface on which there is a displacement discontinuity 
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Fig. 10.14. Scattering geometry for a flat elliptical crack. 

For the special case of pulse-echo we can again use Eq. (10.12) and write 

( ) ( ) ( ) ( ); exp 2 .
2

lit

i i i s i s
S

ik
A ik dSββ β β β

βπ
−

− = ⋅ ⋅∫e e e n x e x  (10.27)

Thus, the same Kirchhoff approximation expressions we used for the 
volumetric void can also be used for a crack. The only difference is that in 
Eqs. (10.26) and (10.27) we are integrating over the lit portion of an open 
surface of the crack rather than the lit part of a closed surface surrounding 
a volumetric flaw.  

 Now, consider the special case when the crack is a flat surface. 
Then Eq. (10.26) can be written as 

( ) ( ) ( )
;

; exp ,
2i s i s s s

S

ik CA i k k dS
α β

β α β αα
β απ

⎡ ⎤= − ⋅⎣ ⎦∫e e e e x x  (10.28)

where 

; ; 2
12

,
/ 2m m

kplj sj l ip rp k
m p s

C C e d d R d n cα β α α β β
αρ

=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∑  (10.29)

In this case the lit surface is now the entire surface, S, of the flaw. For the 
flat crack in pulse-echo, from Eq. (10.27) 

( ) ( ) ( ) ( ); exp 2 .
2

i
i i s i s

S

ik
A ik dS

β
ββ β β

βπ

− ⋅
− = ⋅∫

e n
e e x e x  (10.30)

For the elliptical flat crack geometry shown in Fig. 10.14, the integrals in 
Eqs. (10.28) and (10.30) can be performed explicitly. We find for the 
pitch-catch case [Fundamentals] 
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Fig. 10.15. The equivalent radius, ;

er
α β  for the scattering by an elliptical crack 

shown as the distance from the center of the ellipse to a plane that is normal to 
;

q
α βe  and touches the crack edge at a single point. 

 
Fig. 10.16. The pulse-echo response of a circular flat crack of radius b showing 
that the equivalent radius siner b θ=  where θ  is the angle between the incident 
wave direction and the unit normal to the crack. 

( ) ( )
;

; ;1 2
1; ;

;i s e
e

ib b CA J k r
r

α β
β α α β α β

αα β α β
=e e g

g
 (10.31)

and for the pulse-echo case 

( ) ( ) ( )1 2
1; 2 ,

2
i

i i e
e

ib b
A J k r

r

β
β β

α

− ⋅
− =

e n
e e  (10.32)

where 

( ) ( )2 2; 2 ; 2 ;
1 1 2 2e q qr b bα β α β α β= ⋅ + ⋅e u e u  (10.33)
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Fig. 10.17. The magnitude of the P-wave pulse-echo far-field scattering amplitude 
versus frequency calculated in the Kirchhoff approximation for a 1 mm radius 
circular crack in steel with an angle of incidence of 10o  from the crack normal. 

 
Fig. 10.18. (a) The “generalized normal incidence” case for pitch-catch where ;

q
α βe  

is parallel to the crack normal, and (b)  the pulse-echo case where i s
β β= −e e  is 

parallel to the normal. 
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and again we have ; ; ;/q
α β α β α β=e g g  (see Eq. (10.18)). For the pulse-echo 

case we have let ;
e er r β β= . As in the volumetric flaw case, we can interpret 

;
er
α β  as an “equivalent radius” for a given setup, as shown in Fig. 10. 15. 

In this case the equivalent radius is the distance in the ;
q
α βe  direction from 

the center of the ellipse to a plane whose normal is ;
q
α βe  and is touching 

the edge of the crack at a single point.  
For the special case of the circular crack 1 2b b b= =  so that we 

find in the pitch-catch case 

( ) ( )
2 ;

; ;
1; ;

;i s e
e

ib CA J k r
r

α β
β α α β α β

αα β α β
=e e g

g
 (10.34)

and in the pulse-echo case 

( ) ( ) ( )
2

1; 2 .
2

i
i i e

e

ib
A J k r

r

β
β β

β

− ⋅
− =

e n
e e  (10.35)

In the pulse-echo response of the circular crack we have cosi θ⋅ = −e n  
and siner b θ=  (see Fig. 10.16) so that 

( ) ( )1
cos; 2 sin .

2sini i
ibA J k bβ β

β
θ θ
θ

− =e e  (10.36)

Figure 10.17 plots the behavior of the P-wave pulse-echo circular crack 
response (Eq. (10.36)) for a 1 mm radius crack in steel at an angle of 
incidence 10θ = o . Unlike a spherical void the crack response has very 
strong oscillations that decrease with increasing frequency. At normal 
incidence, however, the crack scattering response is quite different. In the 
pitch-catch case we can have a similar situation. We will call either of 
these special cases “generalized normal incidence”. At generalized normal 
incidence ;

q
α βe  is parallel to the crack normal, n. In the pulse-echo case 

this simply implies that the incident wave direction, i
βe , is parallel to n 

(Fig. 10.18). In either case we have 0er →  and 0θ →  so that Eq. (10.34) 
for the pitch-catch case becomes 

( )
2 ;

;
2i s

ik b CA
α β

β α α=e e  (10.37)

and for the pulse-echo case 
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Fig. 10.19. The magnitude of the P-wave pulse-echo far-field scattering amplitude 
versus frequency calculated in the Kirchhoff approximation for a 1 mm radius 
circular crack in steel at normal incidence. 

( )
2

;
2i i

ik b
A ββ β− =e e  (10.38)

so that the crack response increases linearly with frequency as shown in 
Figure 10.19.  

 We can understand some of this frequency domain behavior if we 
Fourier transform our results back into the time domain to obtain the crack 
impulse response. From Eq. (10.35) for the pulse-echo response of the 
elliptical crack, for example, we find for the case when the incident wave 
direction is at oblique incidence to the crack normal [Fundamentals] 

( )
( )

( ) ( )
1 2

2 2 2
2 /

4; , 2 /

0

i
e

ei i e

b b c t t r c
ra t r c t

otherwise

β
β

ββ β

β
π

⎧− ⋅
⎪ ≤⎪− = ⎨ −
⎪
⎪⎩

e n

e e  (10.39)

and for the normal incidence case, where 

( ) 1 2; ,
2i i

ik b b
A ββ β− =e e  (10.40)
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Fig. 10.20. (a) The time domain pulse-echo impulse response of an elliptical crack 
calculated in the Kirchhoff approximation at oblique incidence, and (b) at normal 
incidence. 

we find 

( ) ( )1 2; , .
2i i

d tb ba t
c dt

β β

β

δ−
− =e e  (10.41)

These cases are both plotted in Fig. 10.20. One can see that in the oblique 
incidence case (Fig. 10.20 (a)) the crack signal has an anti-symmetrical 
form, with two distinct peaks. These peaks are called crack flashpoint 
responses. The first flashpoint occurs when the incident wave front first 
touches the crack and the second flashpoint occurs when the incident wave 
front last touches the crack. The interference of the frequency components 
of these two flashpoint responses is what causes the strong oscillations in 
the frequency domain response for non-normal incidence. At normal 
incidence, the two flash point signals merge to form a “doublet” signal as 
shown in Fig. 10.20 (b). The doublet is represented by the derivative of a 
delta function, as given in Eq. (10.41). Note that since the Fourier trans-
form of the delta function is just unity, we can write formally 

( ) ( ) ( )1 1 exp
2

t i t dδ ω ω
π

+∞

−∞

= −∫  (10.42)
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Fig. 10.21. The magnitude of the pulse-echo scattering amplitude response versus 
angle calculated in the Kirchhoff approximation for a 1 mm radius circular crack 
in steel at a frequency of 5 MHz. 

from which we obtain 

( ) ( )1 exp
2

d i i t d
dt
δ ω ω ω

π

+∞

−∞

= − −∫  (10.43)

Equation (10.43) shows that the Fourier transform of the derivative of the 
delta function is just iω−  so that taking the Fourier transform of Eq. (10.41), 
we do indeed obtain Eq. (10.40). Thus, the linearly increasing frequency 
domain response is just a consequence of having a doublet time domain 
response for the crack at normal incidence. 

A flat crack is a very specular scatterer since in pulse-echo its 
scattering response is large when the incident wave strikes a crack at 
normal incidence but decreases rapidly as a function of the angle, θ, that 
the incident wave makes with the crack normal, as shown in Fig. 10.21.  

10.5 Validity of the Kirchhoff Approximation 

The Kirchhoff approximation is a very useful tool for modeling the 
scattering of volumetric flaws and cracks. For the volumetric flaw case, the 
Kirchhoff  approximation  predicts a  leading edge response  that  is in fact  
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Fig. 10.22. A comparison of the peak-to-peak pulse-echo responses of a spherical 
void of radius b as calculated by the Kirchhoff approximation and the method of 
separation of variables where the non-dimensional wave number and bandwidth 
are varied. (a) Pulse-echo P-wave responses. (b) Pulse-echo SV-wave responses. 
White region: peak-to-peak differences < 1 dB, Gray region: differences > 1 dB 
and <1.5 dB, Black region: differences > 1.5 dB. 
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special cases where the later arriving signals may be larger than the 
leading edge response, the Kirchhoff approximation will accurately model 
the amplitude of the flaw response, as measured, for example, by the 
maximum peak-to-peak amplitude of the time domain wave form. This 
fact can be demonstrated for the pulse-echo response of a spherical void by 
comparing wave forms synthesized by the method of separation of 
variables (discussed in section 10.8) and the Kirchhoff approximation. In 
this case the scattering amplitude was multiplied by a Gaussian window 
having a center frequency, cf , and bandwidth, bw, (see Appendix A for an 
example). The result was then inverted into the time domain with a Fast 
Fourier Transform and the peak-to-peak value of the wave form was 
obtained. In order to compare the peak-to-peak values obtained in this 
fashion using either the method of separation of variables or the Kirchhoff 
approximation, it is necessary to have a practical criterion on when the 
Kirchhoff approximation is accurate. Since NDE inspection setups often 
have an uncertainty of 1-1.5 dB or greater in the amplitudes of the signals 
measured (due to experimental setup errors, noise, etc.) we will label the 
Kirchhoff approximate accurate if the peak-to-peak amplitude of the signal 
that it predicts is less than 1 dB different from the separation of variables 
result.  

Figures 10.22 (a), (b) shows the results of simulating the peak-to-
peak pulse-echo P-wave and SV-wave responses of a spherical void of 
radius b at different Gaussian window center frequencies and bandwidths. 
The white region in that figure is where the Kirchhoff and separation of 
variables solutions agree within 1 dB while the gray region is where the 
responses differ by more than 1 dB but less than 1.5 dB, and the black 
region is where the responses differ by 1.5 dB or more. The non-
dimensional wave numbers, 2 /p c pk b f b cπ=  and 2 /s c sk b f b cπ=  shown in 
Fig. 10.22 were computed at the center frequency, cf , of the Gaussian 
window and the bandwidth is given as a percentage of that center 
frequency value. For the P-wave case for values of 4.5pk b >  it was found 
that the Kirchhoff approximation was accurate for all bandwidths but that 
below this value the bandwidth began to also play a role. However, for 
sufficiently large bandwidths Fig. 10.22 (a) shows that the Kirchhoff 
approximation remains accurate to wave numbers as small as 1pk b = in the 
P-wave case. At wave numbers 1pk b <  there may be cases where the 

exact at high frequencies. Thus, as long as the flaw is not too small so that 
the later arriving waves can merge with this leading edge response or for 

differences also are less than 1 dB but  these  only arise  accidentally  from  
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Fig. 10.23. In a general pitch-catch setup a flat crack generates a large specularly 
scattered signal when the scattered wave direction (and wave type) coincides with 

i.e. where s s
s rθ θ=  or p p

s rθ θ=  and where the reflected angles, ,p s
r rθ θ  are given in 

terms of the incident angle, i
βθ , by the relations ( )sin / sinp

r p ic c β
βθ θ= , 

( )sin / sins
r s ic c β

βθ θ= . 

canceling errors since the Kirchhoff approximation and exact solution can 
be shown analytically to have different low frequency limits. Figure 
10.22 (b) shows that in the case of shear waves, the wave number sk b  
must be greater than 10 for the Kirchhoff approximation to remain valid 
for all bandwidths and that from sk b = 10 to sk b = 6 approximately there 
are bandwidths effects.  

Thus, while formally the Kirchhoff is a high frequency 
approximation where one assumes 1kb >> , we see that this approximation 
remains useful and accurate in predicting pulse-echo peak-to-peak signal 
amplitudes for spherical voids at much lower frequencies and/or flaw 
sizes. It is also clear from Fig. 10.22 that bandwidth as well as 
frequency/size plays a role in how well the Kirchhoff approximation can 
perform. 

For ideal flat cracks, the Kirchhoff approximation also accurately 
models the pulse-echo amplitude of the crack response when the incident 
wave direction is normal to the crack or in pitch-catch when the scattered 
wave direction is along a reflected wave direction as predicted by Snell's 
law (see Fig. 10.23). In either of these generalized normal incidence cases, 
as discussed previously, the vector ( ); / i sc cα β β α

α β= −g e e   is parallel to the 
crack normal n. The expression for the scattering of a flat crack, 
Eq. (10.28), can be written in terms of this vector as: 

one of the reflected wave directions (and wave type) as determined by  Snell’s law, 
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Fig. 10.24. A comparison of the normal incidence peak-to-peak pulse-echo  
P-wave responses of a circular crack of radius b as calculated by the Kirchhoff 
approximation and the method of separation of variables where the non-
dimensional wave number, pk b , and bandwidth, bw, are varied. White region: 
peak-to-peak differences < 1 dB, Light gray region: differences > 1 dB and 
<1.5 dB, Black region: differences > 1.5 dB. 

( ) ( )
;

;; exp .
2i s s s

S

ik CA ik dS
α β

β α α βα
απ

⎡ ⎤= ⋅⎣ ⎦∫e e g x x  (10.44)

But sx  is a point lying in the plane of the crack and so we have ; 0s
α β ⋅ =g x  

and Eq. (10.44) becomes for an arbitrarily shaped flat crack (see Eqs. 
(10.37), (10.38), (10.40) for the same result for different special shapes or 
setups) 

( )
;

; ,
2

f
i s

ik C S
A

α β
αβ α

π
=e e  (10.45)

where fS  is the area of the flat crack. For all the cases where Eq. (10.45) 
holds we see a large specular response (like the doublet response shown 
earlier) that agrees with more exact scattering model predictions. Note that 
for a shear wave incident on the crack beyond the critical angle where the 
reflected P-wave disappears, the scattered S-wave response predicted by 
Eq. (10.45) will include pulse distortion since the coefficient ;Cα β  is then 
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to see in practice since at these angles the amplitude of the crack response 
will be small. 

 We can also examine the accuracy of the Kirchhoff approximation 
in predicting the pulse-echo normal incidence response of a circular crack 
in the same fashion as done for a spherical void. In this case, there is no 
separation of variables solution to compare to, but there have been 
numerical calculations done with the method of optimal truncation 
(MOOT) [10.34] for the pulse-echo P-wave response of a circular crack 
that can be used as an “exact” reference solution. Figure 10.24 shows the 
results of generating pulse-echo normal incidence P-wave peak-to-peak 
responses of a circular crack of radius b at different wave numbers, 

2 /p c pk b f b cπ= , and bandwidths, bw using the Kirchhoff approximation 
and MOOT. It can be seen from that figure that for wave numbers 

2.5pk b >  the Kirchhoff approximation is accurate for all bandwidths but 
bandwidth begins to play a role for smaller wave numbers. However, for 
sufficiently large bandwidths the Kirchhoff approximation remains accurate 
to non-dimensional wave numbers as small as 1.5pk b = . At smaller wave 
numbers the Kirchhoff approximation is generally inaccurate although again 
there may be cases where canceling errors occur. These results demonstrate 
that, as in the spherical void case, the Kirchhoff approximation remains 
accurate for cases where the condition 1kb >> is not satisfied and that 
bandwidth also plays a role in determining when the Kirchhoff approxima-
tion is accurate but it is not as strong a factor as in the spherical void case.   

For pulse-echo cases where the incident waves are not normal to 
the crack the Kirchhoff approximation predicts time domain flash point 
responses from the crack tips (see Fig. 10.20 (a)). It is commonly stated 
that the amplitudes of these signals do not agree with more exact scattering 
calculations except in a relatively small angular range (of about 20-30  
degrees) from normal incidence [10.2]. However, this conclusion has been 
reached by considering either single frequency results or simulating 
narrow bandwidth time domain responses. It will be shown here that 
bandwidth plays an important role in determining the angular range over 
which the Kirchhoff approximation can accurately predict the pulse-echo 
peak-to-peak response of a circular crack. This fact is demonstrated by 
simulating oblique incident pulse-echo scattered P-wave responses of a 
circular crack with both the Kirchhoff approximation and MOOT and then 
comparing their predicted time domain peak-to-peak crack responses. In 

complex [Fundamentals]. Such pulse distortion, however, may be difficult 

this study a  Gaussian window  having a center frequency of  10 MHz  was  
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Fig. 10.25. Differences in dB between predicted peak-to-peak pulse-echo P-wave 
responses of a 0.381 mm radius circular crack in steel as calculated by the 
Kirchhoff approximation and by MOOT for a narrow band (2 MHz bandwidth, 
10 MHz center frequency) system response. 

Fig. 10.26. Differences in dB between predicted peak-to-peak pulse-echo P-wave 
responses of a 0.381 mm radius circular crack in steel as calculated by the Kirchhoff 
approximation and by MOOT for a relatively wide band (6 MHz bandwidth,  
10 MHz center frequency) system response. [For angles greater than 50o the 
differences are larger in magnitude than 2 dB so their values are off the scale of this 
figure.] 
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used with a flaw size of b = 0.381 mm. The compressional wave speed was 
taken as 6200 m/sec so that in all the cases considered the non-dimensional 
wave number was fixed at 3.86pk b = . This wave number value is 
sufficiently large so that at normal incidence there were no bandwidth 
effects (see Fig. 10.24) but for oblique incidence this is not the case. For 
example, Fig. 10.25 shows the differences in dB between predicted peak-
to-peak pulse-echo P-wave responses of the crack as calculated with the 
Kirchhoff approximation and MOOT and plotted versus angle of incidence 
for a narrow bandwidth (20%) window. In this case, differences exceeded 
1 dB at an angle of incidence of about 20 degrees. However, if the 
bandwidth of the window is changed to 60%, holding all other variables 
fixed, the differences remain smaller than 1 dB for angles as large as 
45 degrees, as shown in Fig. 10.26. For larger bandwidths, the range of 
angles where the Kirchhoff approximation is accurate is even larger. We 
have found that the precise way in which the angular range of accuracy of 
the Kirchhoff approximation varies is highly dependent on both the wave 
number and bandwidth so it is difficult to display comprehensible results 
for a wide range of cases on a single graph. Figure 10.27 shows a plot of 
the maximum incident angle at which the Kirchhoff approximation is 
accurate  (i.e. within 1 dB of the MOOT solution)  versus  bandwidth for a 
 

 
Fig. 10.27. The maximum incident angle at which the peak-to-peak pulse-echo 
flaw response predicted by the Kirchhoff approximation remains within 1 dB of 
the MOOT solution as a function of the bandwidth for the case of a P-wave 
obliquely incident on a 0.381 mm radius crack in steel ( pk b  = 5.0). 
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Fig. 10.28. Very wide-band simulated P-wave pulse-echo responses for a 0.381 
mm radius crack in steel for angles of 40, 45, 50, and 55 degrees. Kirchhoff 
approximation (solid line), MOOT solution (dashed line). 

non-dimensional wave number pk b = 5.0. Although the curves at other 
wave numbers have different shapes, the trend shown in Fig. 10.27 remains 
the same for those other cases, namely the angular range where the 
Kirchhoff approximation is accurate can be as small as 15-20 degrees for 
very narrow bandwidth systems but as high as 55-60 degrees for very wide 
band systems. 

 To understand why the Kirchhoff approximation works better as 
the bandwidth increases consider Fig. 10.28 which shows a series of wave 
forms simulated by the Kirchhoff approximation and MOOT for the same 
0.381 mm radius crack case examined in Fig. 10.27 but where all 
frequencies from 0-20 MHz were retained in calculating the time domain 
responses, yielding a very high bandwidth response. From Fig. 10.28 it can 
be seen that for angles from 40 to 55 degrees the flash point responses 
predicted by the Kirchhoff approximation agree well with those of the 
MOOT solution although the Kirchhoff approximation does predict a 
somewhat smaller trailing flashpoint signal than MOOT. Up to the 
55 degree angle case the flashpoint signals are the largest signals present in 
the crack response but the MOOT solution also contains later arriving 
responses not predicted by the Kirchhoff approximation that grow as the 
angle increases. As the bandwidth decreases, these later arriving waves 
merge with the flashpoint responses, generating peak-to-peak responses 
that can differ significantly from the Kirchhoff approximation, which only 
contains the flashpoint signals.  
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Fig. 10.29. A very wide-band simulated P-wave pulse-echo responses for a 0.381 
mm radius crack in steel for an incident angle of 75 degrees. Kirchhoff approxi-
mation (solid line), MOOT solution (dashed line). 

 

Ultimately the Kirchhoff approximation must fail at very high angles 
since in this approximation the flash point signals go to zero as the incident 
angle approaches 90 degrees while the exact solution remains finite. As an 
example of a very high angle case consider the flaw response at an angle 
of 75 degrees as shown in Fig. 10.29. At this angle the trailing flashpoint 
response predicted by the Kirchhoff approximation is much smaller than 
that given by the MOOT solution and the later arriving waves now are 
larger than either of the flashpoint responses so that the peak-to-peak 
response predicted by the Kirchhoff approximation is significantly in error. 
But as can be seen in Fig. 10.29 the Kirchhoff approximation continues to 
accurately model the first arriving flashpoint signal. It can also be seen 
from Fig. 10.29 that even for this angle the Kirchhoff approximation 
continues to model the arrival times of both flash point signals accurately. 
The arrival times of such crack tip signals are used in crack sizing methods 
such as the time-of-flight- diffraction (TOFD) method [10.3] and equivalent 
flaw sizing methods [Fundamentals], so the Kirchhoff approximation can 
be reliably used as the basis for those sizing methods. 
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Fig. 10.30. The pulse-echo scattering of a cylindrical side-drilled hole of radius b 
and length L. The incident wave direction, i

βe , is assumed to lie in a plane perpendi-
cular to the axis of the cylinder. 

10.6 The Kirchhoff Approximation for Side-drilled Holes 

Another scattering geometry that is commonly used in NDE calibration 
experiments is the side-drilled hole. This is a case where we can also obtain 
explicit results for the scattering amplitude in the Kirchhoff approximation. 
We will give the derivation here since it is not readily available in the 
literature. Consider the case of pulse-echo where the axis of a side-drilled 
hole of radius b and length L is normal to the plane of incidence (the plane 
containing the incident wave direction and the normal to the curved side of 
the side-drilled hole (Fig. 10.30). Equation (10.12) is again applicable to 
this case so the response of the side-drilled hole in the Kirchhoff approxi-
mation is given by 

( ) ( ) ( ) ( ); exp 2 .
2

lit

i i i s i s
S

ik
A ik dSββ β β β

βπ
−

− = ⋅ ⋅∫e e e n x e x  (10.46)

Now, consider a surface S ′  that extends the lit surface to infinity in the i
βe  

direction and a surface at infinity, S ∞ , that closes this extended surface as 
shown in  Fig. 10.31. Since  0i

β ⋅ =e n  on S ′  and the integrand on S ∞   will  
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Fig. 10.31. The cross-section of the side-drilled hole showing the lit surface, litS , 
and the extension of that surface by the surfaces S ′  and S ∞  to enclose the volume 
V ′ . 

 
Fig. 10.32. The cross-sectional area, zS , for the side-drilled hole geometry. 

vanish if we add a small amount of damping to the plane wave term 
( )exp 2 s iik β

β ⋅x e , we can write 

( ) ( ) ( ) ( ); exp 2
2

lit

i i i s i s
S S S

ik
A ik dSββ β β β

βπ ∞′+ +

−
− = ⋅ ⋅∫e e e n x e x  (10.47)

and then use the divergence theorem to write the integral over the closed 
surface in Eq. (10.47) as a volume integral over the volumeV ′  within this 
closed surface: 

( ) ( )
2

; exp 2 .i i i
V

k
A ik dVββ β β

βπ ′

− = ⋅∫e e e x  (10.48)
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If we take the z-axis as along the incident wave direction then i zβ ⋅ =e x  
and we can write the volume element as ( )zdV S z dz=  where ( )zS z  is the 
cross-sectional area of the volume perpendicular to i

βe . For the volume 
V ′ , however, we have directly from the geometry (see Fig. 10.32) 

( ) 2 2

0

2 0
2 0

z

z b

S z L b z b z
Lb z

< −⎧
⎪⎪= − − < <⎨
⎪ >⎪⎩

 (10.49)

so that Eq. (10.48) becomes 

( ) ( )

( )

2 0
2 2

2

0

2
; exp 2

2
exp 2 .

i i
b

Lk
A b z ik z dz

Lbk
ik z dz

ββ β
β

β
β

π

π

−

∞

− = −

+

∫

∫

e e
 (10.50)

In the first integral in Eq. (10.50) let /x z b= −  and perform the integration 
explicitly for the second integral, again ignoring the limit at infinity by 
adding a small amount of damping to the complex exponential. We find 

( ) ( ) ( )
2

1
2

0

2
; 1 exp 2 .i i

L k b iLbk
A x ik bx dxβ ββ β

βπ π
− = − − +∫e e  (10.51)

But from Gradshteyn and Ryzhik [10.4] 

( ) ( )

( ) ( )

1
2

1
0

1
2

1
0

1 31 cos 2 2
2 2

1 31 sin 2 2
2 2

x kbx dx J kb
kb

x kbx dx S kb
kb

π

π

⎛ ⎞ ⎛ ⎞− = Γ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞− = Γ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫

∫
 (10.52)

and 3
2 2

π⎛ ⎞Γ =⎜ ⎟
⎝ ⎠

 so that 

( ) ( ) ( ) ( ) ( )
1 1; 2 2 ,

2i i

k b L i k b L
A J k b iS k bβ ββ β

β β π
⎡ ⎤− = − +⎣ ⎦e e  (10.53)

where 1J  is a Bessel function of order one and 1S  is a Struve function of 
order one. Since these special functions can be easily calculated numerically, 
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Eq. (10.53) gives us an explicit expression for the pulse-echo scattering 
amplitude of the side-drilled hole. At high frequencies [10.5] 

( ) ( )

( ) ( ) ( ) ( )

( )

2

1 1

2
1 1 1

2 12 2

2 2 2

1 exp 3 / 4 2 ,

S kb Y kb O
kb

J kb iY kb H kb

i kb
kb

π

π
π

⎛ ⎞≅ + + ⎜ ⎟
⎝ ⎠

− =

≅ ⎡ − ⎤⎣ ⎦

 (10.54)

where ( )2
1H  is a Hankel function of the second kind of order one and 1Y  is 

a Bessel function of the second kind of order one. Placing these approxi-
mations into Eq. (10.53), at high frequencies the pulse-echo scattering 
amplitude is given by 

( ) ( ); exp 3 / 4 2 .
2i i

k bLA i k bββ β
βπ

π
⎡ ⎤− ≅ −⎣ ⎦e e  (10.55)

At low frequencies, we have instead 

( ) ( )

( ) ( )

1

2
1

2
2

82
3

kbJ kb kb

S kb kb
π

≅ =
Γ

≅

 (10.56)

so that the scattering amplitude becomes 

( );i i

ik bL
A ββ β

π
− ≅e e  (10.57)

although we cannot expect the Kirchhoff approximation to be valid at 
these low frequencies. 

Figures 10.33, 10.34 plot the magnitude and phase of the nor-
malized pulse echo scattering amplitude versus wave number from the 
Kirchhoff solution, Eq. (10.53), and compares these results to the exact 
separation of variables solution for the two-dimensional pulse-echo P-
wave scattering amplitude [10.6]. It can be seen that the Kirchhoff 
approximation agrees well with the separation of variables solution, 
particularly at the higher frequencies. In Fig. 10.33 both solutions 
approximately follow the high frequency square root behavior in frequency 
given by Eq. (10.55). The exact separation of variables solution has more 
oscillations than the Kirchhoff approximation since, like the spherical void 
case, the exact solution oscillations here come from the interference of  the  
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Fig. 10.33. The three-dimensional normalized pulse-echo P-wave scattering 
amplitude versus normalized wave number for a side drilled hole in the Kirchhoff 
approximation (solid line) and from the exact separation of variables solution 
(dashed line). 

 
Fig. 10.34. The phase of the three-dimensional normalized pulse-echo P-wave 
scattering amplitude versus normalized wave number for a side drilled hole in the 
Kirchhoff approximation (solid line) and from the exact separation of variables 
solution (dashed line). 
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leading edge response of the side-drilled hole with a creeping wave that is 
not contained in the Kirchhoff approximation.  

Since our Kirchhoff solution was obtained by considering the res-
ponse of a three-dimensional cylinder of length L while the separation of 
variables solution is for the two-dimensional scattering from an infinitely 
long cylinder, some remarks are needed to describe how we made the 
comparison shown in Figs. 10.33 and 10.34. In two-dimensional scattering 
problems the waves in the far-field of the scatterer are not spherical waves 
but cylindrical waves and the two dimensional far-field scattering 
displacement ( )1 2,scatt scatt scattu u=u is given by [Fundamentals] 

( ) ( ) ( ) ( ) ( )0 0

; ;
, exp exp ,

p s
i s i sscatt

p s s s
s s

U ik R U ik R
R R

β β

ω = +
A e e A e e

u y
% %

 (10.58)

where the scattering amplitudes, ( );i s
β αA e e% , now are two-dimensional 

vectors and all the distances also are measured in a two dimensional space 
( )1 2,y y . In this case, if we compute the same component of the scattering 
amplitude as done for the three-dimensional case, we obtain 

( ) ( ) ( )2 ; ; ,D i s i sA β α β α α= ⋅ −e e A e e d%  (10.59)

where we use the “2D” label to emphasize that the calculation is for the 
two-dimensional scattering amplitude. It can be shown that this component 
is given by [Fundamentals] 

( )2 2

1;
8

exp ,

D i s s
C

s

iA d n ik C e n u
k c

ik e y dc

β α α α
σ γσ γ α σδγν δ γ ν

α α

α
α λ λ

τ
π ρ

⎡ ⎤= +⎣ ⎦

⎡ ⎤⋅ −⎣ ⎦

∫e e % %
 (10.60)

      (no sum on s, α ) 
 

where nγ  are the components of the outward normal to the flaw and the 
integration is a counterclockwise line integral around the edge of the two-
dimensional scatterer. All the repeated Greek subscripts in Eq. (10.60) are 
summed over the values (1,2) only (no sum on s, α). Recall Eq. (10.7) for 

 
 
 

the  same  three-dimensional  scattering amplitude  component is given  by 
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Fig. 10.35. The three-dimensional normalized pulse-echo SV-wave scattering 
amplitude versus normalized wave number for a side drilled hole in the Kirchhoff 
approximation (solid line) and from the exact separation of variables solution 
(dashed line). 

 
Fig. 10.36. The phase of the three-dimensional normalized pulse-echo SV-wave 
scattering amplitude versus normalized wave number for a side drilled hole in the 
Kirchhoff approximation (solid line) and from the exact separation of variables 
solution (dashed line). 
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( )

( ) ( )

3 2

1;
4

exp .

D i s l lk k lkpj sk p j
S

s s s

A d n ik C e n u
c

ik dS

β α α α
α

α

α
α

τ
πρ

⎡ ⎤= +⎣ ⎦

⋅ − ⋅

∫e e

x e x

% %
 (10.61)

      (no sum on s, α ) 
 

From Eqs. (10.60) and (10.61) we see that the two- and three-dimensional 
forms are very similar. In fact, if in the three-dimensional case the geometry 
and fields were all two-dimensional, i.e. if we set 3 3 3 3 0sn d e uα α= = = =%  
and assume ( )1 2, , ,y yαβ αβτ τ ω=% % ( )1 2, ,u u y yβ β ω=% %  we would obtain 

( )

( )

3 2;
4

exp .

D i s s
S

s

LA d n ik C e n u
c

ik e y dc

β α α α
σ γσ γ α σδγν δ γ ν

α

α
α λ λ

τ
πρ

⎡ ⎤= +⎣ ⎦

⋅ −

∫e e % %
 (10.62)

      (no sum on s, α ) 
 

Note that all these assumptions are fulfilled exactly by our three-dimensional 
solution for the side-drilled hole in the Kirchhoff approximation. These are 
also reasonable assumptions for more general scattering calculations if we 
assume the incident wave is a quasi-plane wave propagating in a plane 
which is perpendicular to the axis of the side-drilled hole. Comparing Eqs. 
(10.60) and (10.62) we find 

( ) ( )1/ 2
3

2

;2i; .D i s
D i s

A
A

k L

β α
β α

α

π⎛ ⎞
= ⎜ ⎟

⎝ ⎠

e e
e e  (10.63)

Equation (10.63) was used to transform the two-dimensional separation of 
variables scattering amplitude, 2DA , into an equivalent three-dimensional 
scattering amplitude, 3DA
phase of this exact three-dimensional amplitude was plotted and compared 
with the Kirchhoff solution. Thus, the quantities being plotted for both 
curves in those figures are based on 3 /DA L . Figures 10.35 and 10.36 show 
the corresponding results for the pulse-echo scattering amplitude of the 
side-drilled hole calculated for shear (SV) waves. In this case the exact 
solution has deep oscillations since stronger SV- creep waves are 
generated than in the P-wave case. The  Kirchhoff solution is unchanged in  
 

. In Figs. 10.33 and 10.34 the magnitude and 
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Fig. 10.37. A comparison of the peak-to-peak pulse-echo responses of a side drilled 
hole of radius b as calculated by the Kirchhoff approximation and the method of 
separation of variables where the non-dimensional wave number and bandwidth 
are varied. (a) Pulse-echo P-wave responses, (b) pulse-echo SV-wave responses. 
White region: peak-to-peak differences < 1 dB, Gray region: differences > 1 dB 
and <1.5 dB, Black region: differences > 1.5 dB. 
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form since Eq. (10.53) is applicable to both P- and SV-waves, but the nor-
malized wave number appearing in the SV-wave case is sk b .  

 The accuracy of the Kirchhoff approximation for the side drilled 
hole can also be studied as a function of the wave number and bandwidth 
as done with the spherical void. Like the spherical void, there is an exact 
separation of variables solution available for a cylindrical void that can be 
used to test the accuracy of the Kirchhoff approximation (see section 10.8). 
Figures 10.37 (a), (b) show the regions of validity of the Kirchhoff approxi-
mation for the side drilled hole that were obtained in the same fashion as 
Figs. 10.23 and 10.24 for the spheroid void and crack, respectively. Figure 
10.37 (a) shows that for the pulse-echo P-wave case, the Kirchhoff approxi-
mation for the peak-to-peak response of the side drilled hole remains 
accurate (within 1 dB of the exact solution) for wave numbers even smaller 
than one and that there are virtually no bandwidth effects. In contrast the 
pulse-echo SV-wave response begins to show some small bandwidth effects 
at sk b = 8 and the Kirchhoff approximation becomes inaccurate at all 
bandwidths for 4sk b < , approximately. 

10.7 The Born Approximation 

Another approximation that is useful for simulating flaw scattering responses 
is the Born approximation [Fundamentals], [10.7-10.11]. This approximation 
is formally a low frequency, weak scattering approximation but we will 
show that with some modifications it may be applicable under a wider set 
of conditions. The Born approximation uses an exact volume integral repre-
sentation of the far-field scattering amplitude given by [Fundamentals] 

( )

( ) ( )

2
2;

4

exp
f

q m
i s q sk k q m j

jV

s

d uA u ik e C
c x

ik dV

α
β α α

α
α

α
α

ρ ω
πρ

⎡ ⎤− ∂
= ∆ + ∆⎢ ⎥

∂⎢ ⎥⎣ ⎦

⋅ − ⋅

∫e e

x e x

%
%

 (10.64)

      (no sum on s, α ) 
 

where fV  is the volume of the flaw .  In  Eq.  (10.64) ( ) ,fρ ρ ρ∆ = −x  
( )f

kqmj kqmj kqmjC C C∆ = −x  , where ( ) ( ), f
f kqmjCρ x x

 
elastic constants of the  flaw  (both of which can vary  with position in  the  

 are the density and 
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Fig. 10.38. The Born approximation assumes that for a weakly scattering inclusion, 
the fields in the flaw are to first order the fields of the incident wave traveling in 
the host material as if the flaw was not present, as shown. 

flaw) while ρ  and kqmjC  are the density and elastic constants of the host 
material surrounding the flaw (both of which are assumed to be constants, 
i.e. the host material is taken to be homogeneous). The Born approxi-
mation assumes that the flaw is sufficiently similar to the surrounding host 

mately by those of the known incident wave. Physically, this means that to 
first order we are assuming that the incident wave passes through the flaw 
undisturbed, as shown in Fig. 10.38.  For a pulse-echo setup and a homo-
geneous, isotropic flaw in a homogeneous, isotropic medium, for example, 
this results in a scattering amplitude expression given by [Fundamentals] 

( ) ( ) ( )
2

2; exp 2
2

f

i i i
V

c
A ik dV

c c
ββ β β

β
β β

ω ρ
π ρ

⎡ ⎤∆− ∆
− = + ⋅⎢ ⎥

⎢ ⎥⎣ ⎦
∫e e x e x  (10.65)

that can, like the Kirchhoff approximation, be analytically evaluated for 
some simple flaw shapes. A similar expression can also be obtained for 
more general pitch-catch setups [Fundamentals]. An important feature of 
Eq. (10.65) is that the material properties of the flaw (contained in the 
coefficient of the integral) are completely separated from the flaw geometry 
information (contained in the integral itself). This separation has allowed 
the Born approximation to be successfully used in a number of flaw sizing 
applications [Fundamentals]. For a spherical inclusion Eq. (10.65) gives 
[Fundamentals] 
 
 

material that the fields appearing in Eq. (10.64) can be replaced approxi-
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Fig. 10.39. The impulse response for the pulse echo scattering of a spherical inclusion 
of radius b in the Born approximation. The time t = 0 is when the incident wave 
front reaches the center of the flaw. 

( ) ( ) ( )sin 2 2 cos 2
; ,

2i i

k b k b k bc
A b

c k b
β β βββ β

β β

ρ
ρ

⎡ ⎤−⎡ ⎤∆∆
− = − + ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
e e  (10.66)

which can also be written in the alternate form 

( ) ( )12 3
2

; 4 ,
2i i

j k b
A k b F

k b
ββ β

β
β

− = −e e  (10.67)

where 1j  is a spherical Bessel function of order one and  

1 .
2

cF
cβ

ρ
ρ

⎛ ⎞∆ ∆
= +⎜ ⎟⎜ ⎟

⎝ ⎠
 (10.68)

If one inverts either Eq. (10.66) or (10.67) into the time domain, the 
impulse response of the spherical inclusion is the wave form shown in 
Fig. 10.39 [Fundamentals]. Like the Kirchhoff approximation, the Born 
approximation predicts a leading edge delta function response. This delta 
function is followed by a constant response as the wave passes through the 
entire flaw, and then one sees a trailing edge delta function response 
(which is equal to the leading edge delta function response) at the time 
when the wave has just finished passing through the flaw. Like the 
Kirchhoff approximation, the Born approximation is a single interaction 
type of approximation so that it neglects any other wave-flaw interactions 
such as creeping waves, multiple internal reflections, etc. Like the 
Kirchhoff approximation  the  Born approximation  can also be  applied  to  
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Fig. 10.40. The time domain pulse-echo P-wave response of a 1 mm radius 
spherical inclusion in steel where the density and compressional wave speed are 
both ten percent higher than the host steel. Solid line: Born approximation, dashed 
line: separation of variables solution. 

 

 
Fig. 10.41. The time domain pulse-echo P-wave response of a 1 mm radius spherical 
inclusion in steel where the density and compressional wave speed are both fifty 
percent higher than the host steel. Solid line: Born approximation, dashed line: 
separation of variables solution. 
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complex shaped flaws by performing the necessary integrations numerically.  
 Since the method of separation of variables can be used to obtain 

the “exact” solution for spherical inclusions, we can use that method to 
examine the accuracy of the wave form predictions of the Born approxi-
mation, just as we did with the Kirchhoff approximation for the spherical 
void (see Fig. 10.10). In the void case we used the separation of variables 
method to calculate the response to a relatively high frequency and then 
subtracted out (in the frequency domain) the known leading edge delta 
function response before inverting the result into the time domain with an 
FFT. Since the high frequency content of the other wave contributions 
(remainder of the lit surface response, creeping wave, etc.) is very small in 
pulse-echo for P-waves incident on a spherical void, we get in effect an 
infinite bandwidth time-domain response when we simply add the delta 
function back into the wave form symbolically, as done in Fig. 10.10. For 
weak-scattering inclusions the same process is not possible since the front 
and back surfaces are both delta functions. In the Born approximation 
these delta functions are always of equal amplitude but in comparing the 
Born approximation with the method of separation of variables it is found 
that the back surface delta function is only equal in amplitude to the front 
surface delta function in the very weak scattering limit and for all other 
flaws the back surface changes amplitude in an unknown fashion. Thus we 
cannot remove the delta functions from the Born response analytically, but 
we can still calculate the Born approximation and separation of variables 
responses over a range of frequencies and smoothly taper the high 
frequency response to zero with a cosine-squared windowing filter to 
reduce time domain “ringing”. This is the method used here to compare the 
Born and separation of variables solutions in the following discussions. In 
all cases the cosine-squared filter began with values of one at 10 MHz and 
ended with a zero value at 20 MHz.  

Figure 10.40 shows the pulse-echo P-wave response calculated in 
this fashion for a 1 mm radius spherical inclusion in steel where both the 
density and compressional wave speed of the inclusion was taken to be ten 
percent higher than the host steel. It can be seen for even these relatively 
small material changes the Born approximation does not accurately 
represent both the amplitude and time of arrival of the back surface 
response and there are other later arriving waves that are not predicted by 
the Born approximation. If one examines the same size inclusion in steel 
but takes the density and compressional wave speed to be 50% higher than 
the host then as seen in Fig. 10.41 the Born approximation is even more in 
error, with the back surface response  located at a time well removed  from  
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Fig. 10.42. The time domain pulse-echo P-wave response of a 1 mm radius spherical 
inclusion in steel where the density and compressional wave speed are both fifty 
percent higher than the host steel. Solid line: Doubly Distorted Born approximation, 
dashed line: separation of variables solution. 

the actual back surface signal (located at the arrow in Fig. 10.41) and even 
the front surface leading edge response is significantly in error (Note: the 
specific changes in density and wave speed taken for this case and others 
that will be considered later are not intended to represent any particular 
real inclusion but are simply being used here to study the effects of large 
or small differences between the host and flaw materials). Having the 
leading edge response amplitude in error is particularly troublesome 
because it means that the Born approximation could not be reliably used to 
predict the detectability of inclusions except in the very weak scattering 
limit, which is not likely to be found in many real tests. A modified ad hoc 
approximation, called the doubly distorted Born approximation (DDBA) 
[10.12] was recently developed to try to remove some of these deficiencies 
of the ordinary Born approximation. In the DDBA, it was recognized that 
the wave field traveling in the flaw does not travel at the wave speed of the 
host material as assumed in the ordinary Born approximation. Instead, 
disturbances in the flaw should be traveling at the wave speed of the flaw 
material. Thus, the wave speeds appearing in both the integral kernel of the 
Born approximation expression and in the coefficient of that integral were 
changed in the DDBA from that of the host material to that of the flaw. For 
the pulse-echo response of a spherical inclusion, this change causes 
Eq. (10.67) to become instead 
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where /f fk cβ βω= is the wave number based on the flaw wave speed, 

fc β , and the function, F% , is given by 
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Figure 10.42 shows the result of using the DDBA on the same case shown 
in Fig. 10.40 (the pulse-echo P-wave response of a 1 mm radius inclusion 
in steel where the density and compressional wave speed are 50% higher 
than the host). Comparing the DDBA results of Fig. 10.42 with the Born 
approximation results of Fig. 10.41, we see that the DDBA amplitude of 
the leading edge response is closer to the separation of variables result than 
that of the Born approximation and also the time separation of the front 
and back surface responses in the DDBA now agrees with the separation of 
variables solution. However, the time of arrival of the front surface leading 
edge response is now incorrect, as seen in Fig. 10.41. The improvement in 
the leading edge response obtained with the DDBA can be understood by 
examining the behavior of the functions F and F% . In [Fundamentals] it 
was noted that in pulse-echo the F function is just the weak scattering limit 
of the plane wave reflection coefficient, ;

12Rβ β  between the host and flaw 
materials, i.e. 
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The functions F and F%  together with ;
12Rβ β are plotted versus 

/ /c cβρ ρ λ∆ = ∆ =  in Fig. 10.43. From that figure, we can see that the F%  

function does a much better job of following the behavior of ;
12Rβ β  for even 

large changes of density and wave speed. Since at high frequencies our 
previous discussions have shown that the pulse-echo leading edge response  
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Fig. 10.43. A comparison of the F  and F%  functions and the plane wave reflection 
coefficient, ;

12Rβ β . 

is controlled by ;
12Rβ β  (see Eq. (10.19)), the closer agreement of F%  to this 

reflection coefficient is the reason for the improvements seen in Fig. 10.42. 
However, this fact also suggests that if one replaces the F%  function in the 
DDBA by ;

12Rβ β  and includes a phase correction term to the DDBA to fix 
up its incorrect arrival time for the leading edge response, one should have 
a new model that agrees better with the separation of variables result. This 
new model we will call the modified Born approximation (MBA) [10.13]. 
In the MBA model Eq. (10.69) becomes 
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Figure 10.44 shows the result of using the MBA model on the same case 
shown in Figs. 10.41 and 10.42 (the pulse-echo P-wave response of a 
1 mm radius inclusion in steel where the flaw density and compressional 
wave speed are 50% higher than the host). It can be seen that the leading 
edge amplitude and time of arrival are now both correct as is the time of 
arrival of the back surface response. The MBA model will still model the 
amplitude of the back surface response as equal to the front surface 
amplitude  and  will  not  contain  any of  the  other  responses  seen in  the  
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Fig. 10.44. The time domain pulse-echo P-wave response of a 1 mm radius spherical 
inclusion in steel where the density and compressional wave speed are both fifty 
percent higher than the host steel. Solid line: MBA model, dashed line: separation 
of variables solution. 

 

Fig. 10.45. The time domain pulse-echo P-wave response of a 1 mm radius spherical 
inclusion in steel where the density and compressional wave speed are both one 
hundred percent higher than the host steel. Solid line: MBA model, dashed line: 
separation of variables solution. 
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separation of variables solution, but in general Eq. (10.72) gives much 
better results than either the original Born or the DDBA models. Like the 
DDBA the MBA model is an ad hoc modification of the Born approxi-
mation but it appears to be a useful modification for dealing with inclusions 
that may be far from being weak scatterers. This can be seen in Figure 
10.45 where the pulse-echo P-wave response for a 1 mm radius inclusion 
in steel is shown for a case with the flaw density and wave speed both 
100% higher than that of the host material. Even in this extreme case the 
MBA model continues to capture the leading edge response correctly. For 
the pulse-echo response of a more general shaped inclusion, the MBA gives, 
from Eq. (10.65) 

( ) ( )
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e e
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 (10.73)

where er is the distance in the incident wave direction from a fixed point 
(usually the “center” of the flaw) to the point on the flaw surface where the 
incident wave front first touches the flaw.  

One could of course use Eq. (10.19) to model just the leading edge 
response of an inclusion, even for more general pitch-catch setups. The 

echo inspections  it also captures the main features of the entire flaw response 
correctly in the weak scattering limit. 

10.8 Separation of Variables Solutions 

For spherical or cylindrical shaped scatterers in an elastic solid, one can 
use the method of separation of variables to express the exact scattering 
solution as an infinite sum of spherical Hankel functions and associated 
Legendre functions for the case of the sphere, and Hankel functions and 
complex exponential functions for the cylinder [10.14 – 10.25]. Even 
though both geometries are very simple shapes, they are useful for consi-
dering important scatterers such as pores or a side-drilled hole and they 
can serve as reference solutions for testing the accuracy of approximate 
methods. Although the separation of variables solutions are exact, they are 
expressed in terms of infinite sums that must be calculated numerically and 
more terms are needed as the scatterer becomes larger or the frequency 
becomes higher. Normally this is not a problem since with modern PCs  

advantage of using Eq. (10.73) is that although it is only valid for pulse-
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it is possible to calculate scattering results for non-dimensional frequencies 
as high as, say, 100kb ≅ . 

In this section we will give the separation of variables solution for 
four cases: the pulse-echo response of a spherical void for both P-waves 
and S-waves, and the pulse echo response of a cylindrical void for P-waves 
and S-waves. These solutions have also been coded in MATLAB functions 
which are given in Appendix G.  

First, consider the case of the pulse-echo P-wave response of a 
spherical void of radius b. Using the method of separation of variables, we 
find that [10.14], [Fundamentals] 
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For the SV-wave case, the separation of variables solution is of the form 
[10.18] 
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and 
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The pulse-echo P-wave time-domain response for a spherical void was 
shown previously in Fig. 10.10. There we could simply subtract off the 
leading edge response from the separation of variables solution in the fre-
quency domain and then apply the inverse Fourier transform to the remaining 
portion of the response, which contains only low frequency signals. 
However, for the pulse-echo SV-wave response, the creeping waves are 
more significant and extend to very high frequencies. Figure 10.46 shows 
the magnitude of the pulse-echo SV-wave scattering amplitude of a 0.5 
mm radius spherical pore in steel. The deep oscillations in the SV-wave 
response at high frequencies in comparison with the highly damped 

simple subtraction of the leading edge response will not lead to a response 
confined only to low frequencies. However, we can follow the procedure 
used in the Born approximation and apply a cosine-squared windowing 
filter to the frequency domain scattering amplitude before inverting the 
signal back into the time domain. Figure 10.47 shows the resulting time-
domain SV-wave signal for the 0.5 mm radius pore in steel. For com-
parison purposes Fig. 10.48 shows the time-domain pulse-echo P-wave 
response for the 0.5 mm radius spherical pore in steel as calculated with 
the same filter function used in the Born approximation studies. It can be 
seen while the leading edge responses are almost identical in the two cases 
that the creeping wave in the P-wave case is indeed much smaller than in 
the SV-wave case. 

For the case of a cylindrical void of radius b with the incident 
wave direction in a plane perpendicular to the axis of the cylinder, the 2-D 
separation of variables solution  can be used to  generate a normalized  3-D  

oscillations appearing in Fig. 10.8 for the P-wave response shows that a 
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Fig. 10.46. The magnitude of the pulse-echo SV-wave response, ( );i iA −e e , 
versus frequency for  a 0.5 mm radius spherical void in steel ( 5900pc =  m/s, 

3200sc =  m/sec) as calculated by the method of separation of variables. 

 
Fig. 10.47. The time domain response corresponding to  Fig. 10.46 by applying a 
low-pass cosine-squared windowing filter between 10 and 20 MHz to the 
separation of variables solution and then inverting the result into the time domain 
with the inverse Fourier transform. 
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scattering amplitude for a cylinder of length L, as discussed previously. 
For an incident P-wave 
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with 
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for ( )1,2i = . 
For S-waves, the polarization vector of the incident wave is 

assumed to lie in the plane perpendicular to the axis of the cylinder, so if 
we let that axis be horizontal, we are considering vertically polarized  
S-waves, i.e. SV-waves. Note that the 2-D scattering problem for horizon-
tally polarized shear (SH) waves is just equivalent to a purely scalar 
scattering problem with no mode conversion while the SV-case does involve 
a coupling between P-waves and SV-waves. Here, we will only consider 
the SV-wave case as that is the one most commonly encountered in NDE 
setups. Again, transforming the 2-D separation of variables solution to a 
normalized 3-D scattering amplitude we have 
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Fig. 10.48. The time-domain pulse-echo P-wave response of a 0.5 mm radius 
spherical void in steel ( 5900pc =  m/s, 3200sc =  m/sec) obtained by applying a 
low-pass cosine-squared windowing filter between 10 and 20 MHz to the 
separation of variables solution and then inverting the result into the time domain 
with the inverse Fourier transform. 

 
Fig. 10.49. The time-domain pulse-echo P-wave response of a 0.5 mm radius 
cylindrical void in steel ( 5900pc =  m/s, 3200sc =  m/sec) obtained by applying a 
low-pass cosine-squared windowing filter between 10 and 20 MHz to the 
separation of variables solution and then inverting the result into the time domain 
with the inverse Fourier transform. 
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Fig. 10.50. The time-domain pulse-echo SV-wave response of a 0.5 mm radius 
cylindrical void in steel ( 5900pc =  m/s, 3200sc =  m/sec) obtained by applying a 
low-pass cosine-squared windowing filter between 10 and 20 MHz to the separation 
of variables solution and then inverting the result into the time domain with the 
inverse Fourier transform. 
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These solutions were used in Figs. 10.33-36 to calculate the “exact” 
solutions that were compared with the Kirchhoff approximation in the 
frequency domain. We can calculate these pulse-echo separation of 
variables solutions and then use a cosine-squared window again, as done 
for the spherical void, that allows us to invert these frequency domain 
values back into the time domain. The results for the P-wave response of a 
0.5 mm radius cylindrical void in steel are shown in Fig. 10.49, and the 
corresponding SV-wave response is shown in Fig. 10.50. It can be seen 
that the creeping wave in the P-wave case is very small while it is much 
larger in the SV-wave case. In both cases, the early time response of the 
cylinder (Note: this early time response is not the leading edge response 
calculated earlier for 3-D scatterers), which is predicted well by the 
Kirchhoff approximation, is the dominant part of the overall pulse-echo 
response, which demonstrates that the Kirchhoff approximation works well  
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except for very small flaws where the creeping wave and early time responses 
merge. 

10.9 Other Scattering Models and Methods 

In addition to the Born and Kirchhoff approximations there are other 
approximate methods that have been used to model flaw scattering 
problems, including elastodynamic ray theory (used to model the 
scattering of cracks) [10.26], [10.27] and approximate low frequency 
expansions [10.28 -10.30]. The high frequency ray methods lead to rather 
complex expressions and in certain cases singularities appear that 
invalidate the approximation. Low frequency expansions can produce 
some explicit analytical results but these have been of limited use in NDE 
applications because the responses of flaws of interest often are well 
beyond the range where such expansions are valid. This is unfortunate 
since it has been shown that there is much useful information in the low 
frequency response of flaws [10.30]. 

 Besides the method of separation of variables there are five other 
numerical methods that have been commonly used for solving flaw 
scattering problems: the T-matrix method or the closely related method of 
optimal truncation (MOOT), the method of finite differences, the finite 
element method, the boundary element method, and the elastodynamic 
finite integration technique (EFIT).  

 The T-matrix method and the method of optimal truncation 
(MOOT) express the scattering solution for shapes other than spheres and 
cylinders in terms of the same special functions used in the method of 
separation of variables [10.31-10.35]. These two methods differ only in the 
way they approximately satisfy the boundary conditions. Both spheroidal 
and circular crack-like geometries have been considered with these 
methods. Like the separation of variables methods, these solutions are 
expressed in terms of infinite series and it is necessary to keep a 
sufficiently large number of terms in order to guarantee convergence of the 
solutions.  

 The method of finite differences has also been applied to flaw 
scattering problems [10.36], [10.37]. Unlike the separation of variables or 
T-matrix methods, this approach approximates the governing differential 
equations of motion directly in the time domain for the elastic material 
surrounding the flaw and replaces those equations with corresponding 
difference equations which are then solved numerically for field values 
defined on a mesh (or “grid”) of discrete points as a function of time. This  
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method can in principle handle rather general problems but in practice 
there are a number of issues that have limited the use of this method. First, 
it is convenient to use regular shaped meshes (such as rectangular meshes) 
with this method, but such meshes do not readily allow one to satisfy the 
boundary conditions at the flaw surface if that surface is rather complex. 
Second, since all of the material exterior to the flaw must be meshed, to 
keep the computational burden manageable the mesh must eventually be 
artificially truncated, leading to “fictitious” boundaries. Extraneous waves 
are generated at such fictitious boundaries that must be suppressed. This is 
often done by the application of special absorbing boundary conditions at 
the fictitious boundaries that minimize the extra waves generated or by 
keeping the fictitious surfaces sufficiently far from the flaw so that the 
extraneous waves do not contaminate the solution for the time interval 
considered. Finally, another problem inherent to the finite difference 
method is the large amount of computations needed, particularly for 3-D 
scattering problems. Thus even on modern computers, many of the finite 
difference solutions one sees are for 2-D problems. One nice feature of this 
method, however, is that it yields the solutions at all points in the solid 
directly, which allows one to view the complex wave/flaw interactions 
present in graphical form, including movies of those interactions. The 
mass-spring lattice model of Yim is a recent model of the finite difference 
type that has been used in this manner [10.38].  

 The finite element method, like the finite difference method, 
solves for the scattered fields on a mesh of discrete points [10.39], [10.40].  
In the finite element method, however, the mesh is generated by an 
assemblage of small elements which can have different shapes so that it is 
not difficult to adapt the mesh to even complicated flaw shapes. Unlike the 
finite difference method, however, the finite element method does not 
directly approximate the equations of motion but instead it minimizes an 
energy functional for the assemblage of elements where the fields and 
material properties in each element are approximated by relatively simple 
functions such as polynomials. This allows the finite element method to 
model very complex materials, including both inhomogeneous and 
anisotropic materials. Ultimately, the finite element method generates a 
large, banded system of simultaneous equations that must be solved 
numerically. Like the finite difference method, the finite element method 
must deal with fictitious boundaries and suppress the extra waves 
generated by those boundaries. Perhaps the greatest challenge faced with 
the finite element method is the “curse of small wavelength”, i.e. in order 
to maintain accurate solutions the finite element method must keep the 
element size very small (on the order of 5-10 elements per wavelength). 
Since most NDE applications use very high frequency waves (and hence 
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the corresponding wavelengths are very small) this limitation makes it very 
computationally intensive to simulate general 3-D problems, so that (like 
with finite differences) one often sees finite element solutions applied to 
simpler 2-D or axisymmetric situations.  

 The boundary element method is an attractive method for solving 
flaw scattering problems [10.41-10.45] since it uses a fundamental solution 
for waves in the solid to generate integral equations for the displacements 
and tractions on the flaw surface, and these are precisely the fields needed 
to calculate the scattered waves and the far-field scattering amplitude of 
the flaw. These integral equations are solved by breaking the flaw surface 
into small elements and assuming some simple form for the fields in each 
element, which leads to a large set of simultaneous equations. Unlike the 
finite element system, however, the boundary element system of equations 
is not banded. Because the boundary element method deals only with the 
fields on the surface of the flaw, there are no fictitious surfaces in the solid 
that need to be considered with this method. In fact, the boundary element 
method can easily handle flaw scattering problems in infinite regions. 
However, when dealing with volumetric flaws the boundary element 
solution can be contaminated by fictitious resonances that render the 
solution inaccurate at certain frequencies so that special procedures need to 
be taken to suppress this unwanted behavior. Like the finite element 
method the boundary element method is affected by the curse of small 
wavelength. Thus, it is generally very computationally expensive in terms 
of both computer storage and calculation time to consider 3-D scattering 
problems with the boundary element method for, say, 20kb > . Perhaps the 
most important limitation of this method is the need for a fundamental 
solution to generate the requisite integral equations. Although a funda-
mental solution for a homogeneous, isotropic solid is available in exact 
analytical form [Fundamentals], for homogeneous anisotropic materials 
the fundamental solution is only known in an integral form that must be 
calculated numerically [10.46] and such fundamental solutions are not 
available for general inhomogeneous materials.  

 The elastodynamic finite integration technique (EFIT) is similar in 
some respects to the finite difference method in that it works with an 
approximation of the equations of motion, but, unlike the finite difference 
method, EFIT uses an integral form of those equations of motion [10.47]. 
Like the finite difference and finite element methods, EFIT can serve as 
both a beam model and a flaw scattering model since both of those aspects 
of the wave-flaw interactions are treated simultaneously. Also, like the 
other numerical methods, the generality of the EFIT approach, which in 
principle can handle quite complex inhomogeneous and anisotropic media 
problems, has to be weighed against its overall numerical costs.  
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 There is still considerable opportunity for improving the state of the 
art in flaw scattering modeling for NDE applications. Although approximate 
methods such as the Kirchhoff and Born approximation are very valuable, 
they are limited in the features of the scattering process that they can 
simulate, while more exact numerical methods suffer from computational 
inefficiencies. Surface breaking cracks, porosity, and multiple distributed 
cracks (as found in stress-corrosion cracking problems), are examples 
where simple, efficient, and accurate scattering models are not currently 
available. 
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MATLAB function A_void is given that implements Eq. (10.14). The 
function A_void has as its argument a setup structure that contains all the 
necessary parameters for ultrasonic flaw response simulations. Rewrite 
that function as a new MATLAB function, A_pore, that requires only the 
parameters needed to calculate the scattering amplitude and returns this 
scattering amplitude with the function call: 

 
>> A = A_pore(f, b, c); 

 
where f contains the frequencies (in MHz) at which the scattering 
amplitude is to be evaluated, b is the pore radius (in mm), and c is the 
wave speed of the surrounding material (in m/sec). By similarly modifying 
the function A_crack given in Chapter 12, write a new MATLAB function, 
A_circ, for the pulse-echo response of a circular crack of radius b which 
has a calling sequence: 

 
>> A = A_circ(f, theta, b, c); 

 
where theta is the angle (in degrees) that the incident wave makes with the 
normal to the crack.  

 In MATLAB generate a vector of 200 frequency values ranging 
from 0 to 30 MHz and using these two MATLAB functions plot the 
magnitude of the P-wave pulse-echo scattering amplitude component 
versus frequency for a 1mm radius pore in steel (c = 5900 m/sec) and a 
1 mm radius crack in steel at an incident angle of 10 degrees. Compare 
your plots to Figs. (10.8) and (10.17). 

  
2. The time-domain pulse-echo scattering amplitude responses of a 
spherical pore and a circular crack in the Kirchhoff approximation were 
given by Eqs. (10.15) and (10.39), respectively. These time-domain signals 
were computed by performing the inverse Fourier transforms of 
Eqs. (10.14) and (10.36) exactly so that they are for an infinite bandwidth 
system. Here we want to examine these time-domain responses for finite 
bandwidths. 

(a) In MATLAB generate a vector, f, of 1024 frequencies ranging 
from 0 to 100 MHz using the function s_space (see Appendix G). Compute 
the scattering amplitude components of a spherical pore and circular crack 
for the parameters given in the previous exercise. Multiply these scattering 
amplitudes (element by element) with the output of the MATLAB function 
system_f(f, amp, fc, bw) which generates a Gaussian-shaped window of 
amplitude amp, centered at a frequency, fc, and having a 6 dB bandwidth, 
bw. Take amp = 1.0, fc = 5.0, bw = 4.0 (see Appendix G). Invert these 
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products into the time domain using IFourierT and plot the time domain 
signal versus the time, t. These results show the flaw response as would be 
typically measured in a relatively wideband ultrasonic system. 

 (b) Repeat part (a) but replace the function system_f by the 
function lp_filter (f, fstart, f, end) which is a low-pass filter that is unity for 
frequencies below fstart and is tapered smoothly to zero at the frequency 
fend (see Appendix G). For frequencies above fend the filter is zero. Use 
this function with fstart = 20 MHz, fend = 30 MHz to generate and plot the 
same time-domain signals found in part (a). Comparing these results with 
part (a), what can you conclude? 
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11 Ultrasonic Measurement Models 

In the previous Chapters we have shown that in order to predict the 
measured signals in an ultrasonic test one needs to know the system 
function, ( ) , and the acoustic/elastic transfer function, ( )At ω  of the 
system. Then the frequency components of the measured voltage, ( )RV ω , 
are given by 

( ) ( ) ( ).R AV s tω ω ω=  (11.1)

We have seen how to obtain the system function, either by measurement of 
all the electrical and electromechanical components that it contains, or by a 
direct measurement in a calibration setup. In either case, if a flaw measure-
ment is made with the same components and under the same conditions that 
the system function, ( )s ω , is measured, this same system function can be 
used in Eq. (11.1) for the flaw measurement. We have also given explicit 
expressions for the acoustic/elastic transfer function in some simple 
calibration setups. For a flaw measurement we need also to be able to 
describe this transfer function in terms of quantities that can be modeled or 
measured. Once such a transfer function is known, Eq. (11.1) provides a 
complete ultrasonic measurement model of the flaw measurement system. 
This Chapter will describe how to construct models of the acoustic/ elastic 
transfer function and the types of overall measurement models that result. 

11.1 Reciprocity-based Measurement Model 

It will be shown in this section that the acoustic/elastic transfer function 
can be modeled with reciprocity relations for fluid and elastic media. 
These reciprocity relations are very general, relying primarily on the 
assumption of linearity of the media involved. We have already seen 
reciprocity play a role in defining the electrical and electromechanical 
components of a measurement system. For purely electrical components, 
like the cable, reciprocity was given in terms of the electrical input and  
 

s ω
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output voltages and currents of a two port system in the form (see Eq. (3.3)): 
( ) ( ) ( ) ( ) ( ) ( )

1 2
2 2 1 2 2 1(1) (1)

1 1 1 2 2 2 .V I V I V I V I− = −  (11.2)

Similarly the transducer satisfied a reciprocity relation between electrical 
and mechanical quantities (see Eq. (4.4)): 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 1 1 2 2 1 .V I V I F v F v− = −  (11.3)

To model the wave propagation and scattering processes contained in the 
acoustic/elastic transfer function, one needs to state similar reciprocity 
relations for the 3-D acoustic and elastic fields involved. For a fluid, for 
example, if one has a volume, V, of a fluid and two different wave fields 
(identified as states (1) and (2)) in that volume that satisfy the same 
homogeneous wave equation (no body force sources), then on the closed 
surface, S, of V we must have satisfied the reciprocity relationship [Funda-
mentals] 

( ) ( ) ( ) ( )( )1 2 2 1 0,
S

p p dS− ⋅ =∫ v v n  (11.4)

where ( ) ( )1 1,p v  are the pressure and velocity fields for state (1), ( ) ( )2 2,p v  
are the pressure and velocity fields for state (2), and n is a unit vector 
normal to S. 

Similarly for a linear, elastic solid, one has a reciprocity relation-
ship between two stress and velocity fields acting in the same volume, V, 
of the same elastic material. If those two fields both satisfy Navier’s equations 
in V for no body force sources, then [Fundamentals] 

( ) ( ) ( ) ( )( )1 2 2 1 0,
S

dS⋅ − ⋅ =∫ t v t v  (11.5)

where ( ) ( )1 1,t v  are the stress (traction) vector and velocity vector for state 
(1) and ( ) ( )2 2,t v  are the stress vector and velocity vector for state (2). The 
Cartesian components of the stress vector are given in terms of the 
Cartesian stresses, ijτ , in the solid by 

( ), 1,2,3i ji jt n iτ= =  (11.6)

where jn  are the components of the normal to the surface, S, surrounding 
the volume. 
  

www.iran-mavad.com 
ایران مواد



11.1 Reciprocity-based Measurement Model      303 

 
Fig. 11.1. An ultrasonic immersion flaw measurement system. This setup is 
designated as state (1) in our reciprocity relations. 

We will demonstrate the application of these reciprocity relations 
to the flaw measurement system shown in Fig. 11.1. We will call this setup 
state (1). In this state we have the transmitting piston transducer, T, firing 
and generating a normal velocity, ( ) ( )1

Tv ω , on its surface, TS , while the 
receiving transducer, R, is picking up the signals received from the flaw 
and other reflectors over its surface, RS .  The surface of the flaw itself is 
denoted as fS . We have also labeled other surfaces in Fig. 11.1 as follows: 
Surface fsS  is the free surface of the fluid, wS  is the surface of the tank 
wall in contact with the fluid, eS  is the surface of the elastic solid being 
inspected, and iS  is the surface of one or more internal surfaces of the 
solid (other than the flaw). The unit normals to the various surfaces in 
contact with the fluid are also shown in Fig. 11.1. State (2) is shown in 
Fig. 11.2. In this state, we drive the “receiving” transducer R with a normal 
velocity, ( ) ( )2

Rv ω , on its surface, RS , and we have the flaw in the component 
absent. We will also use a state (3), shown in Fig. 11.3. This state is 
identical to state (1), as shown in Fig. 11.3, except that the flaw is also 
absent in this state.  

 First, apply the reciprocity relationship to the common fluid region 
in states (1) and (2). There are no sources inside the fluid so we have: 
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Fig. 11.2. The same measurement configuration as in Fig. 11.1 but where 
transducer  R is assumed to be driven as a transmitter (the pulser driving T is 
quiescent) and the flaw is absent. The surface, fS , is defined in this setup as the 
same surface that was occupied by the flaw in state (1). This configuration is 
designated as state (2) in the reciprocity relations. 

Fig. 11.3.  The same configuration as shown in Fig. 11.1 except the flaw is now 
absent. The surface, fS , is defined in this setup as the same surface that was 
occupied by the flaw in state (1). This configuration is designated as state (3) in 
the reciprocity relations. 
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( ) ( ) ( ) ( )( )1 2 2 1 0.
fs w T R e otherS S S S S S

p p dS
+ + + + +

− ⋅ =∫ v v n  (11.7)

For both states (1) and (2) at the free surface we have ( ) ( )1 2 0p p= =  so 
that the integral over fsS  is zero and can be eliminated from Eq. (11.7). 
Similarly for the tank wall, which is assumed to be rigid, we have 

( ) ( )1 2 0⋅ = ⋅ =v n v n  so the integral over wS  can also be eliminated. The 
surface otherS  includes all other surfaces in contact with the fluid not 
shown explicitly in Fig. 11.1. These other surfaces would be the surfaces 
of the cables, the parts of the transducer surfaces other than the active 
surfaces TS  and RS  and the surfaces of the supports (not shown) of the 
component being inspected. We will assume these other surfaces, like the 
tank wall, are rigid so they also can be eliminated from  Eq. (11.7). [Note: 
strictly speaking, the assumption that the tank wall and other surfaces are 
rigid is not needed to eliminate them from Eq. (11.7). The integrals over 
those surfaces can be eliminated by simply using the fact that they do not 
themselves contain any acoustic sources.] These results then reduce 
Eq. (11.7) to the form 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 2 2 1 1 2 2 1 .
T R eS S S

p p dS p p dS
+

− ⋅ = − − ⋅∫ ∫v v n v v n  (11.8)

Since we have assumed the transducers are acting as pistons, we can 
remove the velocity terms from the integrals in Eq. (11.8), which leaves 
the remaining integrals of the pressure over the transducer faces as just 
force terms, and we obtain 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 2 2 1 1 2 2 1 1 2 2 1

e

T T T T R R R R
S

F v F v F v F v p p dS− + − = − − ⋅∫ v v n (11.9)

where ( ) ( ) ( ), 1,2m m
T TF v m =  are the compressive forces and normal 

velocities at the surface, TS , of the transmitting transducer in states (1) and 
(2), and ( ) ( ) ( ), 1,2m m

R RF v m =  are the corresponding forces and normal 
velocities acting on the receiving transducer for those states. The directions 
of the normal velocities all are positive when pointing outwards from the 
transducer face into the fluid. On the surface, eS , of the component being 
inspected the traction and normal velocity must be continuous, i.e. we have 
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Fig. 11.4. The geometry of the solid component being inspected, showing the 
surfaces involved in the reciprocity relations and the directions of the unit normal 
on those surfaces. 

( ) ( )

( ) ( )

m m

fluid solid

m m

fluid solid

p− =

⋅ = ⋅

n t

v n v n
 (11.10)

for m = 1,2 so that Eq. (11.9) can also  be written in terms of the surface 
fields on the solid as 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 2 2 1 1 2 2 1

1 2 2 1 .
e

T T T T R R R R

S

F v F v F v F v

dS

− + −

= ⋅ − ⋅∫ t v t v
 (11.11)

Now, consider the volume of solid contained between the external surface, 
eS , which is in contact with the fluid, and the internal surfaces consisting 

of the flaw surface, fS , and other internal surfaces, iS  (Fig. 11.4). Since 
there are no sources of sound inside this volume, we must have 

( ) ( ) ( ) ( )( )1 2 2 1 0.
e f iS S S

dS
+ +

⋅ − ⋅ =∫ t v t v  (11.12)

The surfaces iS  are present in both states (1) and (2). If those surfaces are 
traction free in both states (e.g. if there are holes in the component being 
inspected), or if those surfaces are source-free inclusions of other materials, 
the integral over iS  in Eq. (11.12) will vanish. We then find 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )1 2 2 1 1 2 2 1

e fS S

dS dS⋅ − ⋅ = − ⋅ − ⋅∫ ∫t v t v t v t v  (11.13)
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which, when placed into Eq. (11.11), gives 
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1 2 2 1 1 2 2 1

1 2 2 1 .
f

T T T T R R R R

S

F v F v F v F v

dS

− + −

= − ⋅ − ⋅∫ t v t v
 (11.14)

In Eq. (11.14), the unit normal to the flaw is directed inwards, as shown in 
Fig. 11.4. If we express the stress vector in terms of the stresses and let the 
components of this inward normal be jn′  Eq. (11.14) becomes 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 2 2 1 1 2 2 1

1 2 2 1 .
f

T T T T R R R R

ji i ji i j
S

F v F v F v F v

v v n dSτ τ

− + −

′= − −∫
 (11.15)

It is convenient, however, to switch the direction of the normal so that it 
points outwards from the flaw into the surrounding material. In that case, 
Eq. (11.15) becomes 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 2 2 1 1 2 2 1

1 2 2 1 ,
f

T T T T R R R R

ji i ji i j
S

F v F v F v F v

v v n dSτ τ

− + −

= −∫
 (11.16)

where now jn  are the components of the outward normal. 
 We can follow exactly the same steps outlined here for states (1) 

and (2) but use states (3) and (2) instead. On the left hand side of Eq. (11.16) 
the force and velocity terms for state (1) will be replaced by those for state 
(3). The right hand side of equation (11.16) will be zero since the surface 

fS  is itself merely a fictitious surface surrounding a source free region in 
both states (2) and (3). Thus, we find 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )3 2 2 3 3 2 2 3 0.T T T T R R R RF v F v F v F v− + − =  (11.17)

Now, we subtract Eq. (11.17) from Eq. (11.16) to obtain 
( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

2 2 2 2

1 2 2 1 ,
f

T T T T R R R R

ji i ji i j
S

F v F v F v F v

v v n dSτ τ

∆ − ∆ + ∆ − ∆

= −∫
 (11.18)
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Fig. 11.5. (a) The force and velocity at the transmitting transducer due to the 
waves from the flaw or due to the waves in state (2), and (b) the corresponding 
equivalent acoustic impedance of the passive system shown in (a). 

where 
( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 3

1 3

1 3

1 3 .

T T T

T T T

R R R

R R R

F F F

v v v

F F F

v v v

∆ = −

∆ = −

∆ = −

∆ = −

 (11.19)

The quantities in state (1) appearing in Eq. (11.19) are due to all the waves 
received at either the transmitter or receiver from 1) either the flaw directly 
(or interactions that involve the flaw) and 2) with other interactions that do 
not involve the flaw at all. We will call the first type of contribution the 
flaw response and the second type of contribution the non-flaw response. 
The quantities in state (3) appearing in Eq. (11.19), however, come from 
exactly the same non-flaw response as in state (1). Thus, all the differences 

to interactions involving the flaw (such as a bounce of the incident wave 
from a surface to the flaw and then to the receiver). We will call these 
differences, therefore, the flaw responses and define them as 

in Eq. (11.19) are only due to waves received from the flaw directly or due 
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.

f
T T
f

T T
f

R R
f

R R

F F
v v
F F
v v

≡ ∆

≡ ∆

≡ ∆

≡ ∆

 (11.20)

In terms of these flaw responses then Eq. (11.18) becomes 
( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

2 2 2 2

1 2 2 1

f

f f f f
T T T T R R R R

ji i ji i j
S

F v F v F v F v

v v n dSτ τ

− + −

= −∫
 (11.21)

Since the same incident, driving waves (and the same corresponding voltage 
sources) are present in both states (1) and (3), f

TF is the force at the transmitt-
ing transducer due to waves coming from the flaw in the absence of any 
voltage sources at the transmitter. The same is true for ( )2

TF  since by defini-
tion the only voltage sources active in that state are driving the receiving 
transducer (see Fig. 11.5 (a)). Thus, as shown in Fig. 11.5 (b), for both the 
flaw force response at the transmitter T and for the force at T in state (2) 
one can replace the passive electrical and electromechanical components 
of the sound generation process by the same equivalent acoustic 
impedance, a

inZ , where 

( ) ( )2 2

f a f
T in T

a
T in T

F Z v

F Z v

= −

= −
 (11.22)

[the minus signs are due to the fact that the velocities appearing in 
Eq. (11.22) were both defined as the normal velocities directed outwards 
from the transducer, as shown in Fig. 11.5 (b)]. Placing Eq. (11.22) into 
Eq. (11.21), the terms at the transmitter all cancel, leaving 

( ) ( )( ) ( ) ( ) ( ) ( )( )2 2 1 2 2 1

f

f f
R R R R ji i ji i j

S

F v F v v v n dSτ τ− = −∫  (11.23)

In state (2), we have at the receiving transducer (which is firing as a 
transmitter) ( ) ( )2 2;R a

R r RF Z v= , where ;R a
rZ  is the acoustic radiation impedance 

of the receiving transducer so Eq. (11.22) becomes: 
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But the term in parentheses on the left side of Eq. (11.24) is just the total 
force at the receiver due to the waves from the flaw minus the force 

;f R a f
s r RF Z v≡   due to the motion of the receiving transducer from the flaw 

response. By definition, this is just the blocked force, BF , at the receiver 
due to the waves contained in the flaw response (see Eq. (5.24)), i.e. 

;f R a f
B R r RF F Z v= −  (11.25)

and Eq. (11.24) can be rewritten as 

( )
( ) ( ) ( ) ( )( )1 2 2 1

2

1 .
f

B ji i ji i j
SR

F v v n dS
v

τ τ= −∫  (11.26)

[Note that this blocked force is a force due only to wave interactions with 
the flaw, but we have dropped the superscript “f ” and labeled the force 
simply BF  in order to be compatible with the notation used in previous 
Chapters.] Since the force at the transmitting transducer in our measurement

( ) ( )1 1;T a
t r TF Z v= ( ) ( )1/A B tF F= ,

for the measured flaw signals is given by 

( ) ( ) ( )
( ) ( ) ( ) ( )( )1 2 2 1

1 2;

1 .
f

A ji i ji i jT a
Sr T R

t v v n dS
Z v v

ω τ τ= −∫  (11.27)

When Eq. (11.27) is placed into Eq. (11.1), we have, finally a complete 
measurement model for the voltage received from the flaw, which can be 
written more explicitly as: 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2;

1 2 2 1, , , , ,
f

R T a
r T R

ji i ji i j
S

s
V

Z v v

v v n dS

ω
ω

ω ω

τ ω ω τ ω ω

=

⎡ ⎤⋅ −⎣ ⎦∫ x x x x x
 (11.28)

jn  
are the components of the outward normal. 
 

setup is , the acoustic/elastic transfer function, t ω

where x is a general point on the surface of the flaw and recall that the 

( ) ( ) ( ) ( ) ( ) ( )( )2 1 2 2 1; .
f

f R a f
R r R R ji i ji i j

S

F Z v v v v n dSτ τ− = −∫  (11.24)
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 We obtained this result for the pitch-catch immersion setup of 
Fig. 11.1 but it can be equally applied to pulse-echo and contact testing 
setups as well. Since the fields in states (1) and (2) in Eq. (11.28) are 
divided by the driving normal velocities ( ) ( )1 2,T Rv v  in states (1) and (2), we 
only need to model the fields in both states due to driving transducers 
having a unit normal velocity on their faces. Thus, we do not need to 
explicitly know those normal velocities. This fact is important since if we 
had to model the absolute beam fields we would need a way to determine 

In state (2), the flaw is absent so that the stress and velocity fields 
appearing in that state in Eq. (11.28) are due to just the waves incident of 
the flaw surface. Those fields only require that we have an ultrasonic beam 
model in order to predict them. In state (1), however, the flaw is present, 
so that we must have both a beam model to predict the incident fields on 
the flaw in that state and a flaw scattering model that can predict the waves 
generated by the interaction of the incident waves with the flaw. 

 Equation (11.28) in a slightly different form was originally derived 
in 1979 by Bert Auld [11.1]. Because it is a very general result it has been 
frequently used as the basis for many ultrasonic modeling efforts world-
wide. The main difference between Eq. (11.28) and Auld’s original form is 
that Eq. (11.28) is an expression for the measured output voltage in an 
ultrasonic measurement system while Auld’s result gave the measured 
flaw response in terms of a change of the fields present in a cable at the 
receiver. While this difference does not change the basic form of 
Eq. (11.28), it is an important difference when one wants to examine the 
elements in ( )s ω  as done in previous Chapters. 

 
very useful.  In both states (1) and (2), we assume the incident velocity 
field can be expressed as an incident plane wave modified by a spatially 
varying “amplitude” coefficient. Then we can write the incident velocity 
field in state (1) as (omitting the ( )exp i tω− term): 

 

 
 Equation (11.28) is a significant result. It shows that if we can 

measure the system function and model the stress and velocity fields 
present at the flaw in states (1) and (2), we can predict the measured 
voltage response of the flaw in virtually any flaw measurement system.  

the “driving” normal velocities at the transmitting and receiving transducers 
in states (1) and (2), respectively. The normal velocities at the acoustic ports 
of these transducers are not easy quantities to determine experimentally, so 
it is fortunate that we do not need to know them to apply Eq. (11.28). 

We can express Eq. (11.28) in a slightly different form that is also 
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Fig. 11.6. The velocity fields incident on a flaw in states (1) and (2), respectively, 
which for small flaws can be treated locally as quasi-plane waves. 

( ) ( ) ( ) ( ) ( )1 1 1 1(1);
2

ˆ , expinc
j T j n nv v V d ik e xβω ⎡ ⎤= ⎣ ⎦x  (11.29)

and the incident velocity in state (2) as 
( ) ( ) ( ) ( ) ( )2 2 2 2(2)

2
ˆ , expj R j n nv v V d ik e xαω ⎡ ⎤= ⎣ ⎦x  (11.30)

where ( ) ( )ˆ 1,2mV m =  are the velocity field “amplitudes” (note that they are 
complex quantities) of the incident waves in states (1) and (2) normalized 

those states.  The ( )( )1,2m
jd m =

the two states, 2kα   and 2kβ are the wave numbers for the incident waves in 
states (1) and (2) in the solid surrounding the flaw, respectively, and where 
α and β denote the incident wave type (P or S). The ( ) ( )1,2m

ne m =  terms 
are the components of the unit vectors in the direction of propagation for 
the incident waves in the two states. In Eqs. (11.29) and (11.30) the 
coordinates of the point ( )1 2 3, ,x x x=x  are measured from an origin 
located at point 0x , which is a fixed point near the flaw, usually taken at 
the flaw “center” (see Fig. 11.6). Note that in state (1) the total velocity, 

( )1v  is given by ( )1 (1); (1);inc scatt= +v v v , where ( )1 ;incv is given by Eq. (11.29) 
and ( )1 ;scattv  is the velocity field due to the waves scattered from the flaw, 
while in state (2), the total velocity field is only the incident field given by 
Eq. (11.30) since the flaw is absent in that state. 

 Using these quasi-plane wave forms in Eq. (11.28), we can write 
that equation in the form 

in
 

 are polarizations of the incident waves in 
by the driving velocities on the faces of the transmitting transducers 
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( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2
;

2

1 2 2
2

4

ˆ ˆ, , , exp
f

R T a
r

n n
S

cV s
ik Z

V V ik e x dS

α

α

α

πρ
ω ω

ω ω ω

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

⎡ ⎤⋅ ⎣ ⎦∫ x x xA �
 (11.31)

with 

( ) ( ) ( ) ( ) ( )( ) ( )1 2 2 2 1
22

2 2

1, / .
4 ji i ijkl k l i jd C d e c v n

c α
α

ω τ
πρ

⎡ ⎤= +⎣ ⎦xA  (11.32)

            (no sum onα ) 
  
where 2 2,cαρ  are the density and wave speed, respectively, for the material 
surrounding the flaw. The normalized velocity and stress terms ( ) ( )1 1,j ijv τ  are 
defined as 

( )
( )

( ) ( )

( )
( )

( ) ( )

1
1

1 1

1
1

1 1

ˆ

.ˆ

ij
ij

T

j
j

T

i
v V

i v
v

v V

ωτ
τ

ω

−
=

−
=

 (11.33)

Physically, these normalized fields are the actual fields in state (1) 
normalized by an incident wave displacement amplitude term 

( ) ( ) ( ) ( ) ( ) ( )1 1 1ˆ, , /TU v V iω ω ω= −x x .  
 Equation (11.31) begins to reveal some of the structure of the 

integral term that was not evident in Eq. (11.28). The 
( ) ( ) ( ) ( )1 2ˆ ˆ, , ,V Vω ωx x  terms are quasi-plane wave incident field amplitudes 

at the flaw for states (1) and (2) due to the transmitting and receiving 
transducers radiating with a unit velocity on their surfaces. These terms 
can be modeled explicitly if one has a beam model such as the multi-
Gaussian beam model of Chapter 9 and combines the beam model with 
terms that take into account the material attenuation present (see 
Appendix D). The remaining A   term is closely related to the scattering 
properties of the flaw. If the displacement amplitude term ( )1U was a 
constant or if it did not vary significantly over the surface of the flaw then 
the normalized velocity and stress fields in Eq. (11.32) would be those due 
to an incident plane wave of unit displacement amplitude on the flaw. But 
recall the component of the plane wave far-field scattering amplitude taken 
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in the ( )2−d  direction, ( ) ( ) ( )( ) ( )( )1 2 2; ;A α βω ≡ ⋅ −A e e d  is just given by (see 
Eqs. (10.6) and (10.7)) 

( ) ( ) ( ) ( )2, exp .s s
S

A ik dSα
αω ω= − ⋅∫ x e x xA  (11.34)

[Note: to compare with the results in Chapter 10, in our current notation, 
( )1

i
β =e e , ( )2

s
α = −e e ]. Thus, A  contains the total fields on the surface of 

the flaw that in principle could be obtained by solving the flaw scattering 
problem and can be used to compute the far-field scattering amplitude 
component, ( )A ω . Of course, in Eq. (11.31) the far-field scattering ampli-
tude component of Eq. (11.34) itself does not appear explicitly because of 
the beam variations contained in that equation but as we will see in the 
following section there are cases where the frequency spectrum of the 
received voltage is proportional directly to ( )A ω . 

11.2 The Thompson-Gray Measurement Model 

If we write the incident fields in states (1) and (2) as quasi-plane waves 
and if in addition we assume that the flaw is small enough so that the 
variations of the velocity field amplitudes ( ) ( )ˆ 1,2mV m = are negligible over 
the surface of the flaw, we have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1(1);
0 2

2 2 2 2(2)
0 2

ˆ exp

ˆ exp ,

inc
j T j n n

j R j n n

v v V d ik e x

v v V d ik e x

β

α

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

 (11.35)

where ( ) ( ) ( ) ( ) ( )0 0
ˆ ˆ , 1,2m mV V mω ω≡ =x , i.e. the velocity field amplitudes 

are now constants evaluated at a fixed point, 0x , in the vicinity of the flaw, 
which is usually taken at the “center” of the flaw (Fig. 11.6). We see from 
Eq. (11.35) that under this assumption these incident fields are now indeed 
treated as simply plane waves. Then Eq. (11.31) becomes 

( ) ( ) ( ) ( )

( ) ( )

1 2 2 2
0 0 ;

2

2
2

4ˆ ˆ

, exp
f

R T a
r

n n
S

cV s V V
ik Z

ik e x dS

α

α

α

πρ
ω ω

ω

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

⎡ ⎤⋅ ⎣ ⎦∫ xA �
 (11.36)
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and the far-field scattering amplitude component  does appear explicitly so 
we find, finally 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 2
0 0 ;

2

4ˆ ˆ .R T a
r

cV s V V A
ik Z

α

α

πρ
ω ω ω ω ω

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 (11.37)

A form similar to Eq. (11.37) was first obtained by Thompson and Gray in 
1983 [11.2]. As we have seen, this Thompson-Gray measurement model is 
based on the general reciprocity-based measurement model (Eq. (11.28) 
and only two assumptions: 1) the incident waves can be expressed in a 
quasi-plane wave form, and 2) the flaw is small enough so that the 
amplitude of this quasi-plane wave does not vary significantly over the 
flaw surface [11.3].  With those two assumptions we obtain a modular 
measurement model where the flaw response, ( )A ω , is explicitly separated 
from all the other measurement system terms, including the system 
function, ( )s ω , and the normalized incident fields ( ) ( )1 2

0 0
ˆ ˆ,V V at the flaw 

from the transducers in states (1) and (2), respectively.     
This separation of terms allows us to examine a ultrasonic measure-

ment system in a variety of ways. For example, if the voltage response of 
an unknown flaw is measured and we also measure ( )s ω  and model the 
transducer beam fields ( ) ( )1 2

0 0
ˆ ˆ,V V , we can write Eq. (11.37) in the form 

( ) ( ) ( ) ,RV G Aω ω ω=  (11.38)

where both ( )RV ω  and ( )G ω  are known. In this case we can divide the 
measured voltage by the known G (using a Wiener filter) to obtain a 
measured flaw far-field scattering amplitude of the flaw. An example of 
this approach is given in Chapter 13. The flaw far-field scattering 
amplitude is related to the properties of the flaw only, so that we can use it 
in quantitative flaw characterization and sizing studies. Alternatively, we 
could model the beam fields and the scattering amplitude for an assumed 
flaw and measure the system function for a given measurement setup. In 
this case we could use Eq. (11.38) to predict the amplitude of the received 
signals from the known flaw directly. This information might be used, for 
instance, to optimize the transducer orientation during a scan so that the 
signals received from a given flaw are large. Engineering studies of these 
and other types can be done easily with the Thompson-Gray measurement 

 
model, so that  it has been used for  many  practical  industrial applications  
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Fig. 11.7. A pitch-catch measurement of the scattering from a cylindrical reflector 
of length L where the axis of the cylinder  is normal to planes of incidence for 
states (1) and (2). 

(many examples are available in past volumes of Review of Progress in 
Quantitative Nondestructive Evaluation [11.4]). 

11.3 A Measurement Model for Cylindrical Reflectors 

The Thompson-Gray measurement model describes the ultrasonic response 
of a flaw where the variation of the incident fields can be neglected over 
the entire flaw surface. In some experiments cylindrical reflectors are used 
where the beam variations over the cross-section of the reflector may be 
neglected, but the variations over the length of the reflector are significant. 
An example is where a side-drilled hole is used as a reference reflector in a 
calibration block. Here, we will develop a measurement model suitable for 
these type of setups [11.5]. 

 Consider the pitch-catch case shown in Fig. 11.7. We will assume 
that the reflector has a cylindrical geometry and is of length, L. We will 
also assume that the axis of the cylinder is normal to the planes of 
incidence of the incident waves in states (1) and (2), which are defined to 
be the planes that contain both the incident wave direction and the unit 
normal, n, to the reflector. This is a reasonable assumption since in most 
setups where a 2-D reflector such as a side-drilled hole is used, the 
transducers are usually oriented so that this condition holds. With this 
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assumption it is reasonable to also assume that all the scattering occurs 
only from the cylindrical surface, i.e. the scattering from the ends of the 
reflector is neglected. For a side-drilled hole, for example, which is often 
drilled entirely through a reference calibration block, the length of the hole 
is generally larger than the axial extent of the interrogating transducer 
fields, so that this assumption is well satisfied.  

 Like the Thompson-Gray measurement model, we will also assume 
the incident fields in states (1) and (2) can be represented by the quasi-
plane waves given by Eqs. (11.29) and (11.30). Thus, we can use as our 
starting point Eq. (11.31), which we write as: 

( ) ( )

( ) ( ) ( ) ( ) ( )

2 2
;

2

1 2 2
2

4

ˆ ˆ, , , , exp ,
c

R T a
r

n n
S

cV s
ik Z

V z V z ik e x dS

α

α

α

πρ
ω ω

ω ω

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

⎡ ⎤⋅ ⎣ ⎦∫ y y A
 (11.39)

where the integration is now over only the cylindrical surface, cS , and the 
velocity field amplitudes over this surface are expressed as ( ) ( ) ( )1 1ˆ ˆ , ,V V z ω= y , 

( ) ( ) ( )2 2ˆ ˆ , ,V V z ω= y  where ( )1 2,y y=y is a point in a plane normal to the 
cylinder axis and z is along the axis. If the cylinder is small enough to 
neglect the variations of these velocity fields over its cross-sectional area 

( ) ( ) ( )
( ) ( ) ( )

1 1

2 2
0

0

ˆ ˆ
ˆ ˆ

, ,
,

V V z
V V z

ω
ω

=
= , where 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1
0 0

2 2
0 0

ˆ ˆ, , ,
ˆ ˆ, , ,

V z V z

V z V z

ω ω

ω ω

≡

≡

y

y
 (11.40)

0

(Fig. 11.7). Then we can write Eq. (11.39) as 

( ) ( )

( ) ( ) ( ) ( ) ( )

2 2
;

2

1 2 2
0 0 2

4

ˆ ˆ, , exp ,

R T a
r

n n
C L

cV s
ik Z

V z V z ik e x dcdz

α

α

α

πρ
ω ω

ω ω

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

⎡ ⎤⋅ ⎣ ⎦∫ ∫ A
 (11.41)

where the 2-D surface integration has been decomposed into  a counter-
clockwise line integral over the cross-section, C, and a 1-D integral over 
the length, L. 

 Now, consider the normalized fields appearing in the A  term in 
Eq. (11.41). They are: 

(but not neglecting these variations over its length) we let 

and y  is a fixed point, usually taken as the center of the reflector 
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( )
( ) ( )
( ) ( )

( )
( ) ( )
( ) ( )

1
1

1
0

1
1

1
0

, ,
ˆ ,

, ,
.ˆ ,

i
i

ji
ji

i v z
v

V z

i z
V z

ω ω
ω

ωτ ω
τ

ω

−
=

−
=

y

y
 (11.42)

We will also assume that these normalized fields are functions of y only, 
i.e. we assume the z-variations of the non-normalized fields are identical to 
those in the incident waves. In this case we then also have ( ),ω= yA A  
only. This assumption is equivalent to breaking the cylindrical surface into 
small elements of length dz and at each z treating the scattering of each 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1
0̂, , /TU z v V z iω ω ω ω= − . In Chapter 10, where the scattering 

amplitude for a side-drilled hole was calculated via the Kirchhoff 
approximation, this assumption was satisfied exactly. Here, we will make 
the assumption regardless of how the scattering problem for the cylinder is 
to be solved. With this assumption, then Eq. (11.41) becomes 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 22 2
0 0;

2

2
2

4 ˆ ˆ, ,

, exp ,

R T a
r L

C

cV s V z V z dz
ik Z

ik e y dc

α

α

α λ λ

πρ
ω ω ω ω

ω

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

⎡ ⎤⋅ ⎣ ⎦

∫

∫ y yA �
 (11.43)

where the summation over the repeated λ  subscript is taken over values 
(1,2) only. 

But the far-field scattering amplitude of the cylindrical reflector is 
given by 

( ) ( ) ( ) ( )2
3 2, expD

C

A L ik e y dcα λ λω ω ⎡ ⎤= ⎣ ⎦∫ y yA  (11.44)

where we have used the “3D” label to emphasize that the reflector is still 
being treated as a three-dimensional scatterer even though under our 
assumptions the fields in Eq. (11.44) are all two-dimensional. With this 
definition, Eq. (11.43) can be reduced to 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 2 2
0 0 ;

2

4ˆ ˆ, , .D
R T a

rL

A cV s V z V z dz
L ik Z

α

α

ω πρ
ω ω ω ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦⎣ ⎦

∫  (11.45)

element as if it were a purely two-dimensional scattering process due 
to a plane wave whose displacement amplitude is given by 
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Equation (11.45) is the measurement model for the cylindrical reflector 
that is the counterpart of Eq. (11.37) for the small three-dimensional flaw. 
In fact, if the incident velocity fields do not vary significantly also in the z-
direction, we see that Eq. (11.45) simply reduces to Eq. (11.37). 

 Since under our assumptions the fields in Eq. (11.44) only depend 
on y and from our other assumptions we also have 3 3 3 3 0n e d vα α α= = = = , 
Eq. (11.44) can be rewritten more explicitly as 

( ) ( ) ( ) ( ) ( )( ) ( )

( )

1 2 2 2 1
3 22

2 2

2
2

/
4

exp ,

D
C

LA d C d e c v
c

n ik e y dc

γσ σ σγνδ ν δ α σ
α

γ α λ λ

ω τ
πρ

⎡ ⎤= +⎣ ⎦

⎡ ⎤⋅ ⎣ ⎦

∫
 (11.46)

         (no sum on α ) 
 

where all the Greek indices are summed over the values ( )1,2 only (no 
sum on α). As shown in Chapter 10 this scattering amplitude component 
can be related to the corresponding far-field scattering amplitude 
component, ( )2DA ω , in a purely two-dimensional scattering problem 
where both the incident fields and the geometry of the reflector are 
independent of the z-coordinate. That relationship was given as (see Eq. 
(10.63)): 

( ) ( )1/ 2
3

2
2

2i .D
D

A
A

k Lα

ωπω
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (11.47)

Thus, we can express our ultrasonic measurement model for the cylinder 
either in terms of the three-dimensional far-field scattering amplitude of 
the reflector or its two-dimensional far-field scattering amplitude counterpart. 
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11.5 Exercises 

1. In Chapter 12, a multi-Gaussian beam model is used in conjunction with 
the Kirchhoff approximation to implement the Thompson-Gray measure-
ment model (Eq. (11.37)) for the pulse-echo P-wave response of a spherical 
void, as shown in Fig. 11.8. However, one can also implement this 
measurement model directly using the results of Chapter 8 and Chapter 10. 
First note that for this pulse-echo setup Eq. (11.37) becomes 

( ) ( ) ( ) ( ) ( )
2 2 21

0 2
2 1 1

4ˆ ,p
R

p p

c
V s V A

ik a c
ρ

ω ω ω ω
ρ

⎡ ⎤
⎡ ⎤= ⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦

 (11.48)

where a is the radius of the transducer, 1 1, pcρ  are the density and com-
pressional wave speed of the fluid, 2 2, pcρ  are the density and wave speed 
of the solid, and 2 2/p pk cω=  is the wave number for compressional waves 
in the solid. The normalized on-axis velocity, ( ) ( )1

0̂V ω , can be obtained 
from Eq. (8.25) as 

( ) ( ) ( ) ( )
2

11 ;
0 12 1 1 1 1 2 2
ˆ exp exp 1 exp ,

2
pP P

p p p

ik a
V T z ik z ik z

z
ω α

⎡ ⎤⎛ ⎞
= − + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (11.49)

where 1 2 2 1/p pz z c z c= +  and ;
12

p pT is the plane wave transmission coefficient 
at normal incidence (see Eq. (D.36)): 

1 1;
12

1 1 2 2

2
.pp p

p p

c
T

c c
ρ

ρ ρ
=

+
 (11.50)

An attenuation factor has been included in Eq. (11.49) to account for the 
water attenuation. The attenuation of the solid (which is glass) has been 
neglected here. In implementing Eq. (11.49),  omit  the  propagation  terms  
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Fig. 11.8. Measurement of the pulse-echo P-wave response of an on-axis spherical 
pore. 

( )1 1 2 2exp p pik z ik z+  as these only generate large phases that represent a 
time delay factor 1 1 2 2/ /p pt z c z c∆ = +  that can always be added in later, if 
necessary. 

 For the scattering amplitude term, ( )A ω , one can use the Kirchhoff 
approximation  for the pulse-echo response of a void of radius b given by 
(Eq. (10.14)): 

( ) ( ) ( ) ( )2
2 2

2

sin
exp exp .

2
p

p p
p

k bbA ik b ik b
k b

ω
⎡ ⎤−
⎢ ⎥= − − −
⎢ ⎥⎣ ⎦

 (11.51)

 Write a MATLAB script that implements the Thompson-Gray 
measurement model of Eq. (11.48) for this on-axis spherical pore. The 
pertinent data for this problem are: 

 

1

2
3

1

6.35
0.34605
50.8
19.63

1.0 /

a mm
b mm
z mm
z mm

gm cmρ

=
=
=
=

=
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( )

1

3
2

2

3 2
1

1484 / sec

2.2 /
5969.4 / sec

0.02479 10 /

p

p

p

c m

gm cm
c m

f Np mm f in MHz

ρ

α −

=

=
=

= ×

 

For the system function, ( )s ω , use the simulated MATLAB function 
system_f(f, amp, fc, bw) described in Appendix G. Take amp=0.08, fc = 5, 
bw = 4. These parameters simulate a system containing a broad band 
5 MHz transducer. The frequency, f, in this function is measured in MHz.  
 The MATLAB script should calculate the received voltage from 
the void as a function of frequency, perform an inverse FFT to obtain the 
corresponding time-domain signal, and then plot this signal versus time. 
Verify that you results agree with Fig. 12.11 which is the solution of this 
same problem using a multi-Gaussian beam model instead of Eq. (11.49).
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12 Ultrasonic Measurement Modeling with 
MATLAB 

In this Chapter we will implement complete ultrasonic measurement 
models in a series of MATLAB functions and scripts for the pulse-echo 
setup of Fig. 12.1. These measurement models will be used to simulate a 
number of measurement setups where a reference reflector such as a 
spherical pore, a flat-bottom hole, or a side drilled hole is present. Refer-
ence reflectors are commonly used in NDE tests to serve as calibration 
standards and they are also used to measure system performance. Here we 
will demonstrate the ability of the measurement models to simulate 
experimentally determined signals from these types of reference reflectors 
[12.1]. Similar demonstrations have been carried out worldwide by a 
number of researchers in a recent series of benchmark studies (see [12.2] 
for an overview of these activities from 2001- 2005). In those studies a 
variety of beam models and flaw scattering models were employed. Here, 
we will use the multi-Gaussian beam model of Chapter 9 and two of the 
flaw scattering models discussed Chapter 10 (the Kirchhoff approximation 
and the method of separation of variables) in conjunction with the various 
measurement models described in Chapter 11.  
 The MATLAB models of this Chapter can be used by the reader as 
the basis for implementing and studying many of the concepts and results 
discussed in this book in a more hands-on fashion, where the parameters 
can be readily changed and the results easily illustrated. Although the models 
are implemented for a simple pulse-echo configuration (Fig. 12.1) they can 
be used for a number of advanced purposes, such as examining ultrasonic 
beam behavior at curved interfaces, for example, and they can serve as the 
starting point for developing more complex simulation models. 

12.1 A Summary of the Measurement Models 

In the previous Chapter we developed measurement models suitable for 
several  different testing  situations. These  included  a general  model  that  

www.iran-mavad.com 
ایران مواد



324      Ultrasonic Measurement Modeling with MATLAB 

 
Fig. 12.1. Parameters for defining the problem of pulse-echo inspection of a flaw 
in a solid through a fluid-solid interface. 

only relied on linearity and reciprocity and assumed the incident beam could 
be written in quasi-plane wave form. For that model the frequency compo-
nents of the measured voltage were given by 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2
;

2

1 2 2
2

4

ˆ ˆ, , , exp ,
f

R T a
r

n n
S

cV s
ik Z

V V ik e x dS

α

α

α

πρ
ω ω

ω ω ω

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

⎡ ⎤⋅ ⎣ ⎦∫ x x xA
 (12.1)

where, recall, 

( ) ( ) ( ) ( ) ( )( ) ( )1 2 2 2 1
22

2 2

1, /
4 ji i ijkl k l i jd C d e c v n

c α
α

ω τ
πρ

⎡ ⎤= +⎣ ⎦xA  (12.2)

involves the stresses and velocity on the surface of the flaw normalized by 
the incident wave displacement amplitude at the flaw, i.e. 
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( )
( )

( ) ( )

( )
( )

( ) ( )

1
1

1 1

1
1

1 1

ˆ

.ˆ

ij
ij

T

j
j

T

i
v V

i v
v

v V

ωτ
τ

ω

−
=

−
=

 (12.3)

The terms ( ) ( )ˆ ,V α ωx  ( )1,2α =  are the incident velocity field amplitudes 
on the flaw surface for states (1) and (2), where in state (1) the transmitting 
transducer is firing with a unit velocity on its face and for state (2) the 
receiving transducer is firing with a unit velocity on its face. Both of these 
amplitude terms, therefore, can be calculated with appropriate ultrasonic 
beam and attenuation models. The remaining fields in the ( ),ωxA term are 
the total fields on the surface of the flaw normalized by the displacement 
of the incident wave. Those fields can also be modeled with an appropriate 
flaw scattering model. This measurement model is quite general and 
should apply to most testing situations. Note that in this form the flaw far-
field scattering amplitude does not appear directly but, as shown in the last 
Chapter, ( ),ωxA  is closely related to the component of the scattering ampli-
tude that appears in other measurement models (see Eq. (11.34)). 

 The second model developed assumed that the flaw was small 
enough so that the incident fields did not vary significantly over the surface 
of the flaw. In that case we found 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 2
0 0 ;

2

4ˆ ˆ ,R T a
r

cV s V V A
ik Z

α

α

πρ
ω ω ω ω ω

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 (12.4)

where 
( ) ( ) ( )
( ) ( ) ( )

1 1
0 0

1 1
0 0

ˆ ˆ ,
ˆ ˆ ,

V V

V V

ω

ω

=

=

x

x
 

are the now the velocity amplitude terms evaluated at the “center” of the 
flaw and a flaw far-field scattering amplitude term, ( )A ω , is directly a part 
of the measurement model. 

 For a cylindrical scatterer where beam variations are not negligible 
we can again apply the measurement model of Eq. (12.1). For a small 
cylindrical scatterer, however, where beam variations over the scatterer 
cross section are negligible we found 
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( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 2
0 0 ;

2

4ˆ ˆ, , ,R T a
rL

A cV s V z V z dz
L ik Z

α

α

ω πρ
ω ω ω ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦⎣ ⎦

∫  (12.5)

where, recall, 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1
0 0

2 2
0 0

ˆ ˆ, , ,
ˆ ˆ, , ,

V z V z

V z V z

ω ω

ω ω

≡

≡

y

y
 

are now the incident velocity amplitude terms calculated at the “center” of 
the scatterer and at any axial position along its length. The far-field scattering 
amplitude of the flaw appearing in Eq. (12.5) is the same 3-D scattering 
amplitude in Eq. (12.4), but as mentioned in the last Chapter we also can 
use a 2-D scattering amplitude calculation in Eq. (12.5) if we use the rela-
tionship of Eq. (11.48). 

 Each of the measurement models described above has three 
components: 1) the system function, ( )s ω , describing all the electrical and 
electromechanical elements of the measurement system, 2) the velocity 
fields ( ) ( )1 2ˆ ˆ,V V  that characterize the incident fields on the flaw from the 
transmitting transducer or receiving transducer, respectively, when there is 
a unit driving velocity on those transducer faces, and 3) the scattering 
properties of the flaw itself, described in terms of  ( ),ωxA  or ( )A ω .  In 
this Chapter we will develop a series of MATLAB functions that model 
each of these three components and implement the measurement models 
described above.  

 
transducer is performing a pulse-echo inspection of a flaw in an immersion 
setup. First, assume that the flaw is small enough so that the beam 
variations over its surface can be neglected and the measurement model of 
Eq. (12.4) can be used. The distances along a ray (a path satisfying Snell’s 
law) extending normally from the center of the transducer are 1 2,z z  for the 
fluid and solid, respectively, and the center of the flaw is located at a point 
( )2 2,x y  relative to that central ray as shown in Fig. 12.1, where the 2y -axis 
is normal to the plane of incidence. The acute angle of the central ray in 
the fluid and the normal to the interface (at point P where that ray 
intersects the interface) is the angle 1

pθ . The ( ),i iy z coordinates are in the 
tangent plane of the interface and iy  is normal to the plane of incidence. 
The angle of the iz -axis from one of the principal directions, 1n , of the 
surface is the angle φ . [Important: note that these definitions are different 

The problem we will consider is shown in Fig.  12.1 where  a 
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from some of those used in Chapter 9 and Chapter 11 so that in the MATLAB 
measurement models of this Chapter one should relate the quantities in 
those models back to Fig. 12.1].  

We can express the measurement model of Eq. (12.4) more 
explicitly by examining the various pieces that contribute to the velocity 
terms. Since we are considering a pulse-echo setup here, our measurement 
model can be written as 

( ) ( ) ( ) ( ) ( )
21 2 2

0 ;
2

4ˆ
R T a

r

cV s V A
ik Z

α

α

πρ
ω ω ω ω

⎡ ⎤⎡ ⎤= ⎢ ⎥⎣ ⎦ −⎣ ⎦
 (12.6)

and the incident velocity field, ( )1
0̂V , can be written as 

( ) ( ) ( )1
0 1 1 2 2 0
ˆ exp /p iV z z V vγ

γα ω α ω ⎡ ⎤⎡ ⎤= − −⎣ ⎦ ⎣ ⎦  (12.7)

where 1 2,z z  are the distances the sound beam from the transducer has 
propagated in the fluid and the solid, respectively, and ( ) ( )1 2,p γα ω α ω are 
the frequency dependent attenuation coefficients for the compressional 
wave in the fluid and the wave of type γ  in the solid, respectively. The 
term 0/iV vγ  is the ideal velocity field (for a material with no losses) at the 
flaw normalized by the normal velocity, 0v , on the face of the transducer. 
This ideal field will be described by a multi-Gaussian beam model of the 
type discussed in Chapter 9. The types of transducer we will consider in 
the setup of Fig. 12.1 with a multi-Gaussian beam model are circular 
planar and spherically focused piston transducers. In the following section 
we will use the general formulation of Chapter 9 to derive a multi-Gaussian 
beam model that is directly applicable to a setup of the type given in  
Fig. 12.1. 

12.2 The Multi-Gaussian Beam Model 

In developing the multi-Gaussian beam model the interface will assumed 
to be either planar or curved, with the plane of incidence of the transducer 
aligned with one of the principal curvatures of the interface (i.e. 0φ = in 
Fig. 12.1). For a single fluid-solid interface on transmission through the 
interface it is not necessary to rotate axes and the angle 0λ =  in 
Eqs. (9.89)-(9.91). Also, we do not need to put the transmission coefficient 
in matrix form, but can use the simpler scalar relation of Eq. (9.79). The 
ideal normalized velocity for a wave of type γ  in the solid as computed by 
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the multi-Gaussian beam model (with 15 coefficients) for this case is then 
given by (see Fig. 12.1) 

( )
( )

( )

( )

( )

( )

15 2 2 1 1;
12 1

1 2 1
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1 1 2 2 1 2 2
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0
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       ( ),p sγ =   
where, ( )2 2,T x y=y  and at the face of the transducer 
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( )
( )

( )

1 1
1 1

1 1

1 0
/

.
10

/

p R rp

r

p R r

c z iD B
M z

c z iD B

⎡ ⎤
⎢ ⎥−⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

 (12.10)

From Eq. (12.9) and  Eq. (12.10) then it follows that 

( )

( )
( )1 1 0

1
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det
0 .

1 /det 0

p
r p r

rp
r R

r

z A vV
i z B D

⎡ ⎤⎣ ⎦ ⎡ ⎤ =⎣ ⎦ +⎡ ⎤⎣ ⎦

M

M
 (12.11)

in terms of the Wen and Breazeale coefficients ,r rA B . The polarization 
vector, γd , is shown in Fig. 12.1 for both P-waves and SV-waves. The plane 
wave transmission coefficient, ;

12
pT γ is based on a velocity ratio. The para-

meter 2
1 / 2R pD k a=  is the Rayleigh distance, where the radius of the trans-

ducer is a and 1pk  is the wave number for P-waves in medium one. Similarly 
( )2 ,k p sγ α = are wave numbers for P- or S-waves in medium two. From 

the propagation law for medium one, from Eq. (9.28) we have 
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The transmission law across the interface also gives (Eq. (9.94)) 
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 (12.12)

where 

( )2 2
1 1 11 2cos / cospM Kh γθ θ= +  (12.13)

and 

2 221M Kh= +  (12.14)

are given in terms of the principal interface curvatures ( )11 22,h h  and 
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 (12.15)

Finally, from the propagation law  (Eq. (9.28)) for the propagation in medium 
two we have 
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Thus, we have 
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and 
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To put the final expressions in a more compact form, let 
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[Note: 1 2,r rZ Z  are distances, not impedances here]. Then the multi-Gaussian 
beam model becomes, finally 
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with 
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The square roots appearing in Eq. (12.21) are unambiguous so that they 
can be calculated directly. 
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12.3 Measurement Model Input Parameters 

In order to model the single interface problem shown in Fig.12.1, there are 
a significant number of input parameters that need to be defined. Here we 
will outline those parameters and the manner in which they will be 
represented in MATLAB. First, there are several general parameters that 
we will call setup parameters: 
 
Setup Parameters 
f….the frequencies at which the response will be calculated (MHz) 
type1….the type of wave ('p' or 's') in medium one (a string) 
type2….the type of wave ('p' or 's') in medium two (a string) 
 
Although we will initially only consider problems where medium one is a 
fluid where type1 = 'p', we will leave type1 arbitrary to show the structure 
of input parameters in a more general setting. 
 Next, we need to define parameters that will allow us to determine 
the system function: 
 
System Parameters 
sysf….the name of a function that will either model the system function or 
calculate it experimentally (a string).  
amp….the amplitude of a modeled system function (volts/MHz) 
fc….the center frequency of a modeled system function (MHz) 
bw….the bandwidth of a modeled system function 
z1r….the distance in the fluid used in a reference scattering configuration 
to calculate the system function experimentally 
en….the noise constant used in a Wiener filter when obtaining the system 
function experimentally 
ref_file….the name of a MAT-file (a string). This file must contain the 
time axis and measured waveform obtained from the reference scattering 
configuration. These measured values are used in the function whose name 
is contained in sysf 
 
In an ultrasonic system the system function determines the effects of all 
the electrical and electromechanical components. The sysf parameter 
allows us to use either an experimentally determined system function in 
the measurement model or a model-based function. If this value is the 
string 'systf' then the model-based function systf (which is defined later) 
will be used. The function systf obtains the amplitude, center frequency, 
and bandwidth to be used in calculating the system function from the amp, 
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fc, and bw parameters, respectively.  Otherwise the user must supply the name 
of a compatible function that calculates the system function experimen-
tally. Examples of the use of both types of these functions will be given. 
The function that calculates the system function experimentally needs to 
have as one of its inputs a measured waveform from a reference scattering 
configuration. This waveform and its time axis is contained in a MATLAB 
MAT-file whose filename is given by the contents of ref_file. In this 
MAT-file the time axis is a MATLAB vector named t_ref and the 
reference waveform is a MATLAB vector named ref. The function that 
calculates the system function experimentally also must use the same trans-
ducer parameters, pulser/receiver settings, etc. as in a flaw measurement so 
that a system function can be determined that is also appropriate to the 
flaw measurement. However, in a reference experiment where the waves 
received from the front surface of an immersed block can be used to 
calculate the system function, as described in Chapter 6, the water path 
length might be different from that of a flaw measurement setup. Thus, this 
water path length is given by the parameter z1r. If there are other 
parameters that are different in the reference experiment from those used 
in the flaw measurement (such as the material properties of the block, etc.) 
then they must also be included as additional setup system parameters. 
 There are also parameters associated with the transducer. For 
circular piston probes we need to specify: 
 
Transducer parameters 
d….the transducer diameter (mm) 
fl….the transducer geometrical focal length (mm) 
 
There are also a number of geometry parameters: 
 
Geometry Parameters 
z1….the distance traveled by the sound in medium one along a central ray 
path (mm) 
z2….the distance traveled by the sound in medium two along a central ray 
path (mm) 
x2….the perpendicular distance from the central ray axis to the center of 
the flaw (see Fig. 12.1) in the plane of incidence (mm) 
y2….the perpendicular distance from the central ray axis to the center of 
the flaw (see Fig. 12.1) in a plane perpendicular to the plane of incidence 
(mm) 
i_ang….the acute angle between the normal to the transducer and the 
normal to the interface at the point where the central ray from the 
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transducer strikes the interface (deg) [This is the angle 1
pθ  shown in Fig. 

12.1]. 
R1....the principal radius of curvature (Fig. 12.1)  in the 1n direction (mm) 

2 direction (mm) 
p_ang....the angle between the plane of incidence and the 1n direction (deg) 
[This is the angle φ  shown in Fig. 12.1]. 
 
The present study will assume that the plane of incidence and the 1n direction 
are aligned so that p_ang = 0, but this parameter has been included for 
generality. 
 Not surprisingly, there are also quite a number of material para-
meters to specify: 
 
Material Parameters 
d1….the density of medium one (gm/cm3) 
d2….the density of medium two (gm/cm3) 
cp1….the P-wave speed of medium one (m/sec) 
cs1….the S-wave speed of medium one (m/sec) 
cp2….the P-wave speed of medium two (m/sec) 
cs2….the S-wave speed of medium two (m/sec) 
p1….P-wave attenuation fitting coefficients for medium one  
s1….S-wave attenuation fitting coefficients for medium one 
p2….P-wave attenuation fitting coefficients for medium two 
s2….S-wave attenuation fitting coefficients for medium two 
 
Again, for generality, we will leave the possibility of medium one having 
shear properties. The attenuation fitting coefficients will be used to define 
the attenuation coefficients in terms of powers of frequency. These will be 
discussed when we develop the attenuation model term. 
 The “flaw” cases we will consider in these examples will be of 
simple shapes (e.g. spherical voids, cylindrical holes, circular cracks) so 
that only several parameters will be needed in addition to the name of the 
function that will calculate the scattering amplitude: 
 
Flaw Parameters 
b…. radius of the flaw (mm) 
f_ang….acute angle of the flaw with respect to the central ray (deg) (see 
Fig. 12.1) 
Afunc….the name of the function that will calculate the far-field scattering 
amplitude of the flaw (a string) 

R2....the principal radius of curvature (Fig. 12.1)   in the n
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 Finally, we have a number of parameters associated with the 
particular types of waves we are considering in medium one and two. They 
are the wave speeds in medium one and two for the specified wave types 
in those media and the corresponding plane wave transmission coefficient. 
We have labeled these parameters wave parameters: 
 
Wave Parameters 
c1….the wave speed for the wave of type1 in medium one (m/sec) 
c2….the wave speed for the wave of type2 in medium two (m/sec) 
T12….the plane wave transmission coefficient (based on velocity or 
displacement ratios) appropriate to waves of type1 and type2  
 
 There is one difference between the wave parameters and the other 
parameters in that the wave parameters are derived parameters so that if 
the wave types and/or wave speeds are changed these wave parameter 
values will not be consistent with those choices unless they also are 
appropriately changed. Thus, it is necessary to update these wave parameters 
with the current values present in the setup before using them. 
 Because there are a considerable number of parameters, it is 
essential to have a flexible method to examine, retrieve, and change them 
and to pass them to other functions. Thus we have placed all of these 
parameters in a MATLAB structure named setup. This setup structure has 
a number of fields called system (for the system function), trans (for 
transducer), geom (for geometry), matl (for material), flaw (for flaw), and 
wave (for wave parameters). These fields in turn have fieldnames that are 
associated with the parameters just listed. A MATLAB function called 
setup_maker defines a complete set of the default parameters needed for a 
measurement model suitable for problems of the type shown in Fig. 12.1 
and generates the setup structure (Code Listing 12.1). In setup_maker  all 
the setup parameters are first defined and then placed into the setup 
structure. Both of these operations could have been performed in one step 
but they have been separated here strictly to make them more explicit for 
the reader. 
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Code Listing 12.1. The MATLAB function for generating a default structure, 
setup, that contains all the parameters needed for a measurement model of the case 
shown in Fig 12.1 
 
 
function setup =setup_maker( ) 
 
%setup parameters 
f = 5; 
type1 = 'p'; 
type2 ='p'; 
% system function parameters 
sysf ='systf'; 
amp = 5.0E-02; 
fc = 5; 
bw = 3; 
z1r = 0.0; 
en =0.01; 
ref_file ='empty'; 
% transducer parameters 
d = 12.7; 
fl= inf; 
%geometry parameters 
z1 = 0; 
z2 = linspace(0,200,512); 
x2 = 0.0; 
y2 =0.0; 
i_ang = 0; 
R1 = inf; 
R2 = inf; 
p_ang = 0; 
% material parameters 
d1 = 1.0; 
d2 = 1.0; 
cp1 =1480; 
cs1 = 0; 
cp2 =1480; 
cs2 = 0; 
p1 = zeros(1,5); 
s1 = zeros(1,5); 
p2 = zeros(1,5); 
s2 = zeros(1,5); 
%flaw parameters 
b =0.0; 
f_ang = 0.0; 
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Afunc = 'empty'; 
%wave parameters 
c1 =1480; 
c2 = 1480; 
T12 =1.0; 
 
% put setup in a structure 
setup.f = f; 
setup.type1 = type1; 
setup.type2 = type2; 
setup.system.sysf = sysf; 
setup.system.amp =amp; 
setup.system.fc = fc; 
setup.system.bw = bw; 
setup.system.z1r =z1r; 
setup.system.en =en; 
setup.system.ref_file = ref_file; 
setup.trans.d = d; 
setup.trans.fl =fl; 
setup.geom.z1 = z1; 
setup.geom.z2 = z2; 
setup.geom.x2 = x2; 
setup.geom.y2 = y2; 
setup.geom.i_ang = i_ang; 
setup.geom.R1 =R1; 
setup.geom.R2 = R2; 
setup.geom.p_ang = p_ang; 
setup.matl.d1 =d1; 
setup.matl.d2 = d2; 
setup.matl.cp1 =cp1; 
setup.matl.cs1 = cs1; 
setup.matl.cp2 = cp2; 
setup.matl.cs2 =cs2; 
setup.matl.p1 = p1; 
setup.matl.s1 =s1; 
setup.matl.p2 = p2; 
setup.matl.s2 = s2; 
setup.flaw.b = b; 
setup.flaw.f_ang = f_ang; 
setup.flaw.Afunc = Afunc; 
setup.wave.c1 = c1; 
setup.wave.c2 = c2; 
setup.wave.T12 = T12; 
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 It can be seen from Code Listing 12.1 that the default parameters 
are for a 5 MHz center frequency, 3 MHz bandwidth system function and a 
12.7 mm diameter planar transducer radiating a P-wave directly into a 
single medium (water), since the material properties for water are used for 
both materials. The P-wave response is to be calculated at a single 
frequency of 5 MHz at 512 points along the transducer central axis from 
zero to 200 mm, with no attenuation and with the flaw parameters initially 
set to zero. It can be seen that the wave parameters are also made con-
sistent with the other setup parameters in this default case. However, to 
remain consistent these wave parameters must be recomputed whenever 
the wave types or materials are changed, as mentioned previously. 
 This default set of parameters would be suitable for generating, for 
example, a central axis transducer beam response similar to those shown in 
Chapter 8 (see, for example, Fig. 8.9). We will demonstrate the use of this 
default set of parameters (and others) after we have developed the necessary 
MATLAB multi-Gaussian beam model. 
 The setup structure makes it easy to manipulate all the problem 
parameters and to set up various cases. Examples of using this structure 
will be given when we begin to discuss specific case studies later in this 
Chapter. A MATLAB function display_setup has also been defined that 
allows one to examine all these setup parameters. 

12.4 A Multi-Gaussian Beam Model in MATLAB 

To generate a complete multi-Gaussian beam model that can simulate the 
ideal normalized velocity field, 0/iV vγ  of Eq. (12.8),  in addition to a subset 
of the setup parameters (attenuation parameters and flaw parameters, for 
example, are not needed for this beam model) we need the Gaussian 
coefficients and we must calculate the appropriate plane wave transmission 
coefficient. The Wen and Breazeale fifteen complex coefficients, ( ),r rA B , 
have been placed in a MATLAB function gauss_c15 that returns their 
values. This function is given in the following listing: 
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Code Listing 12.2. A MATLAB function that returns the fifteen Wen and Breazeale 
coefficients. These coefficients are used to generate a multi-Gaussian beam model 
of a circular piston transducer. 
 

 
function [a, b] = gauss_c15 
 
a = zeros(15,1); 
b = zeros(15,1); 
a(1) = -2.9716 + 8.6187*i; 
a(2) = -3.4811 + 0.9687*i; 
a(3) = -1.3982 - 0.8128*i; 
a(4) = 0.0773 - 0.3303*i; 
a(5) = 2.8798 + 1.6109*i; 
a(6) = 0.1259 - 0.0957*i; 
a(7) = -0.2641 - 0.6723*i; 
a(8) = 18.019 + 7.8291*i; 
a(9) = 0.0518 + 0.0182*i; 
a(10) = -16.9438 - 9.9384*i; 
a(11) = 0.3708 + 5.4522*i; 
a(12) = -6.6929 + 4.0722*i; 
a(13) = -9.3638 - 4.9998*i; 
a(14) = 1.5872 - 15.4212*i; 
a(15) = 19.0024 + 3.6850*i; 
b(1) = 4.1869 - 5.1560*i; 
b(2) = 3.8398 - 10.8004*i; 
b(3) = 3.4355 - 16.3582*i; 
b(4) = 2.4618 - 27.7134*i; 
b(5) = 5.4699 + 28.6319*i; 
b(6) = 1.9833 - 33.2885*i; 
b(7) = 2.9335 - 22.0151*i; 
b(8) = 6.3036 + 36.7772*i; 
b(9) = 1.3046 - 38.4650*i; 
b(10) = 6.5889 + 37.0680*i; 
b(11) = 5.5518 + 22.4255*i; 
b(12) = 5.4013 + 16.7326*i; 
b(13) = 5.1498 + 11.1249*i; 
b(14) = 4.9665 + 5.6855*i; 
b(15) = 4.6296 + 0.3055*i; 
 
 
 
The plane wave transmission coefficient must be calculated consistent with 
the material properties and wave types specified in the setup structure 
parameters. We will use a MATLAB function that is passed the setup 
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structure and returns the appropriate transmission coefficient. The MATLAB 
function fluid_solid, (see Code Listing 12.3) for example, calculates the 
plane wave transmission coefficient for a fluid-solid interface using the 
explicit expressions given in Appendix D (Eq. (D.59)). For a refracted S-
wave, this transmission coefficient will be complex if the first critical angle is 
exceeded. The function fluid_solid calculates this complex transmission 
coefficient for positive frequencies only. Thus, if one wants to synthesize a 
pulse with these calculations, one will need to follow the steps discussed in 
Appendix A in performing the necessary FFT.  
 
Code Listing 12.3. A MATLAB function for calculating the plane wave trans-
mission coefficient  for a fluid-solid interface. 
 
 
function  T12 = fluid_solid(setup) 
% fluid_solid(setup) computes the P-P (tpp) 
% and P-S (tps) transmission coefficients based on velocity ratios 
% for a plane fluid-solid interface. It obtains the necessary input 
% parameters from the setup structure and then returns the  
% appropriate transmission coefficient 
 
 
% get setup parameters 
type1 =setup.type1; 
type2 =setup.type2; 
inc= setup.geom.i_ang; 
d1 = setup.matl.d1; 
d2 =setup.matl.d2; 
cp1 = setup.matl.cp1; 
cs1 =setup.matl.cs1; 
cp2 =setup.matl.cp2; 
cs2 =setup.matl.cs2; 
 
% consistency check (if material one is not a fluid 
% then can't use this fluid-solid trans. coefficient) 
 
if strcmp(type1, 's') | cs1 ~=0 
    error('wrong wave type or wave speed for medium 1') 
end 
 
 
% calculate transmission coefficients 
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iang = (inc.*pi)./180; 
sinp = (cp2/cp1)*sin(iang); 
sins =(cs2/cp1)*sin(iang); 
len = length(sinp); 
for j=1:len 
if sinp(j) >= 1 
 cosp(j) = i*sqrt(sinp(j)^2 - 1); 
 else 
 cosp(j) = sqrt(1 - sinp(j)^2); 
 end 
end 
for j=1:len 
if sins(j) >= 1 
 coss(j) = i*sqrt(sins(j)^2 - 1); 
 else 
 coss(j) =sqrt(1 - sins(j)^2); 
 end 
end 
denom = cosp + (d2/d1)*(cp2/cp1)*sqrt(1-sin(iang).^2).*(4.*((cs2/cp2)^2)… 
.*(sins.*coss.*sinp.*cosp) + 1 - 4.*(sins.^2).*(coss.^2)); 
tpp = (2*sqrt(1 - sin(iang).^2).*(1 - 2*(sins.^2)))./denom; 
tps = -(4*cosp.*sins.*sqrt(1 - sin(iang).^2))./denom; 
 
%select appropriate coefficient 
if strcmp(type2, 'p') 
    T12 = tpp; 
elseif strcmp(type2, 's') 
    T12 = tps; 
else 
    error('wrong wave type specification') 
end 
 
 
 
 
Having the setup structure, the multi-Gaussian beam coefficients, and the 
plane wave transmission coefficient, we now are in a position to develop 
the complete multi-Gaussian beam model. The MATLAB function 
MGbeam extracts the setup parameters it needs from the setup structure 
(which is the only input to MGbeam); calls the function c_gauss15 to 
obtain the Gaussian beam coefficients; updates the setup.wave parameters 
c1 and c2 to be consistent with the wave types; calls the fluid_solid 
function to compute the plane wave transmission coefficient (and then 
updates the setup structure with that coefficient); computes some of the 
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additional parameters appearing explicitly in the beam model, and then 
computes the ideal velocity field in Eq. (12.20). A function init_z is called 
to generate an empty array of velocity values before the beam model 
calculations are performed. That function is given in Code Listing 12.4. 
This function decides what the largest size of matrix is present for the 
parameters f, z1, z2, x2, and y2, and pre-allocates an array of zeros of the 
same size for the velocity field, v, to be calculated. This pre-allocation is 
for efficiency only. One could have instead simply initialized v with v = 0. 
MGbeam is coded to allow f, z1, z2, x2, and y2 to be either scalars, 
vectors, or 2 by 2 arrays so that one can perform a number of different 
studies and plot various combinations of parameters, as will be shown 
shortly. MGbeam is not coded to allow the incident angle with the 
interface to be other than a single scalar value. However, multiple calls to 
MGbeam with different values of setup.geom.i_ang could be used to 
perform those types of studies.  
 
Code Listing 12.4.  A MATLAB function for pre-allocating memory for the velocity 
calculations of the same size as the largest array present in the input parameters f, 
z1, z2, x2, y2. 
 
 
function v =init_z(setup) 
% get parameters that may not be scalars 
f =setup.f; 
z1 = setup.geom.z1; 
z2=setup.geom.z2; 
x2 =setup.geom.x2; 
y2 = setup.geom.y2; 
%get dimensions, put in rows 
A = [size(f); size(z1);size(z2);size(x2); size(y2)]; 
%get product of dimensions for each varaible 
prod =A(:,1).*A(:,2); % this is a column vector 
%find which row (or rows) have largest dimension 
ind = find( prod = = max(prod)); 
%pick first row with largest dimension 
val = ind(1); 
% initialize v with  zeros of same size  
% as the parameter(s) with largest dimensions 
v = zeros(A(val,:)); 
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For a spherically focused probe the Gaussian beam coefficients rB  are simply 
changed by letting /r r RB B iD F→ + , where RD  is the Rayleigh length 
and F is the focal length, as discussed in Chapter 9. The propagation term 

( )1 1 2 2exp pik z ik zγ+  is not included in the calculations since this term only 
generates a time delay 0 1 1 2 2/ /pt z c z cγ= +  in going from the transducer to 
the point in the solid and this delay can easily be added in separately, if 
needed, by simply shifting the time axis appropriately. Thus, for pulses 
calculated using MGbeam the time t = 0 corresponds to the time when the 
incident quasi-plane wave is at the “center” of the flaw.  MGbeam returns 
the ideal velocity field, 0/iV vγ , and the updated setup structure. As can be 
seen from Code Listing 12.5, the multi-Gaussian beam model is calculated 
in only the last fourteen lines of that Code. All the other parts of MGBeam 
simply prepare the necessary input parameters. Thus, except in very 
special cases there are no alternative beam models as simple and fast as a 
multi-Gaussian beam model. 
 
Code Listing 12.5.  A MATLAB function MGbeam for calculating the wave field 
of circular piston transducer (planar or focused) radiating through a fluid-solid 
interface into a solid. The function uses a multi-Gaussian beam model. 
 
 
function [v,setup ]=MGbeam(setup) 
 
% get setup parameters 
f = setup.f;   %frequency or frequencies (MHz) 
type1 = setup.type1;          % wave type in medium one 
type2 = setup.type2;  % wave type in medium two 
     
a = setup.trans.d/2;  % transducer radius (mm) 
Fl = setup.trans.fl;  % transducer focal length (mm)  
 
z1 = setup.geom.z1;  % water path length (mm) 
z2 = setup.geom.z2;           % path length in solid (mm) 
x2 =setup.geom.x2;         % distance (mm) from ray axis in POI  
y2 = setup.geom.y2;  % distance (mm) perpendicular to the POI 
Rx = setup.geom.R1;  % interface radius of curvature (mm) in POI 
Ry =setup.geom.R2;         % interface radius of curvature (mm) out of POI 
iang = setup.geom.i_ang;  % incident angle (deg) 
 
d1 = setup.matl.d1;  % density (fluid) 
d2 =setup.matl.d2;  % density (solid) 
cp1 = setup.matl.cp1;  % compressional wave speed -fluid  (m/sec) 
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cp2 = setup.matl.cp2;  % compressional wave speed -solid (m/sec) 
cs2 = setup.matl.cs2;  % shear wave speed -solid (m/sec) 
 
[A, B] = gauss_c15;  % Wen and Breazeale coefficients (15) 
 
% update setup.wave wave speeds 
if strcmp(type1, 'p') 
    setup.wave.c1 =cp1; 
elseif strcmp(type1, 's') 
    setup.wave.c1 = cs1; 
else 
    error('wrong wave type (must be p or s) ') 
end 
 
if strcmp(type2, 'p') 
    setup.wave.c2 =cp2; 
elseif strcmp(type2, 's') 
    setup.wave.c2 = cs2; 
else 
    error('wrong wave type (must be p or s)') 
end 
% calculate transmission coefficient, update setup 
setup.wave.T12 = fluid_solid(setup);  
 
% wave speeds and transmission coefficient for the beam model 
c1 =setup.wave.c1; 
c2 =setup.wave.c2;             % wave speed for wave type2 
T = setup.wave.T12;           % transmission coefficient 
 
% parameters appearing in beam model 
 
cosi = cos(pi*iang/180);  % cosine of incident angle 
sinr = (c2/c1)*sin(pi*iang/180);      % sine of refracted angle from Snell's law 
if sinr >= 1       
   error('Beyond the Critical angle')      % no transmitted wave of given wave type 
else 
   cosr = sqrt( 1 - sinr^2); 
end  
 
   h11 = 1/Rx;  %curvature 
   h22 = 1/Ry;  %curvature 
zr = eps*(f == 0) + 1000*pi*(a^2)*f./c1; % "Rayleigh" distance  
k1 = 2*pi*1000*f./c1;    % wave number in fluid 
 
%initialize predicted velocity with zeros of a size 
% compatible with largest array in f, z1, z2, x2, y2 parameters 
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v = init_z(setup); 
 
%multi-Gaussian beam model 
 
for j = 1:15   % form up multi-Gaussian beam model 
 
 b =B(j) + i*zr./Fl;  % modify coefficients for focused probe 
    % Fl = inf for planar probe  
     
q = z1 - i*zr./b; 
K = q.*(cosi -(c1/c2)*cosr); 
M1 = (cosi^2 +K.*h11)./cosr^2; 
M2 =1 + K.*h22; 
ZR1 = q./M1; 
ZR2 =q./M2; 
m11 = 1./(ZR1 +(c2/c1).*z2); 
m22 = 1./(ZR2 +(c2/c1).*z2);  
   t1 = A(j)./(1 + (i.*b./zr).*z1); 
   t2 = t1.*T.*sqrt(ZR1).*sqrt(ZR2).*sqrt(m11).*sqrt(m22); 
   v = v + t2.*exp(i.*(k1./2).*(m11.*(x2.^2) + m22.*(y2.^2))); 
 
end 
 
 
 
As a simple test of this multi-Gaussian beam model we can use the default 
setup structure to simulate the on-axis wave field of a 5MHz, 12.7 mm 
diameter circular piston transducer radiating into water. The following 
MATLAB commands will generate the plot shown in Fig. 12.2: 
 
>> setup = setup_maker; 
>> [v, setup] = MGbeam(setup); 
>> z2 =setup.geom.z2; 
>> plot(z2, abs(v)) 
>> xlabel('z-distance (mm)') 
>> ylabel('|v/v_0|') 
 
As seen in Fig. 12.2 the beam model accurately predicts the near-field of 
the transducer down to a distance of approximately a transducer diameter, 
as discussed in Chapter 9. 
 Other plots also easy to simulate. From Fig. 12.2 we see that there 
is an on-axis null near z2 = 70 mm, so we can examine the cross-axis 
behavior at that distance through the commands: 
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Fig. 12.2. The on-axis field of a 5 MHz, 12.7 mm diameter circular piston trans-
ducer radiating into water as calculated with a multi-Gaussian beam model. 

 

 
Fig. 12.3. The wave field in a plane perpendicular to the axis of a 5 MHz, 12.7 mm 
diameter planar piston transducer radiating into water at a distance approximately 
equal to one-half a near field distance along the axis. 
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>> setup.geom.z2 =70; 
>> x2 = linspace(-20,20, 512); 
>> setup.geom.x2 = x2; 
>> [v, setup] = MGbeam(setup); 
>> plot(x2, abs(v)) 
>> xlabel('x2-distance, (mm)') 
>> ylabel(' | v/v_0 |') 
 
The results are shown in Fig. 12.3. In a similar fashion we can see a 2-D 
cross-section of the entire wave field with the commands: 
 
>> %  recall, we already had set x2 = linspace(-20,20, 512); 
>> z2 = linspace(0, 200, 512); 
>> [zz, xx] =meshgrid(z2, x2); 
>> setup.geom.z2 = zz; 
>> setup.geom.x2 = xx; 
>> [v, setup] = MGbeam(setup); 
>> image(z2, x2,abs(v)*50)    % scale the result to get a good 
     % color map 

 
>> xlabel('z2-distance (mm)') 
>> ylabel('x2-distance (mm)') 
 
The results are shown in Fig. 12.4. 
 
 
 

 
Fig. 12.4. A 2-D image of the near-field beam profile for a 5 MHz, 12.7 mm 
diameter planar piston transducer radiating into water.  Note the scales on the two 
axes are very different. 
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Fig. 12.5. The on-axis wave field of a 10 MHz, 12.7mm diameter, 76.2mm focal 
length focused transducer radiating into water as calculated with a multi-Gaussian 
beam model. 

To simulate a spherically focused probe and examine the on-axis response, 
consider a 10 MHz, 12.7 mm diameter, 76.2 mm focal length transducer 
radiating into water. This can be simulated via the commands: 
 
>> setup.f =10; 
>> setup.geom.x2 =0.; 
>> setup.geom.z2 =z2;  % put a vector set of values back into setup 
>> setup.trans.fl = 76.2; 
>> [v, setup] = MGbeam(setup); 
>> plot(z2, abs(v)) 
>> xlabel('z2-distance (mm)') 
 
The results are shown in Fig. 12.5. Note that we changed the frequency of 
the calculation by changing the setup.f  parameter, not the setup.system.fc 
(center frequency) parameter. The center frequency parameter refers to a 
parameter of the frequency profile of the system function which is needed 
to synthesize a time domain waveform. This center frequency parameter 
will not affect beam calculations performed at a single frequency. To 
synthesize a transducer pulse, however, we would have to let setup.f be an 
array of frequencies and multiply the output of MGbeam function by a 
system function to simulate the spectral behavior of the system. We will 
show simulation examples of this type later. 
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Fig. 12.6. The attenuated amplitude versus distance for propagation in water at room 
temperature and at a frequency of 10 MHz. 

12.5 Ultrasonic Attenuation in the Measurement Model 

Ultrasonic material attenuation is a part of the measurement model which 
must be determined experimentally. The linear attenuation terms appearing 
in the attenuation expression ( ) ( )1 1 2 2exp p z zγα ω α ω⎡ ⎤− −⎣ ⎦  are frequency 
dependent so that normally one fits the measured values of these linear 
attenuation terms to functions with a simple frequency dependency (linear, 
quadratic, etc.) that best match the experimental results over the bandwidth 
of the measurement system. The MATLAB function attenuate in 
Code Listing 12.6 defines each of the linear attenuation coefficients for the 
appropriate wave types traveling in medium one and two in terms of five 
fitting coefficients for a polynomial of up to fourth order in frequency, i.e. 
we use a fitting expression for an attenuation coefficient α  in the form 

2 3 4
1 2 3 4 5a a f a f a f a fα = + + + + . Those fitting coefficients must be placed 

in setup.matlp1, setup.matls1, setup.matlp2, and setup.matls2 . 
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Code Listing 12.6.  A MATLAB function for calculating attenuation terms for 
propagation in two adjacent media. 

 
 
function y = attenuate(setup) 
% atten(setup) generates a frequency dependent attenuation factor 
% as a function of the frequency, f, and the distances z1, z2 in (mm)  
% traveled in two media 
% For water at room temp for the first medium , take p1(1) = p1(2) = p1(4) 
% =p1(5)=0, 
% and p1(3) = 25.3E-06 if f is in MHz, distances are in mm 
 
f=setup.f; 
type1=setup.type1; 
type2=setup.type2; 
z1 =setup.geom.z1; 
z2 =setup.geom.z2; 
p1 =setup.matl.p1; 
s1 =setup.matl.s1; 
p2=setup.matl.p2; 
s2=setup.matl.s2; 
if strcmp(type1, 'p') 
 a1 =p1; 
elseif  strcmp(type1, 's') 
 a1 =s1; 
else 
error('wrong wave type') 
end 
 
if strcmp(type2, 'p') 
 a2 =p2; 
elseif  strcmp(type1, 's') 
 a2 =s2; 
else 
error('wrong wave type') 
end 
 
d1 = a1(1) + a1(2)*f + a1(3)*f.^2  + a1(4)*f.^3  + a1(5)*f.^4; 
d2 = a2(1) + a2(2)*f + a2(3)*f.^2  + a2(4)*f.^3  + a2(5)*f.^4; 
 
y = exp(-d1.*z1).*exp(-d2.*z2); 
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To illustrate this function, consider the attenuated amplitude versus distance 
in water at room temperature for a frequency of 10 MHz where the attenua-
tion coefficient is 6 225.3 10 fα −= × with f the frequency in MHz. Using the 
default setup structure and the MATLAB commands: 
 
>> setup.f =10.; 
>> z1 =linspace(0,1000,512); 
>> setup.geom.z1  = z1; 
>> setup.geom.z2 =0.0; 
>> setup.matl.p1 = [ 0  0  25.3E-06  0  0]; 
>> y=attenuate(setup); 
>> plot(z1, y) 
>> xlabel('z1, mm') 
>> ylabel('amplitude') 
 
we obtain the plot show in Fig. 12.6 ( the default type1 ='p' here and the 
other attenuation fitting coefficients are all zero). 

12.6 The System Function 

The system function, ( )s ω , is found in practice by either performing a 
measurement of the received voltage in a calibration setup or by measuring 
all the ultrasonic system components in the sound generation and reception 
processes and combining them to form up the ( )s ω , as described in previous 
Chapters. However, we can also simulate this function directly to model its 
effects on the measurement process.   

 To model the system function we will use a simple Gaussian 
function of the type discussed in Appendix A given by 

( ) ( ) ( )2 22 2 2exp 4 exp ,c cF f A a f f A aπ ω ω⎡ ⎤ ⎡ ⎤= − − = − −⎣ ⎦ ⎣ ⎦  (12.22)

where A is the amplitude, 2f πω=  is the frequency and cf  is the center fre-
quency, both measured in MHz. The inverse Fourier transform of this 
function can be obtained analytically as 

( ) ( ) ( )2 2exp 2 exp / 4 ,
2 c

Af t i f t t a
a

π
π

= − −  (12.23)
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which is complex since we have not included any negative frequency 
components in ( )F f . As shown in Appendix A we can recover a real 
time domain signal, ( )v t , from only the positive frequency components if 
we take twice the real part of  Eq. (12.23) which gives 

( ) ( ) ( )2 2cos 2 exp / 4 .c
Av t f t t a

a
π

π
= −  (12.24)

In all the model terms in our measurement models, we will likewise only 
model those terms for positive frequencies and then take twice the real part 
of the result to recover real time domain functions. 
 It is convenient to rewrite ( )F f  in a form which is parameterized 
not in terms of a but instead in terms of the bandwidth, bw, where bw is 
the width of the Gaussian, in MHz, where its amplitude is one-half of its 
maximum value (see Fig. A.5). This gives 

( ) ( )2 22 2 2 2
0

1exp 4 exp
2ca f f a bwπ π⎡ ⎤ ⎡ ⎤− − = − =⎣ ⎦ ⎣ ⎦  (12.25)

so solving for a in terms of bw we find 

ln 2 .a
bwπ

=  (12.26)

For small center frequencies and large bandwidths, the simple Gaussian 

ponent. Most transducers band limit the measured ultrasonic response so 
that the response should be very small at low frequencies. To model this 
behavior we therefore modify the Gaussian slightly through a sine function 
that tapers the response to zero at zero frequency. Thus, the simulated 
system transfer factor, ( )s f , we will model is given by 

( )
( )

( )

sin
2 .c

c

c

fF f f f
fs f

F f f f

π⎧ ⎡ ⎤
<⎪ ⎢ ⎥= ⎨ ⎣ ⎦

⎪ ≥⎩

 (12.27)

This modification means that the corresponding time domain waveform 
will not be given exactly by Eq. (12.24) but in many cases the difference is 
small. The MATLAB function in Code Listing 12.7 returns the system 
function given in Eq. (12.27): 
 

function in Eq. (12.22) will have a non-zero D.C. (zero frequency) com-

www.iran-mavad.com 
ایران مواد



352      Ultrasonic Measurement Modeling with MATLAB 

Code Listing 12.7.  A MATLAB function for simulating the system function. 
 
 
function y = systf (setup) 
% systf(setup) models the system function by a Gaussian window function  
% of amplitude amp centered at frequency fc and with a bandwidth bw defined to 
% be the spread in frequency at the half amplitude point in the Gaussian. 
% The Gaussian is tapered to zero at frequencies below fc with a sine function to  
% guarantee the dc value is always zero. 
% For small fc and large bw, this tapering will distort the Gaussian 
% 
f =setup.f; 
amp = setup.trans.amp; 
fc = setup.trans.fc; 
bw = setup.trans.bw; 
a = sqrt(log(2))/(pi*bw); 
s1 = exp(-(2*a*pi*(f - fc)).^2).*(f > fc); 
s2 = exp(-(2*a*pi*(f - fc)).^2).*sin(pi*f/(2*fc)).*(f <= fc); 
y = amp*(s1 + s2);  
 
 
 
 To illustrate this function we can use the default setup structure 
where amp = .05 volts/MHz, fc = 5 MHz, and bw = 3 MHz with the com-
mands: 
 
>> f = linspace(0, 20, 512); 
>> setup.f = f; 
>> y=systf(setup); 
>> plot(f, y) 
>> xlabel( ' f, MHz') 
>> ylabel('volts/MHz') 
 
to obtain the system function shown in Fig. 12.7. Note that the system 
function modeled here is a purely real function. A measured system function, 
however, will generally be a complex-valued function. 
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Fig. 12.7. A simulated system function. 

 
Fig. 12.8. The pulse-echo far-field scattering amplitude versus frequency for a 
1 mm radius spherical void in steel, calculated using the Kirchhoff approximation. 

 

12.7 Flaw Scattering Models 

As shown in Chapter 10, the Kirchhoff approximation is a very useful 
approximation for obtaining the flaw scattering properties of a number of 
flaws. We  will develop MATLAB  functions  that  will  use the  Kirchhoff  
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approximation for modeling the pulse-echo far-field scattering amplitude 
of a spherical void and a circular crack.  The explicit expressions for these 
scattering amplitudes were given in Chapter 10. For the spherical void of 
radius b we found (Eq. (10.14): 

( ) ( ) ( ) ( )sin
; exp exp ,

2i i

k bbA ik b ik b
k b

ββ β
β β

β

⎡ ⎤−
− = − − −⎢ ⎥

⎢ ⎥⎣ ⎦
e e  

(12.28)

while for wave incident on a circular crack of radius b at an angle, θ , with 
respect to the crack normal we found (Eq. (10.36)): 

( ) ( )1
cos; 2 sin .

2sini i
ibA J k bβ β

β
θ θ
θ

− =e e  (12.29)

Code Listing 12.8 describes the function A_void that uses Eq. (12.28) and 
returns the pulse-echo scattering amplitude of the spherical void. 
 
Code Listing 12.8.  A MATLAB function for modeling the pulse-echo far-field 
scattering amplitude of a spherical void. 
 
 
function A = A_void(setup) 
% A_VOID calculates the pulse-echo far-field scattering amplitude 
% of a spherical void in the Kirchhoff approximation, using 
% the frequency f in setup.f, the radius b in  setup.flaw.b, 
% and the wave speed for the wave type in setup.wave.c2. 
% The calling sequence is A = A_void(setup). The scattering 
% amplitude, A, (in mm) is returned. 
 
%get the parameters 
f =setup.f; 
c = setup.wave.c2; 
b = setup.flaw.b; 
 
%calculate the wave number kb (f in MHz, b in mm, c in m/sec) 
kb = (2000*pi*b*f)./c; 
 
%calculate the pulse-echo scattering amplitude 
kb = kb + eps*(kb == 0);   % prevent division by zero 
A =(-b/2)*exp(-i*kb).*(exp(-i*kb)-sin(kb)./(kb)); 
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Similarly, Code Listing 12.9 gives the MATLAB function A_crack that 
uses Eq. (12.29) and returns the pulse-echo scattering amplitude of the 
circular crack. 
 
Code Listing 12.9.  A MATLAB function for modeling the pulse-echo far-field 
scattering amplitude of a circular crack. 
 
 
function A = A_crack(setup) 
% A_CRACK calculates the pulse-echo far-field scattering amplitude 
% of a circular crack in the Kirchhoff approximation, using the 
% frequency f in setup.f, the radius b in setup.flaw.b, the acute 
% angle between the incident wave direction and the crack normal in 
% setup.flaw.f_ang, and the wave speed for the wave type in 
% setup.wave.c2.  
% The calling sequence is A = A_crack(setup). The  
% scattering amplitude,A, (in mm) is returned. 
 
%get the parameters 
f = setup.f; 
c = setup.wave.c2; 
b = setup.flaw.b; 
ang = setup.flaw.f_ang; 
 
% put the angle in radians, calculate the wave number 
iang = ang.*pi./180; 
kb = (2000*pi*b*f)./c; 
 
% calculate the pulse-echo scattering amplitude 
arg = 2*sin(iang).*kb;       % argument of bessel function 
arg = arg + eps*(arg == 0);  % prevent division by zero 
A = i*kb.*b.*cos(iang).*(besselj(1, arg)./arg); 
 
 
 
 We can use these functions to verify some of the results presented 
in Chapter 10. First, consider the pulse-echo frequency domain response of 
a 1 mm radius spherical void in steel ( 2pc  = 5900 m/sec). Using the com-
mands: 
 
>> clear 
>> setup=setup_maker; 
>> setup.f =linspace(0,30,512); 
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Fig. 12.9. The pulse-echo far-field scattering amplitude versus frequency for a 
1 mm radius circular crack in steel, calculated using the Kirchhoff approximation. 
The incident angle 10θ =  with respect to the crack normal. 

>> setup.wave.c2 =5900; 
>> setup.flaw.b =1.; 
>> setup.flaw.Afunc ='A_void'; 
>> f = setup.f; 
>> A = feval(setup.flaw.Afunc, setup); 
>> plot(f, abs(A)) 
>> xlabel('frequency, MHz') 
>> ylabel('scatt amp, mm') 
 
generates the plot shown in Fig. 12.8 which is identical to Fig. 10.6. Notice 
that we put the frequencies and wave speed into the appropriate parameters 
in setup and we have placed the name of the flaw function in the setup 
structure and then retrieved it to evaluate it with the function feval. This 
process was done simply to illustrate how in a measurement model the 
setup structure will be used to obtain the flaw response. In this case we 
could have just called the function A_void directly with setup as its 
argument. 
  The same type of pulse-echo response for a 1 mm radius crack in 
steel where the incident direction is at 10o from the crack normal can be 
found using the same setup parameters just  defined plus the commands 
 
>> setup.flaw.f_ang = 10; 
>> setup.flaw.Afunc ='A_crack'; 
>> Ac =feval(setup.flaw.Afunc, setup); 
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>> plot(f, abs(Ac)) 
>> xlabel('frequency, MHz') 
>> ylabel('scatt amp, mm') 
 
These commands generate the plot shown in Fig. 12.9 which is identical to 
the same plot shown in Fig. 10.17. 

12.8 The Thompson-Gray Measurement Model 

We now have all the MATLAB functions defined that will allow us to 
construct a complete ultrasonic measurement model of the type given in 
Eq.(12.6) where the flaw is assumed to be small enough so that we can 
neglect the beam variations over the flaw surface. Thompson and Gray 
first developed this type of measurement model in 1983 [11.2]. The 
MATLAB function TG_PE_MM (Code Listing 12.10), like all our other 
functions uses only the setup structure as its input. TG_PE_MM returns an 
updated setup structure and the measured voltage, RV , in the frequency 
domain obtained from a flaw in the solid using the Thompson-Gray 
measurement model for a pulse-echo immersion setup of the type shown in 
Fig 12.1. The multi-Gaussian beam model function MGbeam is used to 
predict the transducer velocity field at the flaw and the far-field scattering 
amplitude is obtained by the MATLAB function whose name is specified 
in the setup parameter setup.flaw.Afunc. The system function is modeled 
by the MATLAB function systf if the setup.sysf contains the string 'systf' 
(the default) or this function is obtained experimentally by use of the 
function whose name is contained in setup.sysf. The attenuation of the 
materials in the measurement model is accounted for by the MATLAB 
function attenuate. 
 
Code Listing 12.10.  The MATLAB function TG_PE_MM for modeling the res-
ponse of a flaw using the Thompson-Gray ultrasonic measurement model. 
 
 
function [Vf, setup] =TG_PE_MM(setup) 
% TG_PE_MM generates the frequency components of the  
% output voltage, Vf, of an ultrasonic pulse-echo immersion 
% measurement system generated by a flaw.  
% The function returns Vf  as well as an updated setup structure 
% The calling sequence is [Vf, setup] =TG_mm(setup); 
 
% First, compute the incident beam velocity and update  
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% the setup structure 
[v, setup] = MGbeam(setup); 
 
%get the setup parameters  needed for the constant term 
%in the measurement model 
f = setup.f; 
r= setup.trans.d/2;    % transducer radius 
d1 =setup.matl.d1; 
d2 =setup.matl.d2; 
c1 = setup.wave.c1; 
c2 = setup.wave.c2; 
 
%compute wave number in medium two and  
%the constant term in the measurement model 
 
k2 = (2000.*pi.*f)./c2; 
k2 =k2 + eps*( k2 == 0);  % prevent division by zero 
K= (4.*d2.*c2)./(-i.*k2.*r^2.*d1.*c1); 
 
% check to see if a model-based or experimentally determined system 
% function is to be used 
if strcmp(setup.sysf, 'systf') 
    sys = systf(setup); 
else 
    sys =feval(setup.sysf, setup); 
end 
 
% find flaw type to be used 
if strcmp( setup.flaw.Afunc, 'empty') 
    error('flaw function not specified in setup') 
else 
    A = feval(setup.flaw.Afunc, setup); 
end 
 
%compute output voltage, Vf, (volts/MHz) 
Vf = sys.*(v.*attenuate(setup)).^2.*A.*K; 
 
 
 
 To illustrate an application of the MATLAB function TG_PE_MM 
we will describe a MATLAB calculation that uses the setup shown in 
Fig. 12.10 (b), where a planar, 5 MHz transducer is being used in pulse-echo 

normal incidence through a water-solid interface. These parameters are  
to examine a spherical 0.6921 mm diameter void in a glass block at 
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Fig. 12.10. (a) A reference scattering configuration where a planar 12.7 mm 
diameter, 5 MHz transducer receives the P-waves reflected from a water-glass 
interface. (b) A pulse-echo flaw measurement setup where the transducer in (a) 
receives the P-waves scattered from a 0.6921 mm diameter spherical void in glass 
located on the central axis of the transducer. The water path length is the same 
(50.8 mm) in both measurements. 

similar to those of a experimental setup that  we  will discuss next. We will 
simulate the received voltage time-domain waveform from the void. If we 
call the function setup_maker then we need to change only those para-
meters that are different from the default setup structure that is generated 
by this function. In this case we will set up a range of frequencies from 0 
to 20 MHz to do our calculations and define the measured wave speed of 
the water (the water density was taken as the default value of 1.0) and also 
the density and wave speed of the glass: 
 
>> setup = setup_maker; 
>> f = s_space(0, 20, 200); 
>> cp1 = 1484; 
>> d2 = 2.2; 
>> cp2 = 5969.4; 
>> cs2 = 3774.1; 
 
The MATLAB function s_space (xmin, xmax, num) used here (the 
MATLAB code listing is given in Appendix G) is similar to the MATLAB 
function linspace. The s-space function gives a set of num evenly spaced 
sampled values from xmin to xmax - dx, where dx = (xmax - xmin)/num is 
the sample spacing, whereas the MATLAB function linspace(xmin, xmax, 
num) gives set of num evenly sampled values from xmin to xmax with 
sample spacing dx = (xmax – xmin)/(num-1). As discussed in Appendix A 
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the function s_space generates precisely the sampled values needed in both 
the time and frequency domains to perform Fourier analysis with FFTs, 
but the built-in MATLAB function linspace does not.  
 We will also specify the water path length from the transducer to 
the interface and distance from the interface to center of the spherical void 
in the solid (see Fig. 12.10 (b)):  
 
>> z1 = 50.8; 
>> z2 = 19.62725; 
 
The default system function center frequency of 5 MHz can be left unchanged 
but the system function amplitude and bandwidth will be chosen to be 
similar to the experimental example we will discuss shortly: 
 
>> amp = 0.08; 
>> bw = 4; 
 
Although in this example the parameters amp and bw are the only values 
needed to predict the system function, when we determine this function 
experimentally we will also need to specify the water path length to be 
used in a reference experiment so that anticipating the need for that 
variable, we will also set it appropriately here: 
 
>> z1r = 50.8; 
 
The transducer diameter (12.7 mm) and focal length (infinity) are compati-
ble with the default values generated by setup_maker. The attenuation of 
the glass block is very small so that it will be neglected. The P-wave 
attenuation of the water is included as a quadratic function of frequency: 
 
>> p1 = [ 0 0 .02479E-03 0 0]; 
 
Finally, the flaw radius is specified and the name of the function that 
calculates the pulse-echo far-field scattering amplitude of a spherical void 
in the Kirchhoff approximation is given: 
 
>> b = .34605; 
>> flaw_name = ‘A_void’; 
 
All of the other default setup parameters can be used unchanged so it is 
only necessary to update these parameters: 
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>> setup.f = f; 
>> setup.trans.amp = amp; 
>> setup.trans.bw = bw; 
>> setup.z1r = z1r; 
>> setup.geom.z1 =z1; 
>> setup.geom.z2 =z2; 
>> setup.matl.cp1 = cp1; 
>> setup.matl.d2 = d2; 
>> setup.matl.cp2 = cp2; 
>> setup.matl.cs2 =cs2; 
>> setup.matl.p1 = p1; 
>> setup.flaw.b =b; 
>>setup.flaw.Afunc =flaw_name; 
 
With these changes then the output voltage in the frequency domain, Vf, 
and an updated setup structure can be calculated: 
 
>> [Vf, setup] = TG_PE_MM(setup); 
 
If we want to examine the time-domain waveform from the void, we must 
extend the maximum frequency beyond the 20 MHz value used in the 
calculations and zero pad the Vf values. Here we have extended the 
maximum frequency to 100 MHz, using the same frequency spacing, df, 
used in calculating Vf. The sampling time interval, dt, is then the reci-
procal of this max frequency, and we can use this time interval to generate 
a time window, t. Since we are only going to use the positive frequency 
components of the response to calculate the wave form, we have also 
divided the zero frequency value of Vf by two: 
 
>> df = f(2) - f (1); 
>> dt = 1/(1000*df); 
>> t= s_space(0,1000*dt , 1000); 
>> Vfe = [ Vf  zeros(1, 800)]; 
>> Vfe(1) = Vfe(1)/2; 
 
We are now able to calculate the time domain void response with an 
inverse FFT of these positive frequency components: 
 
>> vt = 2*real(IFourierT(Vfe, dt)); 
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Fig. 12.11. The simulated response pulse-echo P-wave response of a spherical 
void for the setup shown in Fig. 12.10 (b).   

and we can plot the result. Since we have omitted all the time delay terms 
in these calculations, t = 0 corresponds to when the waves reach the center 
of the flaw so that we need to use the t_shift and c-shift functions to obtain 
a result where the responses before t = 0 are not in the upper part of the 
window:  
 
>> plot(t_shift (t, 100), c_shift(vt,100)) 
 
The simulated wave form (in volts) is shown in Fig. 12.11. All of the 
above MATLAB commands are contained in the MATLAB script 
TG_sphere_example1(Code Listing 12.11). This simple example shows 
how one can use the MATLAB functions to model a flaw response where 
the system function was taken to be the simple Gaussian function 
described previously. 
  
Code Listing 12.11.  A MATLAB script for calculating the pulse-echo response 
of an on-axis pore at normal incidence through a fluid-solid interface. 
 
 
% TG_sphere_example1 script 
% This script calculates the pulse-echo P-wave response of an on-axis  
% spherical pore interrogated by a 5 MHz planar probe through a  
% fluid-solid interface at normal incidence 
clear 
setup = setup_maker; 
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% setup parameters that need to be specified for this example 
f =s_space(0, 20, 200); 
cp1 = 1484.; 
d2 = 2.2; 
cp2 = 5969.4; 
cs2 = 3774.1; 
z1 = 50.8; 
z2 = 19.62725; 
amp =0.08; 
bw = 4.; 
z1r =50.8; 
p1 = [ 0 0 0.02479E-03  0 0]; 
b =0.34605; 
flaw_name = 'A_void'; 
setup.f =f; 
setup.system.amp = amp; 
setup.system.bw = bw; 
setup.system.z1r =z1r; 
setup.geom.z1 = z1; 
setup.geom.z2 = z2; 
setup.matl.cp1 = cp1; 
setup.matl.d2 = d2; 
setup.matl.cp2 = cp2; 
setup.matl.cs2 = cs2; 
setup.matl.p1 = p1; 
setup.flaw.b = b; 
setup.flaw.Afunc = flaw_name; 
% calculate received voltage 
[Vf, setup] = TG_PE_MM(setup); 
% extend frequency components to permit 
% taking FFT 
df = f(2)-f(1); 
dt = 1/(1000*df); 
t = s_space(0, 1000*dt, 1000); 
Vfe = [Vf zeros(1,800)]; 
Vfe(1) = Vfe(1)/2; 
vt =2*real(IFourierT(Vfe, dt)); 
plot(t_shift(t,100), c_shift(vt,100)) 
 
 
 
As shown in Chapter 7, it is relatively easy to calculate the system function 
experimentally in a reference experiment, and this function then truly 
represents the effects of all the electrical and electromechanical compo   
nents of the system (pulser/receiver, cabling, transducers) at a specific 
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Fig. 12.12. The voltage received from the fluid-solid interface for the reference 
scattering configuration shown in Fig. 12.10 (a). 

set of instrument settings. It is also easy to incorporate such a measured 
system function into our measurement model. All that is needed is to 
replace the output of the systf function in the previous example with a 
compatible set of measured values of the system function. This can be 
done for the example just discussed by measuring the waves received from 
the front surface of the glass block, as shown in Fig. 12.10(a). Since the 
acoustic/elastic transfer function is known for this configuration, 
deconvolution (with the aid of a Wiener filter) of the frequency 
components of the measured response by the transfer function, as shown in 
Chapter 7, will give us the measured system function. Figure 12.12 shows 
the experimental wave form received by a 5 MHz, 12.7 mm diameter 
planar transducer from the interface as shown in Fig. 12.10 (a). The 1000 
point wave form and its corresponding time axis are stored as MATLAB 
variables ref and t_ref, respectively in the MATLAB MAT-file 

experimentally. The function exp_systf loads the ref and t_ref variables 
into MATLAB (assuming that the sphere_ref file is contained in the 
current MATLAB directory), computes the frequency components of this 
measured response and then deconvolves those components with the 
acoustic/elastic transfer function for this configuration, using the 
MATLAB function Wiener_filter defined in Appendix C with a noise 
constant defined by the parameter setup.system.en. The function then 

the model-based systf function to calculate the system function 
sphere_ref.mat.  The MATLAB function exp_systf is used in place of 
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returns the measured system function. The listing of exp_systf is given in 
Code Listing 12.12. 
 
Code Listing 12.12.  A function for calculating the system function from an 
experimentally measured wave form in the reference scattering configuration of 
Fig. 12.10 (a). 
 
 
function s = exp_systf(setup) 
% EXP_SYSTF generates the system function from the 
% measured voltage received by a circular, planar or focused  
% transducer from the planar front surface of a 
% solid. It is assumed that the solid is the same as the one 
% in the flaw measurement where this system function is to be used 
% as is the rest of the measurement setup except that the fluid 
% path length can be different from the one used in a flaw measurement. 
% This function assumes that there are 1000 sampled 
% values in the reference wave form and time axis 
% and the sampling frequency is 100MHz 
filename =setup.system.ref_file; 
load(filename) % load reference wave form (in the variable ref) 
% and the time axis values (in the variable  t_ref) from a MAT-file 
 
dt = t_ref(2)-t_ref(1); 
% calculate Fourier Transform 
V =FourierT(ref, dt); 
%generate frequency axis 
fs = s_space(0, 1/dt, 1000); 
 
% get setup frequency values and check for consistency 
f = setup.f; 
df= f(2) - f(1); 
dfs =fs(2) - fs(1); 
fsize=size(f); 
numf = fsize(2); 
if df > (dfs + .001) | df < (dfs - .001) 
    error('frequency spacing mismatch of setup and exp values') 
end 
if f(end) > (fs(end) +dfs)/2 
    error('max frequency in setup exceeds Nyquist') 
end 
% keep number of measured voltage frequency components 
% compatible with that in setup 
Vc=V(1:numf);  
% get remaining setup parameters 
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z1r =setup.system.z1r; 
en =setup.system.en; 
d1 =setup.matl.d1; 
cp1 = setup.matl.cp1; 
d2 = setup.matl.d2; 
cp2 = setup.matl.cp2; 
cs2 = setup.matl.cs2; 
a = setup.trans.d/2; 
p1 =setup.matl.p1; 
alphac =p1(3); % frequency squared attenuation coefficient 
fl = setup.trans.fl; 
 
% if transducer is focused, z1r must be the same as the focal length 
if fl ~= inf 
    if z1r > fl +.01  | z1r < fl - .01 
        warning(' reference water path is not the focal length, using focal length') 
        z1r = fl; 
    end 
end 
 
% calculate wave number , reflection coefficient of fluid-solid interface 
% and argument for acoustic/elastic transfer function 
ka =2000.*pi.*f.*a./cp1; 
R12 = (cp2*d2 - cp1*d1)/(cp2*d2 + cp1*d1); 
arg = (a/z1r)*ka; 
alpha = alphac*f.^2; 
% calculate acoustic-elastic transfer function, leave out propagation phase 
 
ta = 2*R12*exp(-2*alpha.*z1r).*(1 -exp(i*arg/2).*(BesselJ(0, arg/2)... 
      -i*BesselJ(1, arg/2))); 
if fl ~= inf 
    ta = -conj(ta); 
end 
 
% deconvolve measured voltage frequency components with transfer function 
% to get system function 
s = Wiener_filter(Vc, ta, en); 
 
 
 
To use exp_systf for our spherical void example in place of the function 
systf which generates a model-based system function, we need only have 
the appropriate setup parameters, which can be obtained by first running 
the script TG_sphere_example1, and then updating setup.sysf to indicate 
we now  are going to  use an  experimentally determined  system  function.  
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Fig. 12.13. The magnitude of the frequency components of the voltage received 
from an on-axis spherical void for the configuration shown in Fig. 12.10 (b) as 
predicted by the Thompson-Gray measurement model using an experimentally 
determined system function and the Kirchhoff approximation for the far-field 
scattering of the void. 

The Wiener filter constant, en, is set at a default value of 0.01 in the setup 
parameters but it can be changed, if necessary. We also need to specify the 
MAT-file that contains the reference wave form obtained from the configu-
ration in Fig. 12.10 (a). Note that the distance z1r has already been defined 
appropriately. 
 
>> clear 
>> TG_sphere_example1 
>> setup.system.sysf = 'exp_systf’; 
>> setup.system.ref_file = ‘sphere.ref’; 
 
Then we can run the measurement model and plot the output: 
 
>> [Vout, setup] = TG_PE_MM(setup); 
>> plot(f, abs(Vout)) 
 
The results are shown in Fig. 12.13. If we now pad these frequency domain 
values with zeros to extend the frequency range to 100 MHz and do an 
inverse FFT, the time domain received wave form can be plotted: 
 
>> Ve =[Vout, zeros(1, 800)]; 
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>> Ve(1) = Ve(1)/2 ; 
>> vt = 2*real(IFourierT(Ve, dt)); 
>> plot(t, vt) 
 
The results are shown in Fig. 12.14. All of the MATLAB commands needed 
to generate this waveform are in the MATLAB script TG_sphere_example2 
(see Code Listing 12.13). The intermediate frequency plot of Fig. 12.13, 
however, is omitted in that script.  
 
Code Listing 12.13.  A MATLAB script for calculating the A-scan wave form for 
a spherical void using an experimentally determined system function. 
 
 
% script TG_sphere_example2 
% calculates the waveform for a spherical void 
% using an experimentally determined system function 
clear 
% run TG_sphere_example1 script to get system parameters 
TG_sphere_example1 
%specify use of experimentally determined system function 
%and reference waveform 
setup.system.sysf='exp_systf'; 
setup.system.ref_file ='sphere_ref'; 
%run measurement model 
[Vout, setup] = TG_PE_MM(setup); 
% plot(f, abs(Vout))  intermediate plot omitted 
% pad frequency domain amplitude with zeros 
Ve= [ Vout, zeros(1,800)]; 
Ve(1) = Ve(1)/2;   % Now, compute wave form and plot 
vt =2*real(IFourierT(Ve, dt)); 
plot(t, vt) 
 
 
 
For comparison, the actual measured wave form from the flaw can also be 
plotted. This wave form, vexp, and its corresponding time axis, t_exp, are 
contained in the file sphere_flaw.mat. We can load that file and display 
that flaw signal on the same plot as the one just obtained:  
 
>> hold on 
>> load 'sphere_flaw' 
>> plot(t, vexp, '--') 
>> hold off 
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Fig. 12.14. The voltage received from an on-axis spherical void for the configu-
ration shown in Fig. 12.10 (b) as predicted by the Thompson-Gray measurement 
model using an experimentally determined system function and the Kirchhoff app-
roximation for the far-field scattering of the void (solid line) and the experimen-
tally measured flaw signal (dashed line). 

We can see in Fig. 12.14 that the two waveforms are close in amplitude 
and general shape. No attempt was made to match the time of arrivals of 
the two signals. In fact, in the calculation of these signals the phase terms 
that represent the time delays present due to propagation in the fluid and 
solid media were omitted. The measurement model predicts a slightly 
larger response than the measured response and there are some very small 
late time differences between the two signals. Fig. 12.14 shows that the 
Thompson-Gray measurement model coupled with the Kirchhoff 
approximation does a remarkably good job of predicting the flaw signal in 
this example even though the non-dimensional wave number, 2pk b , of the 
flaw for P-waves based on the transducer center frequency of 5 MHz is 
only 2 1.8pk b = . Formally the Kirchhoff approximation is a high frequency 
approximation where we must have 2 1pk b >>  but we see this 
approximation still works well at much lower frequencies (or smaller flaw 
sizes) where 2pk b  is not large. This is consistent with our discussion of 
that approximation in Chapter 10. However, as shown in Chapter 10, if 

2pk b <1 then the Kirchhoff approximation generally will not be accurate. 
Also  note  that  even  the  completely  modeled  signal  of  Fig. 12.11,  has 
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Fig. 12.15. The magnitude of the measured system function for the configuration 
of Fig 12.10 (a) (solid line) and the magnitude of the system function synthesized 
using the function systf (dashed line). 

approximately the same amplitude as the experimental signal although the 
waveform details are different. Those differences in waveform shape come 
primarily from the fact that a purely real model-based system function was 
used in calculating the response in Fig. 12.11 while the complex-valued 
measured system function was used in Fig. 12.14. There are also some 
differences in the amplitudes and widths of the two different system 
functions used in Figs. 12.11 and 12.14. Figure 12.15 compares the magni-
tudes of these two system functions versus frequency. It can be seen that 
although the transducer being used is listed as a 5 MHz transducer, the 
system function determined experimentally peaks at a slightly lower value. 
For the modeled system function, we centered the Gaussian function at the 
5 MHz value. Likely we could improve our predictions of the wave form 
obtained using a model-based system function by making the amplitude 
and bandwidth of that function agree more closely with the experimentally 
determined system function. 
 In Chapter 10 we gave the separations of variables solution for the 
pulse echo P-wave response of a spherical void. Those expressions have 
been encoded in the MATLAB function A_void_Psep (see Appendix G for 
a code listing). We can simply replace the Kirchhoff-based function A_void 
in the setup structure by this function: 
 
>> setup.flaw.Afunc ='A_void_Psep'; 
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and then rerun the measurement model and compare with the experimentally 
measured sphere response: 
 
>> [Vout, setup] = TG_PE_MM(setup); 
>> Ve = [Vout, zeros(1,800)]; 
>> Ve(1) = Ve(1)/2 ; 
>> vt = 2*real(IFourierT(Ve, dt)); 
>> plot(t, vt) 
>> hold on 
>> load 'sphere_flaw' 
>> plot(t, vexp, '--') 
>> hold off 
 
The results are shown in Fig. 12.16. From that figure we see that the 
amplitude of the modeled flaw signal is now very close to that of the 
experimental signal. 
 We can also examine the sphere with a spherically focused probe. 
The script TG_sphere_example3 given in Code Listing 12.14 again uses 
the TG_sphere_example1 script to set up most of the parameters. The 
transducer used is a 12.46 mm diameter, 172.9 mm focal length probe, so 
those parameters in setup are changed. These transducer parameters are 
both measured effective values, found by the methods discussed in 
Chapter 7. In this case the water path length for the flaw measurement is 
again 50.8 mm so that value need not be changed but the reference 
experiment to determine the system function must be carried out with the 
spherically focused transducer at a water path equal to the focal length to 
use the transfer function found in Chapter 8. Thus, the setup.system.z1r 
must also be changed. The function exp_systf again can calculate the 
system function for this focused probe. In this case the reference waveform 
is contained in the MAT-file 'sphere_ref_foc'. For this example we will 
also use the Kirchhoff approximation to determine the scattering amplitude 
of the void, so that we set setup.flaw.Afunc = ‘A_void’. With these updates 
made to setup, the measurement model can be run and the waveform 
synthesized as before. The experimentally measured response of the void 
to this focused probe is contained in the .mat file ‘sphere_flaw_foc’ in the 
variable vexp so if we load this file and then plot it alongside our modeled 
response we obtain the results shown in Fig. 12.17. It can be seen from that 
figure that the Kirchhoff approximation does a very good job of repro-
ducing the measured flaw signal.  
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Fig. 12.16. The voltage received from an on-axis spherical void for the configu  
ration shown in Fig. 12.10 (b) as predicted by the Thompson-Gray measurement 
model using an experimentally determined system function and the method of 
separation of variables for the far-field scattering of the void (solid line). The 
experimentally measured flaw signal is shown for comparison (dashed line). 

 
Fig. 12.17. The voltage received from an on-axis spherical void for the configu-
ration shown in Fig. 12.10 (b) using a spherically focused probe. The wave form 
was predicted by the Thompson-Gray measurement model using an experimentally 
determined system function and the Kirchhoff approximation for the far-field 
scattering of the void (solid line). The experimentally measured flaw signal is 
shown for comparison (dashed line). 
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Code Listing  12.14.  A script for calculating the response of a spherical void in 
the configuration shown in Fig. 12.10 (b) where a spherically focused probe is 
used. The predicted response uses an experimentally determined system function 
and a flaw response given by the Kirchhoff approximation which is then plotted 
and compared to an experimentally measured signal. 
 
 
% script TG_sphere_example3 
% calculates the waveform for a spherical void 
% using an experimentally determined system function; focused probe case 
clear 
% run TG_sphere_example1 script to get most system parameters 
TG_sphere_example1 
%update setup 
setup.trans.d = 12.46; 
setup.trans.fl =172.9; 
setup.system.z1r =172.9; 
setup.flaw.Afunc = 'A_void'; 
%specify use of experimentally determined system function 
%and reference waveform 
setup.system.sysf='exp_systf'; 
setup.system.ref_file ='sphere_ref_foc'; 
%run measurement model 
[Vout, setup] = TG_PE_MM(setup); 
% plot(f, abs(Vout))  intermediate plot omitted 
% pad frequency domain amplitude with zeros 
Ve= [ Vout, zeros(1,800)]; 
Ve(1) = Ve(1)/2 ;   %Now, compute wave form and plot 
vt =2*real(IFourierT(Ve, dt)); 
plot(t, c_shift(vt, 600)) 
load 'sphere_flaw_foc' 
hold on 
plot(t, vexp,'--') 
hold off 
 
 
 
 

12.9 A Large Flaw Measurement Model 

We could also use the Thompson-Gray measurement model to predict the 
response of other  scatterers  in the configuration of  Fig. 12.10 (b) such as  
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Fig. 12.18. A scattering configuration where (a) a flat-bottom hole or (b) a flat 
circular  crack is interrogated by a planar transducer at normal incidence through a 
fluid-solid interface. In both cases the center of the scatterer is located on the 
central axis of the transducer. 

the flat-bottom hole shown in Fig. 12.18 (a) or the flat circular crack shown 
in Fig. 12.18 (b). However, both of these scatterers are very “specular”, i.e. 
they reflect much of the incident waves directly back to the transducer 
from their flat surfaces. As a consequence, the assumption of the Thompson-
Gray measurement model that the wave field of the transducer beam is 
nearly constant over the flaw surface leads to significant errors if the sizes 
of the flat-bottom hole or crack being considered are not very small. In 
contrast, it has been found that the spherical void is much more tolerant to 
the small flaw assumption and the Thompson-Gray measurement model 
works well even for large spherical flaws. To account for beam variations 
we will use the more general measurement model of  Eq. (12.1) coupled 
with a Kirchhoff approximation model for the scattering of a crack. In the 
Kirchhoff approximation this same flaw scattering model is appropriate 
also for the flat-bottom hole since the sides of the hole do not contribute 
anything in that approximation when the incident waves are at normal 
incidence to the circular, flat end of the hole. Since we are considering a 
pulse-echo setup for P-waves we have ( ) ( ) ( )1 2ˆ ˆ ˆ ,V V V ω= = x  in Eq. (12.1) 
and from the Kirchhoff approximation and the fact that we have a stress-
free surface, we find (see Eq. (10.12)) 
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2
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2

p p p
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where we have used the fact that on the flat surface S  1p
i ⋅ = −d n  and 

0p
i ⋅ =d x .Then Eq. (12.1) becomes 
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Note that because of the symmetry of the incident field in the confi-
guration of Fig. 12.18 we have ( ) ( )ˆ ˆ, ,V V rω ω=x , where r is the radial 
distance from the center of the scatterer and the transducer axis. Thus, in 
this case we have 
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If we break the total integration into a series segments from  mr r=  to 1mr r += , 
with ( ) ( )1 / 1mr m b M= − −  ( )1,2,... 1m M= − then we can approximate the 
velocity field as constants over the centroids of those segments given by 
( )ˆ ,mV r ω , where ( )1 / 2m m mr r r+= +  is an average radius. Each of these 

segments represent a circular  ring except the first one which is a complete 
circular area of radius ( )/ 1b M − since 1 0r = . For that circular segment we 
let 1 0r =  so that fields over that segment are calculated on the transducer 
axis, which is consistent with what we would do normally for a very small 
on-axis crack or flat-bottom hole.  Equation (12.32) becomes 
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In the Kirchhoff approximation the normal incidence pulse-echo P-wave 
far-field scattering amplitude of a flat crack of radius  mr is just (see 
Eq. (10.38)): 

( )
2

2;
2

p mp p
m i i

ik r
A − =e e  (12.34)

so that we can write Eq. (12.33) as: 

www.iran-mavad.com 
ایران مواد



376      Ultrasonic Measurement Modeling with MATLAB 
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 (12.35)

ment model terms for the scattering of a circular crack. Thus, we can use 
the TG_PE_MM function in conjunction with A_crack to model this case.  
 The MATLAB script FBH_example1 (Code Listing 12.15) imple-
ments Eq. (12.35) for a #8 flat-bottom hole in a steel block. The reference 
wave form for calculating the system function resides in the file FBH_ref.mat  
and the experimental flaw response is in the file FBH_flaw_n8.mat. The 
script calculates the FBH response and then plots both it and the experi-
mental signal. The results are shown in Fig. 12.19. 
 
 

 
Fig. 12.19.  The voltage received from an on-axis #8 flat-bottom hole for the 
configuration shown in Fig. 12.18 (a) as predicted by a measurement model that 
accounts for field variations over the end of the flat-bottom hole and uses an 
experimentally determined system function and the Kirchhoff approximation for 
the far-field scattering of the hole (solid line). The experimentally measured flat-
bottom hole signal is shown for comparison (dashed line). 

 
 

Comparing Eq. (12.35) and Eq. (12.6), we see that we can obtain the voltage 
by merely combining appropriately a number of Thompson-Gray  measure-
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Code Listing 12.15. A script for calculating the response of a #8 flat-bottom hole, 
taking into account the variations of the incident transducer beam over the bottom 
of the hole. 
 
 
% FBH_example1 script 
% This script calculates the pulse-echo P-wave response of an on-axis  
% #8 flat-bottom hole interrogated by a 5 MHz planar probe through a  
% fluid-solid interface at normal incidence 
 
clear 
setup = setup_maker; 
% setup parameters that need to be specified 
% for this example 
f =s_space(0, 20, 200); 
cp1 = 1484.; 
d2 = 7.86; 
cp2 = 5940.; 
cs2 = 3230.; 
z1 = 50.8; 
z2 = 25.4; 
amp =0.12; 
bw = 3.; 
z1r =50.8; 
p1 = [ 0 0 0.02479E-03  0 0]; 
b =1.5875;   % number eight FBH 
flaw_name = 'A_crack'; 
sysfunc ='exp_systf'; 
reffile='FBH_ref'; 
setup.f =f; 
setup.system.amp = amp; 
setup.system.bw = bw; 
setup.system.z1r =z1r; 
setup.system.sysf = sysfunc; 
setup.system.ref_file = reffile; 
setup.geom.z1 = z1; 
setup.geom.z2 = z2; 
setup.matl.cp1 = cp1; 
setup.matl.d2 = d2; 
setup.matl.cp2 = cp2; 
setup.matl.cs2 = cs2; 
setup.matl.p1 = p1; 
setup.flaw.b = b; 
setup.flaw.Afunc = flaw_name; 
 
% break up hole end into rings 

www.iran-mavad.com 
ایران مواد



378      Ultrasonic Measurement Modeling with MATLAB 

nR= 10;  % use 9 rings (10 points) 
rm = linspace(0, b, nR);    %ring edges 
rmu = rm(2:nR); %upper edges 
rml =rm(1:nR-1); %lower edges 
rc =(rmu-rml)/2 + rml; %ring centroids 
rc(1) = 0; %make first centroid at origin  
 
Vf = zeros(size(f)); 
 
% calculate received voltage 
 
for nd = 1:nR-1 
    setup.geom.x2 = rc(nd); 
    setup.flaw.b =rm(nd); 
    [Vf1, setup] = TG_PE_MM(setup); 
    setup.flaw.b = rm(nd+1); 
    [Vf2, setup] = TG_PE_MM(setup); 
    Vf = (Vf2-Vf1) +Vf; 
end 
 
% extend frequency components to permit 
% taking FFT 
 
df = f(2)-f(1); 
dt = 1/(1000*df); 
t = s_space(0, 1000*dt, 1000); 
Vfe = [Vf zeros(1,800)]; 
Vfe(1) = Vfe(1)/2; 
vt =2*real(IFourierT(Vfe, dt)); 
vs =c_shift(vt, 700); 
plot(t(100:500), vs(100:500)) 
%plot(t_shift(t,700), c_shift(vt,700)) 
hold on 
load 'FBH_flaw'; 
plot(t(100:500), vexp(250:650), '--') 
hold off 
 

12.10 A Measurement Model for Cylindrical Reflectors 

The third measurement model discussed previously was for treating the 
pulse-echo response of cylindrical reflectors such as a side-drilled hole 
(SDH) where the beam variations can be neglected over the cross-section 
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of the scatterer. In terms of the geometry parameters defined in Fig. 12.1, 
this measurement model (see Eq. (12.5)) is: 

( ) ( ) ( ) ( )( ) ( )21 2 2
0 2 2 ;
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∫  (12.36)

This measurement model is similar to the Thompson-Gray measurement 
model (Eq. (12.6)) but now we must replace the square of the incident 
velocity field in that model (for pulse-echo) by the integrated velocity 
squared term in Eq. (12.36) and the 3-D scattering amplitude in the  
 
Code Listing 12.16. A MATLAB function for calculating the normalized far-field 
scattering amplitude of a side-drilled hole in pulse-echo using the Kirchhoff 
approximation. 
 
 
function A =A_SDH(setup) 
% A_SDH calculates the pulse-echo 3-D normalized far-field scattering  
% amplitude,A/L, of a side-drilled hole in the Kirchhoff approximation 
% using the frequency f in setup.f, the radius b in  setup.flaw.b, 
% and the wave speed for the wave type in setup.wave.c2. 
% The calling sequence is A = A_SDH(setup). The scattering 
% amplitude, A, (in mm) is returned. In the calculation of the 
% Struve function, an integration routine is used. Thus, the 
% frequency, f, must be at most a vector to use this function  
% effectively. It is not vectorized for f being a matrix. 
 
f =setup.f; 
b =setup.flaw.b; 
c=setup.wave.c2; 
kb =2000*pi*b.*f./c; 
A =(kb./2).*(besselj(1, 2*kb)-i*struve(2*kb)) +i*kb./pi; 
 
function y = struve(z) 
num = length(z); 
y=zeros(1,num); 
for k = 1:num 
y(k) = quadl(@struve_arg, 0, 1, [ ],[ ], z(k)); 
end 
 
function y = struve_arg(x, z) 
y = (4./pi).*z.*x.^2.*sin(z.*(1-x.^2)).*sqrt(2-x.^2); 
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Thompson-Gray model is now replaced by the normalized 3-D scattering 
amplitude, /A L , of the cylindrical scatterer, where L is the scatterer length. 
In the Kirchhoff approximation this normalized scattering amplitude was 
previously given by Eq. (10.53) for a SDH and has been coded in the 
MATLAB function A_SDH (Code Listing 12.16). 
 The multi-Gaussian beam model defined by the MATLAB 
function MGbeam has been modified so that it returns the integral of the 
square of the velocity field at the center of the SDH as well as an updated 
setup structure. The new MATLAB function is called I_MGbeam (Code-
Listing 12.17). It is assumed that the 2y -coordinate of the flaw is now 
given in setup.geom.y2 as a vector of values and the integral in Eq. (12.36) 
is calculated approximately in I_MGbeam as a simple sum: 

( )( ) ( )( )2 2

2 2
1

ˆ ˆ, , ,
N

i
iL

V y dy V y yω ω
=

= ∆∑∫  (12.37)

where V̂ is the ideal velocity field (no attenuation) calculated by the multi-
Gaussian beam model. In most cases the length of the hole extends the full 
width of a test block so that the hole length may be larger than the width of 
the incident beam. In that case, we can treat the SDH as infinitely long and 
simply sum over 2y -values where the fields are significant. 
 
Code Listing 12.17. A MATLAB function for returning the integrated square of 
the velocity field for use in a measurement model for cylindrical reflectors where 
beam variations along the length of the reflector must be considered. 
 
 
function [vi,setup ]=I_MGbeam(setup) 
 
% get setup parameters 
fin = setup.f;   %frequency or frequencies (MHz) 
type1 = setup.type1;          % wave type in medium one 
type2 = setup.type2;  % wave type in medium two 
     
a = setup.trans.d/2;  % transducer radius (mm) 
Fl = setup.trans.fl;  % transducer focal length (mm)  
 
z1 = setup.geom.z1;  % water path length (mm) 
z2 = setup.geom.z2;           % path length in solid (mm) 
x2 =setup.geom.x2;        % distance (mm) from ray axis in POI  
yin = setup.geom.y2;  % distance (mm) perpendicular to the POI 
Rx = setup.geom.R1;  % interface radius of curvature (mm) in POI 
Ry =setup.geom.R2;            % interface radius of curvature (mm) out of POI 
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iang = setup.geom.i_ang;  % incident angle (deg) 
 
d1 = setup.matl.d1;  % density (fluid) 
d2 =setup.matl.d2;  % density (solid) 
cp1 = setup.matl.cp1;  % compressional wave speed -fluid  (m/sec) 
cp2 = setup.matl.cp2;  % compressional wave speed -solid (m/sec) 
cs2 = setup.matl.cs2;  % shear wave speed -solid (m/sec) 
 
% form frequency, y2-values needed for integration into arrays 
[f,y2]=meshgrid(fin, yin); 
% update setup with these values temporarily (need for init_z) 
% setup values will be returned to fin, yin values later 
setup.f =f; 
setup.geom.y2 = y2; 
 
% define y -increment 
dy = yin(2) - yin(1); 
 
 
[A, B] = gauss_c15; % Wen and Breazeale coefficients (15) 
 
% update setup.wave wave speeds 
if strcmp(type1, 'p') 
    setup.wave.c1 =cp1; 
elseif strcmp(type1, 's') 
    setup.wave.c1 = cs1; 
else 
    error('wrong wave type (must be p or s) ') 
end 
 
if strcmp(type2, 'p') 
    setup.wave.c2 =cp2; 
elseif strcmp(type2, 's') 
    setup.wave.c2 = cs2; 
else 
    error('wrong wave type (must be p or s)') 
end 
% calculate transmission coefficient, update setup 
setup.wave.T12 = fluid_solid(setup);  
 
% wave speeds and transmission coefficient for the beam model 
c1 =setup.wave.c1; 
c2 =setup.wave.c2;           % wave speed for wave type2 
T = setup.wave.T12;         % transmission coefficient 
 
% parameters appearing in beam model 
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cosi = cos(pi*iang/180);  % cosine of incident angle 
sinr = (c2/c1)*sin(pi*iang/180); % sine of refracted angle from Snell's law 
if sinr >= 1       
   error('Beyond the Critical angle') % no transmitted wave of given wave type 
else 
   cosr = sqrt( 1 - sinr^2); 
end  
 
   h11 = 1/Rx;  %curvature 
   h22 = 1/Ry;  %curvature 

k1 = 2*pi*1000*f./c1;    % wave number in fluid 
 
%initialize predicted velocity with zeros of a size 
% compatible with largest array in f, z1, z2, x2, y2 setup parameters 
v = init_z(setup); 
% return to original frequency, fin, and distance, yin, values in setup 
setup.f = fin; 
setup.geom.y2 =yin; 
 
%multi-Gaussian beam model 
 
for j = 1:15   % form up multi-Gaussian beam model 
 
 b =B(j) + i*zr./Fl;  % modify coefficients for focused probe 
    % Fl = inf for planar probe  
     
q = z1 - i*zr./b; 
K = q.*(cosi -(c1/c2)*cosr); 
M1 = (cosi^2 +K.*h11)./cosr^2; 
M2 =1 + K.*h22; 
ZR1 = q./M1; 
ZR2 =q./M2; 
m11 = 1./(ZR1 +(c2/c1).*z2); 
m22 = 1./(ZR2 +(c2/c1).*z2);  
   t1 = A(j)./(1 + (i.*b./zr).*z1); 
   t2 = t1.*T.*sqrt(ZR1).*sqrt(ZR2).*sqrt(m11).*sqrt(m22); 
   v = v + t2.*exp(i.*(k1./2).*(m11.*(x2.^2) + m22.*(y2.^2))); 
 
end 
% sum over y-values squared times dy to integrate 
vs =v.^2; 
vi=sum(vs.*dy, 1); 
 
 
 

zr = eps*(f == 0) + 1000*pi*(a^2)*f./c1;                    % “Rayleigh” distance  
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Fig. 12.20. (a) The reference scattering configuration for determining the system 
function and (b) the setup for measuring the pulse-echo response of a side-drilled 
hole. 

 
Fig. 12.21. The output voltage simulated for the pulse-echo P-wave response of a 
1 mm side-drilled hole in the configuration shown in Fig. 12.20 (b) (solid line) and 
the corresponding experimentally measured response (dashed line). 

The MATLAB function SDH_PE_MM (Code Lisitng 12.18) uses 
I_MGbeam and A_SDH to generate the system output voltage. The 
MATLAB script SDH_example1(Code Listing 12.19) uses SDH_PE_MM 
to simulate the response of a one mm diameter SDH in an aluminum 
sample in a configuration shown in Fig. 12.20 (b). Again, the system 
function is determined experimentally from a measured front-surface 
reflection as shown in Fig. 12.20 (a). The integration over the length of the 
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hole here is taken from −50 mm to +50 mm based on an evaluation of the 
incident fields on the SDH for this problem (that evaluation is not shown 
here explicitly but can be easily done with the MGbeam function). For 
other SDH problems the limits of integration will have to be determined in 
this same way on a case by case basis. The predicted voltage using the 
MATLAB script SDH_example1 is shown in Fig. 12.21 along with the 
corresponding experimentally observed signal. Again, the Kirchhoff approxi-
mation does a very good job of representing the measured signal. 
 
Code Listing 12.18. A MATLAB function that computes the output voltage for a 
cylindrical reflector using the measurement model of  Eq. (12.21). 
 
 
function [Vf, setup] =SDH_PE_MM(setup) 
% SDH_PE_MM generates the frequency components of the  
% output voltage, Vf, of an ultrasonic pulse-echo immersion 
% measurement system generated by a side-drilled hole.  
% The function returns Vf  as well as an updated setup structure 
% The calling sequence is [Vf, setup] =SDH_PE_MM(setup); 
 
% First, compute the integrated beam velocity squared term  
% and update the setup structure. This does not include  
% attenuation  
[vs, setup] = I_MGbeam(setup); 
 
%get the setup parameters  needed for the constant term 
%in the measurement model 
f = setup.f; 
r= setup.trans.d/2;    % transducer radius 
d1 =setup.matl.d1; 
d2 =setup.matl.d2; 
c1 = setup.wave.c1; 
c2 = setup.wave.c2; 
 
%compute wave number in medium two and  
%the constant term in the measurement model 
 
k2 = (2000.*pi.*f)./c2; 
k2 =k2 + eps*( k2 == 0);  % prevent division by zero 
K= (4.*d2.*c2)./(-i.*k2.*r^2.*d1.*c1); 
 
% check to see if a model-based or experimentally determined system 
% function is to be used 
if strcmp(setup.system.sysf, 'systf') 
    sys = systf(setup); 
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else 
    sys =feval(setup.system.sysf, setup); 
end 
 
% find flaw type to be used 
if strcmp( setup.flaw.Afunc, 'empty') 
    error('flaw function not specified in setup') 
else 
    A = feval(setup.flaw.Afunc, setup); 
end 
 
%compute output voltage, Vf, (volts/MHz) 
Vf = sys.*(vs).*(attenuate(setup)).^2.*A.*K; 
 
 
 
 
Code Listing 12.19. A MATLAB script for calculating the pulse-echo P-wave 
response of a 1 mm diameter side-drilled hole in the configuration of Fig. 12.20 
(b) using the Kirchhoff approximation to calculate the scattering of the side-drilled 
hole and an experimentally determined system function found from the reference 
configuration of Fig. 12.20 (a). The predicted response is compared to the experi-
mentally observed signal. 
 
 
%SDH_example1 script 
% This script calculates the pulse-echo P-wave response of an on-axis  
% 1 mm diam side-drilled hole interrogated by a 5 MHz planar probe through a  
% fluid-solid interface at normal incidence 
clear 
setup = setup_maker; 
% setup parameters that need to be specified 
% for this example 
f =s_space(0, 20, 200); 
y2 =linspace(-50, 50, 500); 
cp1 = 1484.; 
d2 = 2.75; 
cp2 = 6416.; 
cs2 = 3163.; 
z1 = 50.8; 
z2 = 25.4; 
amp =0.12; 
bw = 3.; 
z1r =50.8; 
p1 = [ 0 0 0.02479E-03  0 0]; 
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b =0.5;   % 0.5 mm radius 
flaw_name = 'A_SDH'; 
sysfunc ='exp_systf'; 
reffile='SDH_ref'; 
 
% put parameters in setup 
 
setup.f =f; 
setup.system.amp = amp; 
setup.system.bw = bw; 
setup.system.z1r =z1r; 
setup.system.sysf = sysfunc; 
setup.system.ref_file = reffile; 
setup.geom.z1 = z1; 
setup.geom.z2 = z2; 
setup.geom.y2 = y2; 
setup.matl.cp1 = cp1; 
setup.matl.d2 = d2; 
setup.matl.cp2 = cp2; 
setup.matl.cs2 = cs2; 
setup.matl.p1 = p1; 
setup.flaw.b = b; 
setup.flaw.Afunc = flaw_name; 
   
[Vf, setup] = SDH_PE_MM(setup); 
 
% extend frequency components to permit 
% taking FFT 
df = f(2)-f(1); 
dt = 1/(1000*df); 
t = s_space(0, 1000*dt, 1000); 
Vfe = [Vf zeros(1,800)]; 
Vfe(1) = Vfe(1)/2; 
vt =2*real(IFourierT(Vfe, dt)); 
vs =c_shift(vt, 700); 
plot(t, vs) 
hold on 
load 'SDH_flaw_1'; 
plot(t, vexp, '--') 
hold off 
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13 Applications of Ultrasonic Modeling 

In this Chapter we will describe several applications that use the ultrasonic 
models developed in previous Chapters and consider some extensions of 
those models to cases not previously discussed such as angle beam 
inspections. In [Fundamentals] one can see additional examples of model-
based applications such as equivalent flaw sizing. 

13.1 Obtaining Flaw Scattering Amplitudes 
Experimentally 

In the paper where the Thompson-Gray measurement model was developed 
[11.2], the authors also showed that because a component of the far-field 
plane wave scattering amplitude of the flaw appeared explicitly in their 
model they could obtain an experimental measure of this component 
through the deconvolution of the measured voltage with the other 
measurement model terms, as discussed in Chapter 11 (see Eq. (11.38)). 
They gave examples of such experimentally determined scattering 
amplitude components for several spherical inclusions and showed that 
they agreed with the corresponding theoretical scattering amplitudes. Here, 
we will demonstrate the deconvolution process to extract the P-wave 
pulse-echo scattering amplitude component for the 1 mm diameter side-
drilled hole (SDH) considered in Chapter 12 (see script SDH_example1 
and Fig. 12.20). In that example the 1 mm diameter SDH was interrogated 
by a 5 MHz, 12.7 mm diameter planar transducer radiating at normal 
incidence through the fluid-solid interface. The center of the hole was 
located at a depth of 25.4 mm in an aluminum block and the water path 
length was fixed in this configuration to be 50.8 mm. The received A-scan 
voltage versus time signal for this case was shown previously in Fig. 
12.21. Recall the system factor, ( )s ω , for this experiment was obtained 
from the front surface normal incidence reflection from the block. The 

term  ( ) ( ) ( ) ( ) ( )1 2 2 2
0 0 ;

2
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cE V z V z dz
ik Z
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πρ
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the small flaw measurement model of Eq. (12.5) is completely known once 
we specify the material constants and geometry parameters and use our 
multi-Gaussian beam model in conjunction with appropriate attenuation 
terms for the water and aluminum. Determining the frequency components 
the measured voltage, ( )RV ω , by taking the FFT of the waveform shown in 
Fig. 13.2, we then have formally 

( ) ( ) ( ) ,R

A
V G

L
ω

ω ω
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (13.1)

where ( ) ( ) ( )G s Eω ω ω=  is known. Then by deconvolution with the aid 
of a Wiener filter we have 
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( ) ( ){ }
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.
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L G G

ω ω ω

ω ε ω
=

+
 (13.2)

Note that the ( )G ω  factor is given by the side-drilled hole pulse-echo 
measurement model by simply setting the scattering amplitude term, /A L , 
to be unity in Eq. (12.36). Thus the MATLAB function SDH_PE_MM can 
be used to generate ( )G ω  by simply placing a modified scattering 
amplitude function, A_unity, in setup that returns a value of one for all 
frequencies. This function is given in Code Listing 13.1: 
 
Code Listing 13.1.  A MATLAB function that simply returns unity for the far 
field scattering amplitude. 
 
 
function A = A_unity(setup) 
f =setup.f; 
A = ones(size(f)); 
 
 
The MATLAB script SDH_deconvolve1 (Code Listing 13.2), which uses 
the same setup parameters as given in the SDH_example1 script (see Code 
Listing 12.19) combines A_unity and SDH_PE_MM in this manner to 
calculate ( )G ω , loads the file containing the experimentally measured A-
scan SDH response and computes the FFT of that response to obtain 

( )RV ω . The MATLAB function Wiener_filter then is used to calculate the  
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Fig. 13.1. The pulse echo P-wave far field scattering amplitude, 3 /DA L , of a 1 mm 
diameter side-drilled hole obtained experimentally (solid line) compared to the exact 
separation of variables solution for the hole (dotted line). 

far field scattering amplitude according to Eq. (13.2), where in this case a 
noise factor of ε = 0.03 was specified. Figure 13.1 shows the output of the 
script SDH_deconvolve1 which plots the magnitude of the non-dimensional 
3-D scattering amplitude, 3 /DA L , of the 1 mm diameter SDH obtained 
experimentally by this procedure and compares it to the theoretical 
scattering amplitude as calculated by the method of separation of variables 
with the MATLAB function A_SDH_Psep. It can be seen that there is 
relatively good agreement between the model-based and experimental 
results over the bandwidth of the system, with the oscillations present in 
the theoretical scattering amplitude (which are due to interference of the 
frequency components of the early time hole response with that of a 
creeping wave) are clearly visible in the experimentally obtained result. 
This example also shows the value of having as wide a bandwidth possible 
in a flaw experiment so that the features in the response can be used for 
quantitative purposes, such as flaw classification or sizing.  
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Code Listing 13.2. A MATLAB script for obtaining the measured pulse-echo P-wave 
far field scattering amplitude of a 1 mm diameter side-drilled hole by deconvolution 
and comparing it to the theoretical separation of variables solution. 
 
 
%SDH_deconvolve1 script 
% This script uses the measured pulse-echo P-wave response of an on-axis  
% 1 mm diam side-drilled hole interrogated by a 5 MHz planar probe through a  
% fluid-solid interface at normal incidence and the side-drilled hole 
% measurement model for this case to obtain an experimental far field scattering 
% amplitude by deconvolution. the experimental result is plotted versus 
% frequency and compared to the theoretical scattering amplitude calculated 
% by the method of separation of variables. 
clear 
setup = setup_maker; 
% setup parameters that need to be specified 
% for this example 
f =s_space(0, 20, 200); 
y2 =linspace(-50, 50, 500); 
cp1 = 1484.; 
d2 = 2.75; 
cp2 = 6416.; 
cs2 = 3163.; 
z1 = 50.8; 
z2 = 25.4; 
amp =0.12; 
bw = 3.; 
z1r =50.8; 
en =0.03;   % noise parameter for this example 
p1 = [ 0 0 0.02479E-03  0 0]; 
b =0.5;   % 0.5 mm radius 
flaw_name = 'A_unity';  % scattering amplitude set to unity 
sysfunc ='exp_systf'; 
reffile='SDH_ref'; 
setup.f =f; 
setup.system.amp = amp; 
setup.system.bw = bw; 
setup.system.z1r =z1r; 
setup.system.sysf = sysfunc; 
setup.system.ref_file = reffile; 
setup.system.en = en; 
setup.geom.z1 = z1; 
setup.geom.z2 = z2; 
setup.geom.y2 = y2; 
setup.matl.cp1 = cp1; 
setup.matl.d2 = d2; 
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setup.matl.cp2 = cp2; 
setup.matl.cs2 = cs2; 
setup.matl.p1 = p1; 
setup.flaw.b = b; 
setup.flaw.Afunc = flaw_name; 
% calculate all terms in measurement model except scattering amplitude   
[G, setup] = SDH_PE_MM(setup); 
% get experimental wave form and calculate FFT 
load 'SDH_flaw_1';  % loads time and voltage variables into texp and vexp 
dt = texp(2) - texp(1); 
Vf = FourierT(vexp, dt); 
% consider only same number of frequency components as modeled 
Vfl = Vf(1:200); 
% compute Wiener filter with en value in setup 
Aexp =Wiener_filter(Vfl, G, en); 
% plot experimental scattering amplitude 
plot(f,abs(Aexp)) 
hold on 
% compare with theoretical scattering amplitude calculated  
% by separation of variables 
Asep = A_SDH_Psep(setup); 
plot(f, abs(Asep), ':'); 
hold off 
 
 

13.2 Distance-Amplitude-Correction Transfer Curves 

In ultrasonic NDE testing, the location of a flaw in the beam of an ultrasonic 
transducer greatly affects the amplitude of the signal received since the 
beam amplitude itself can vary considerably. For example, for a transducer 
radiating into a fluid, the on-axis pressure varies like 1/z in the far field, 
where z is the distance from the transducer. This behavior occurs since in 
the far field the beam is spreading out from the transducer in a spherical 
wave fashion. Thus, for every doubling of the distance in the far field the 
pressure drops by 6 dB due to transducer beam spread alone. Material 
attenuation causes additional amplitude changes. Such pressure changes 
produce amplitude changes of a received flaw signal that are not associated 
with the flaw itself, so it is desirable to compensate for these non-flaw 
related changes. Often this is done with a series of calibration blocks 
containing reference reflectors of a given size and type (such as flat-bottom 
holes) located at different depths. Plotting the measured  peak-to-peak  
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Fig. 13.2. (a) Examining a # 5 flat-bottom hole through a planar interface, (b) 
examining a #5 flat-bottom hole through a curved interface, (c) examining a  #2 
flat-bottom hole through a plane interface, and (d) examining a #5 side-drilled 
hole through a planar interface. 

voltage received from these reference samples versus depth then gives 
what is called a distance-amplitude-correction (DAC) curve. Making such 
DAC test samples is rather expensive and for every change of testing 
condition a new set of samples must be manufactured. With the use of 
ultrasonic measurement models, however, there is a much more effective 
approach that can be taken. If a calibration experiment is done on a simple, 
inexpensive test sample with a reference reflector such as a #5 flat-bottom 
hole (where #n = n/64 inch diameter), as shown in Fig. 13.2 (a), then 
models can be used to predict the amplitude changes due to sample 
geometry changes such as surface curvature (Fig. 13.2 (b)), changes in size 

reflector being used such as a change from a flat-bottom hole to a side-

will be shown here that all of these types of changes (or any combination 
of them) can be easily accounted for in a model-based approach where we 
use the ultrasonic measurement models to develop DAC transfer curves 
that relate the DAC curves to one another in different testing setups. 
 Since DAC curves define the changes in peak-to-peak measured 
voltages versus scatterer depth for that scatterer in a given reference setup, 

of the reference reflector (Fig. 13.2 (c)) or even a change in the type of the 

drilled hole (Fig. 13.2 (d)). Following the approach outlined in [13.1], it 
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DAC transfer curves involve the ratios of such peak-to-peak voltages. In 
order to simulate peak-to-peak voltage responses with our measurement 
models, it is necessary to specify the system function. This could be done 
with an experimentally measured system function, but here we will use a 
purely model-based approach that follows the specifications made in a 
previous set of ultrasonic benchmark studies [13.2]. Specifically, we 
model the voltage received by a circular planar transducer due to the 
waves reflected from the plane surface of a test block immersed in water as 
 

 
Fig. 13.3. The voltage specified as the response received from the planar front 
surface of a calibration block. 

Fig. 13.4. Magnitude of the system function used in the generation of DAC 
transfer curves. 
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( ) ( ) ( ) ( )
0

1 cos 2 / cos 2 0 /
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where A is the amplitude,  F is the center frequency of the system response 
and N controls the amount of ringing, and hence the bandwidth of the 
response. In this case we chose A =1,  F = 5 MHz and  N = 3, which gives 
the time domain response shown in Fig. 13.3. To obtain the system 

 
Fig. 13.5. Model-based DAC curves generated for (a) flat-bottom holes, and (b) 
side-drilled holes for a planar transducer immersed in water and the holes drilled 

reflectors in the aluminum was varied from 2 mm (0.07 in.)  to 50.8 mm (2 in.). 
Each curve is for a reflector of the size indicated. 

Fig. 13.6. Model-based DAC curves generated for a defocusing cylindrical 
interface with a radius of curvature 4 in. (101.6 mm) using (a) flat-bottom hole 
reflectors, and (b) side-drilled hole reflectors. Each curve is for a reflector of a 
given size, where the sizes range over the values indicated. 

in a planar aluminum block (see Figs. 13.2 (a) and 13.2 (d)). The depth of the 

function  from this voltage we  also need to  specify  the size of  the  trans- 
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Fig. 13.7. Model-based DAC curves generated for a focusing cylindrical interface 
with a radius of curvature -4 in. (-101.6 mm) using (a) flat-bottom hole reflectors, 
and (b) side-drilled hole reflectors of the sizes indicated. 

ducer, the water path length, and the material properties of the water and 
block . In the case considered below the transducer diameter is 6.35 mm, 
the water path length is 50.8 mm, the density and wave speed of the water 
are 1 1ρ =  gm/cm3 , 1 1470pc =

2 2.71ρ =  gm/cm3 , 2 6374pc =
transfer, At , function given by  Eq. (5.18), we have via a Wiener filter: 

( ) ( ) ( )
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*
0

2 22
.
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V t
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t t

ω ω
ω

ω ε ω
=

+
 (13.4)

The system function obtained in this manner is shown in Fig. 13.4 where 
we have used a noise factor 0.03ε = .  
 With a simulated system function given in this manner it is then 
possible to generate DAC curves for any of the cases shown in Fig. 13.2. 
Here we will consider DAC curves for flat-bottom holes and side-drilled 
holes, but other reference reflectors such as a spherical pore also could be 
modeled. The range of reference reflector diameters was varied from #3 to 
#8 (1.19 mm to 3.175 mm) in #1 steps. The radius of curvature of the 
cylindrical fluid-solid interface was varied from R = −8 in. (−203.2 mm) to 
R = +8 in. (+203.2 mm) in one inch steps. The curved interfaces with 
negative R values are focusing interfaces while those with positive values 
are defocusing interfaces (see Fig. 8.30). The measurement models used  
 
 
 

m /sec, and for the aluminum block 
 m/sec . T hen with the acoustic/elastic 
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here were the large flaw measurement model for the flat-bottom hole 
(Eq. (12.33) ) and the small side-drilled hole model (Eq. (12.36)) since for 
the range of sizes considered here studies have shown that beam variations 
over the surface of the side-drilled hole do not affect the peak-to-peak 
voltage responses [13.3]. The Kirchhoff approximation was used for both 
the flat-bottom holes and side-drilled holes to calculate their scattering 
amplitudes. 

Fig. 13.8. DAC interface curvature transfer curves defined as the ratio of a curved 
interface response divided by the plane interface response for defocusing 
cylindrical interfaces ( R = 3 to 8 inches) using (a) flat-bottom holes of sizes #3 - 
#8, and (b) side-drilled holes of  sizes #3 - #8. 

Fig. 13.9. DAC interface curvature transfer curves defined as the ratio of a curved 
interface response divided by the plane interface response for focusing cylindrical 
interfaces using (a) flat-bottom holes of sizes #3 - #8, and (b) side-drilled holes of  
sizes #3 - #8. 
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 Figures 13.5 (a), (b) show model-based DAC curves generated for 
both flat-bottom holes and side-drilled holes of various sizes in a block 
with a planar interface. These are idealized DAC curves in that material 
attenuation has not been included in the calculations. Thus, the changes of 
amplitude shown are only due to beam diffraction effects. It can be seen 
from those figures that both the shape and the amplitude of the DAC 
curves are dependent on the type of reflector present. Figures 13.6 (a), (b) 
show the corresponding DAC curves for a cylindrical interface having a 
radius of curvature of 4 inches. This type of curved interface defocuses the 
ultrasonic beam, so that the amplitudes seen in Fig. 13.6 are generally 
smaller than those seen in Fig. 13.5 for the planar interface. Similarly, 
Figs. 13.7 (a), (b) give the DAC curves for a cylindrical interface having a 
curvature of −4 inches, which is a focusing interface that generally increases 
the amplitudes from the planar interface case.  
 Having DAC curves such as shown for these various cases, it then 
is possible to generate DAC transfer curves by taking the ratios of the 
DAC responses. Note that unlike the DAC curves themselves the DAC 
transfer curves are indeed independent of attenuation effects so that 
attenuation need not be considered in their generation. All of these DAC 
transfer curves will be given in terms of response ratios as measured in 
decibels (dB). Figures 13.8 (a), (b) show the DAC transfer curves for both 
flat-bottom holes and side-drilled holes corresponding to the ratio of the 
curved interface response to the planar interface response of these 
reflectors for a series of  defocusing interfaces  ranging in curvatures  from  
 

 
Fig. 13.10. DAC transfer curves for change of flaw type, defined as the ratio of 
the flat-bottom hole response to the side-drilled hole response for the planar 
interface case. 
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Fig. 13.11. DAC transfer curves for change of flaw type, defined as the ratio of 
the flat-bottom hole response to the side-drilled hole response for the cylindrical 
defocusing interfaces. 

 

 
Fig. 13.12. DAC transfer curves for change of flaw type, defined as the ratio of 
the flat-bottom hole response to the side-drilled hole response for cylindrical 
focusing interfaces. 
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R = 3 in. to R = 8 in. It can be seen that for a given curvature, holes for all 
the sizes considered fall on essentially the same curve. In contrast for 
focusing interfaces side-drilled holes of the different sizes again fall on 
essentially the same curve for a given radius of curvature ( Fig. 13.9 (b)), 
but for the flat-bottom holes there is more variability seen in the curves as 
a function of the flaw size at the smaller radii of curvature interfaces 
considered of −3 and −4 inches (Fig. 13.9 (a)). This behavior might be 
expected since the focusing curved interfaces concentrate the sound in the 
solid and a flat-bottom hole is a much more specular reflector than a side-
drilled hole and so is more sensitive to beam variations caused by the 
focusing effect of the curved interface. 
 It is also possible to generate DAC transfer curves defined as the 
ratio of the flat-bottom hole response to the side-drilled hole response. 
Figs. 13.10-13.12 give these DAC flaw type transfer curves for planar, 
cylindrical defocusing, and cylindrical focusing interfaces, respectively. It 
can be seen that for the defocusing interface (Fig. 13.11), there is relatively 
little change in the DAC curves at a given flaw size with changes of the 
radius of curvature, but for the focusing interface (Fig. 13.12) there are 
more significant changes with radius of curvature, especially for the more 
tightly curved interfaces. Finally, we also have developed DAC transfer 
curves for changes in size of the flat-bottom holes considered. As a 
reference, we arbitrarily chose the #5 flat-bottom hole response, so that the 
ratios are defined here as that of a #n flat-bottom hole response divided by 
the #5 flat-bottom hole response. Figs. 13.13-13.15  give these  flat-bottom  
 

 

 
Fig. 13.13. DAC transfer curves for change in size of a flat-bottom hole, defined 
as the ratio of a #n flat-bottom hole response to the same response of a #5 flat-
bottom hole as measured through a planar interface.    
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Fig. 13.14. DAC transfer curves for change in size of a flat-bottom hole, defined 
as the ratio of a #n flat-bottom hole response to the same response of a #5 flat-
bottom hole as measured through a cylindrical defocusing interface. 

 
Fig. 13.15. DAC transfer curves for change in size of a flat-bottom hole, defined 
as the ratio of a #n flat-bottom hole response to the same response of a #5 flat-
bottom hole as measured through a cylindrical focusing interface. 

hole size DAC transfer curves for a planar interface, cylindrical defocusing 
interface, and focusing interface, respectively. All of these flat-bottom hole 
size DAC transfer curves are very similar for the range of radii of curva-
tures considered here but with some differences seen as a function of the 
radius of curvature for the largest flat-bottom holes and a cylindrical focusing 
interface (Fig. 13.15). 
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 With these DAC transfer curves, it then is easy to go from one 
calibration configuration response to another. For example, consider the 
case where we have the DAC curve for a #4 side-drilled hole as measured 
through a planar interface and we want to obtain the corresponding DAC 
curve for a #6 flat-bottom hole when measured through a defocusing 
cylindrical interface having a radius of curvature R = 5 in. Figures 13.16 
(a)-(d) show the steps in using the DAC transfer curves to make that 
change. Figure 13.16 (a) gives the original #4 side-drilled hole DAC curve. 
Only an idealized curve is shown here but it could also be a curve that 
included attenuation explicitly or it could be an experimentally obtained 
DAC  curve. In either  of  those  latter two  cases the  resulting  flat-bottom  
 

 

 
Fig. 13.16. Example of using the DAC transfer curves to change from the DAC 
curve for a #4 side-drilled hole (SDH), as measured through a planar interface, to 
the DAC curve for a #6 flat-bottom hole (FBH), as measured through a defocusing 
cylindrical interface with radius of curvature of 5 inches. (a) Original #4 SDH,  
(b) DAC curve for a #4 SDH through the curved interface after compensation for 
curvature effects, (c) the DAC curve for a #4 FBH through the curved interface, 
and (d) the DAC curve for a #6 FBH through the curved interface. In cases (b)-
(d), the directly computed DAC curve for the target case (response of a #6 FBH 
measured through the curved interface) is labeled as #6 FBH and shown for 
comparison. 
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Fig. 13.17. An example angle beam shear wave test configuration for the 
inspection of a welded specimen. 

hole DAC curve obtained would then also include the losses present as 
well. After multiplication with the DAC transfer curve for interface curvature 
effects, the new DAC curve is shown in Fig. 13.16 (b). This would be the 
DAC curve for a #4 side-drilled hole when measured through the curved 
interface. Also shown in Fig. 13.16 (b) is the idealized (no attenuation) 
DAC curve for the case we want to obtain, i.e. the curve for the #6 flat-
bottom hole though this same curved interface.  Figure 13.16 (c) shows the 
result of applying the flaw type DAC transfer curve to generate the DAC 
curve corresponding to a #4 flat-bottom hole as measured through the 
curved interface. Again the “target” #6 flat-bottom hole response is shown 
in Fig. 13.16 (c). Finally, in Fig. 13.16 (d) we have applied the DAC 
transfer curve for change in flat-bottom hole size to obtain the predicted 
response of the #6 flat-bottom hole, which agrees very closely with the 
directly calculated DAC curve for this target case, as shown in Fig. 13.16 (d).  
 The use of the DAC transfer curves in this manner is a very powerful 
tool and one that is easily implemented with the MATLAB measurement 
models discussed in the last chapter for the cases considered here as well 
as others. 

13.3 Angle Beam Inspection Models and Applications 

An angle beam pulse-echo setup is an ultrasonic testing configuration that 
is widely adopted in practice for the nondestructive evaluation of welded 
joints, as shown in Fig. 13.17. In this case a contact P-wave transducer 
radiates a bounded ultrasonic beam into a solid wedge. This beam crosses 
the interface between the wedge and the welded specimen and propagates 
obliquely into that specimen. In many  weld tests the angle of the wedge  is  
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Fig. 13.18. A calibration setup where the reflection of the angle beam shear wave 
from the cylindrical surface of a test block is used to determine the system 
function. 

chosen beyond the first critical angle so that primarily an SV-wave is gene-
rated in the solid. The SV-wave can be used to interrogate a weld directly, 
or it may be reflected off the back surface of the specimen as shown in Fig. 
13.17. In this type of angle beam shear wave test, therefore, the transducer 
beam can be transmitted or reflected multiple times, making it an ideal 
candidate for the use of a multi-Gaussian beam model and the ABCD 
matrices described in Chapter 9. In this section we will give a number of 
examples of models that use this approach to simulate angle beam shear 
wave tests.    
 To use the ultrasonic measurement model concepts described in 
the previous Chapters, it is also necessary to have a reference calibration 
setup where one can experimentally determine the system function. For 
angle beam testing a convenient choice is to reflect the beam from the 
cylindrical interface of a IIW Type I standard block (or, equivalently STB 
A-1 block), as shown in Fig. 13.18, since this block is widely used for the 
calibration of angle beam transducers in practical field inspections. 
 We can see from Figs. 13.17 and 13.18 that in the weld test confi-
guration and the calibration setup there are a series of parallel planar or 
cylindrical interfaces involved where the plane of incidence defined by the 
central ray of the transducer beam and the interface normal remains the 
same after the beam undergoes multiple transmissions and/or reflections. 
Also, the cylindrical interface of Fig. 13.18 has a principal axis that is 
aligned with the plane of incidence of the incident beam. Thus, in all these 
cases a Gaussian beam that is initially described by a diagonal M-matrix 
on the face of the transducer will continue to have an M-matrix that is 
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diagonal after propagation and transmission/reflection and there is also no 
need to perform coordinate rotations to obtain the correct components of 
the transmitted waves, as discussed in Chapter 9. This means that the 
general multi-Gaussian beam model of Eq. (9.133) reduces to the simpler 
form 
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where 1M
α

+d  is the polarization of the transducer beam in medium M+1 of 
type α, and 1;M m

mT γ γ+ is the ordinary scalar plane wave transmission or 
reflection coefficient at the mth interface. Since the waves in the wedge are 
taken as P-waves we have set the wave type 1 pγ = . As discussed in 
Chapter 9 and Appendix F the starting values ( )1 0p

r
V⎡ ⎤⎣ ⎦  and ( )1 0p

r
⎡ ⎤⎣ ⎦M  

can be defined in terms of the Wen and Breazeale multi-Gaussian beam 
coefficients ( ),r rA B . Since all of the M-matrices in Eq. (13.5) are diagonal 
the square roots appearing in that equation can also be obtained directly 
without any need for the transformation described in Chapter 9. At the 
interface between the solid wedge and the solid specimen being inspected 
a thin layer of liquid couplant is present as shown in Fig. 13.17. However, 
the thickness of this layer is taken to be negligible and the wedge/specimen 
interface is assumed to act like two solids directly in smooth contact. Thus, 
in Eq. (13.5) the plane wave transmission coefficients for this type of 
interface, which were explicitly given in Appendix D, can be used. We 
should also note that although Eq. (13.5) was developed in Chapter 9 
based on an immersion testing model, it also can be used for the contact 
transducer case of Fig. 13.17 since, as discussed in Section 8.11, only the 
P-waves in the wedge are significant so that the wedge can be treated as an 
equivalent “fluid” [Fundamentals].  
 As a first example of the use of Eq. (13.5) for an angle beam shear 
wave problem, consider the use of the calibration setup of Fig. 13.18 to 
determine the system function by measuring the reflection from the 

www.iran-mavad.com 
ایران مواد



13.3 Angle Beam Inspection Models and Applications      407 

cylindrical surface of a IIW Type I (or STB A-1) standard block. As 
discussed in Chapter 9 we cannot expect a beam model like the multi-
Gaussian beam model to be accurate if the curvature of a surface is too 
small or varies significantly over the “footprint” of the beam on the surface. 
In this case, however, the radius of curvature of the curved interface in Fig. 
13.18 is constant and has a radius of curvature of 100 mm, which is 
approximately 11 times larger than the transducer diameter, so that for a 
well collimated beam incident on this surface we expect the conditions 
required for the multi-Gaussian beam model to be applied will be very 
well satisfied.  
 There does not exist an analytical expression for the acoustic/elastic 
 transfer function, At , for the configuration of Fig. 13.18 but the multi-Gaussian 
beam model can be used to numerically determine that transfer function. 
To see this first note that from Eq. (13.5) we have 
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where 0/nv v  is the normalized velocity of the received P-wave at the 
transducer face in a direction opposite to the outward normal to the 
transducer (i.e. along the direction of the incoming P-wave) and ( )0v ω  is 
the velocity on the face of the transducer when it acts as a transmitter. This 
normalized velocity is evaluated at a point, sy , which is an arbitrary point 
on the surface of the transducer. The distances 1s  (and 4 1s s= ) and 2s  

(and 3 2s s= ) are the propagating distances in the wedge and the standard 
block, respectively, and ;

1
sv pT  and ;

3
p svT are the plane wave transmission 

coefficients of plane wave going from/to the wedge, respectively, and 
;

2
sv svR is the plane wave reflection coefficient from the cylindrical surface 

of the block. 
 The specific terms appearing in Eq. (13.6) arise from Eq. (13.5) 
since in this setup the bounded beam radiated from the angle beam 
transducer propagates into the solid wedge (“medium 1”) as a longitudinal 
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wave ( )1 pγ = , and is transmitted into the STB-A1 standard block 
(“medium 2”) as a mode-converted shear wave ( )2 svγ = . Upon reaching 
the cylindrical surface of the block the beam is reflected back to the block 
(“medium 3”) as a shear wave ( )3 svγ = and propagates as a mode-
converted longitudinal wave ( )4 pγ =  back into the wedge (“medium 4”) 
after crossing the interface between the block and the wedge, and then 
finally reaches the transducer.  
 The frequency components of the received voltage, ( )RV ω , in this 
setup are given in terms of the system function, ( )s ω , and the acoustic 
transfer function, ( )At ω ,which is the ratio of the received blocked 
force, ( )BF ω , to the transmitted force, ( )tF ω , generated by the transducer 
when it is acting as a transmitter. Thus, we have (see Eq. (7.7)) 
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where avep  is the average pressure in the waves incident on the transducer. 
Let this incident pressure be given as incp . Then we can relate this pressure 
to the velocity, nv , as  simulated by the multi-Gaussian beam model, 
through the plane wave relationship 1 1

p
inc np c vρ=  (see the discussion in 

Appendix F) and we have 
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where S is the area of the transducer. Equation (13.7) then becomes 
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By measuring the received voltage and numerically computing the integral 
in Eq. (13.9) with the use of Eq. (13.6) we can then determine the  
system function by deconvolution, as discussed in Chapter 7. We see the  
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Fig. 13.19. The definitions of the angles that the waves make at the plane interface 
between the wedge and the test block and at the cylindrical surface of the block. 

multi-Gaussian beam model has allowed us to determine the acoustic/elastic 
transfer function, ( )At ω , for this setup in the form 
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 Although Eq. (13.10) is applied here to the calibration block 
geometry of Fig. 13.18, it is an important general result that can also be 
used to determine the acoustic/elastic transfer function for any contact or 
immersion setup where the transfer function cannot be obtained in a simple 
form. All that is needed is a beam model capable of predicting the received 
velocity ( ),n sv ωy in the given setup. As discussed in Chapter 7, the use of 
Eq. (13.10) for contact problems must be done carefully as changes in the 
thin couplant layer between the transducer and the component being 
inspected or changes in surface condition may introduce considerable varia-
bility in the measurements of ( )s ω that are not accounted for in Eq. (13.9).  
 All of the 2x2 M-matrices appearing in Eq. (13.6) can be conveni-
ently calculated by the use of ABCD matrices as discussed in Chapter 9 
and Appendix F since each of these matrices can be expressed in terms of 
the starting values, ( )1 0pM , through the ABCD relationship 
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where ( )m
m mM sγ  can be any of the matrices in Eq. (13.6) and the 

( ), , ,′ ′ ′ ′A B C D  matrices are obtained by an appropriate multiplication of 
the propagation and transmission/reflection matrices that describe the 
propagation and transmission/reflection occurring between the transducer 
and the place at which ( )m

m mM sγ  is being evaluated, as described in 
Chapter 9. Using the definitions of the angles at the wedge/block boundary 
and the cylindrical interface as defined in Fig. 13.19 the specific 
propagation and transmission/reflection matrices needed for Eq. (13.6) are: 
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transmission across the wedge/block interface from medium 1 (the wedge) 
to medium 2 (the block): 
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propagation in medium 2 and medium 3 (which are both the block): 
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reflection from the cylindrical interface between medium 2 and medium 3 
(which are both the block): 
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transmission across the block/wedge interface from medium 3 to 4:  
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Fig. 13.20. Examples of calculated wave fields produced in a STB A-1 standard 
block from a circular piston transducer mounted on the solid wedge; (a) the 
radiation beam (of SV wave type) through the wedge/specimen interface, and (b) 
the reflected beam (of SV wave type) from the circular part of the STB A-1 block. 

The specific example we will consider is a 45 degree angle beam shear 
wave transducer where the wedge is located at a position on the top surface 
of a STB A-1 standard block so that the waves are reflected from the 
cylindrical surface of the block at normal incidence. In this case the wave 
speeds and angles appearing in Eqs. (13.12)-(13.16) are given by: 

1 4
p p , 2 3

s sc c= = 3240 m/s , 1 4
p pθ θ= = 35.8 , ;

2
sv pθ = ;

3
p svθ = 45.0 , 

; ;
2 2
sv i sv r

shows a  model of the reflected  SV wave  from  the cylindrical surface  of  
 

c c= = 2680 m/s
θ θ= = 0.0 . Using these values we obtained a multi-Gaussian beam 
model of the incident SV-wave velocity field produced in the STB A-1 
standard block as shown in Fig. 13.20 (a). Figure 13.20 (b) similarly 

www.iran-mavad.com 
ایران مواد



13.3 Angle Beam Inspection Models and Applications      413 

 
Fig. 13.21. (a) The experimental reference reflected signal, and (b) the system 
function for a 5 MHz center frequency, 0.375 inch diameter transducer with the 
refracting angle of 45 degrees in the STB-A1 block. 

that block. The calculations of these wave fields were both obtained from 
Eq. (13.21) but in the calculation of the incident field (Fig. 13.20 (a)) only 
the terms in Eq. (13.6) corresponding to the first two beam paths ( )1 2 and s s  
were considered, while in the case of the reflected beam field (Fig. 13.20 
(b)) only the terms corresponding to first three beam paths ( 1s through 3s ) 
were used. In Fig. 13.20 (b) one can see the focusing behavior that the 
curved cylindrical interface has on the reflected beam. 
 Figure 13.21 shows an example of using the complete set of terms 
in Eq. (13.6) to determine the system function, by the procedure described 
previously. Here, an  angle beam pulse-echo setup was considered where a  
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Fig. 13.22. Geometry of the counter bore reflection. 

circular planar transducer (Panametrics A551S-SM) having a center 
frequency of 5 MHz and a diameter of 0.375 inch was mounted on an 
acrylic wedge so that a shear wave having a refracted angle of 45 degrees 
in steel was obtained. The reflected signal was captured from the cylindri-
cal surface of the STB-A1 block and the system function was determined 
by deconvolution. Fig. 13.21 (a) shows the time domain experimental voltage 
signal, ( )RV ω , obtained in this reference setup and Fig. 13.21 (b) shows the 
system function obtained. 
 Consider now the use of the system function obtained in this manner 
in a modeling application. Specifically, we will develop an ultrasonic 
measurement model for the angle beam shear wave response of a counter 
bore, as shown in Fig. 13.22. [13.4]. A counter bore is an incline (reduction in 
thickness) fabricated intentionally on the inner surface of a pipe to relax 
the stresses in welded joints. It produces significant ultrasonic reflections 
when an angle beam transducer is used to interrogate defects in such a 
welded joint so it is important to be able to characterize this type of 
reflector response and to discriminate its ultrasonic signals from those of 
defects. In the next section we will discuss the discrimination problem. In 
most cases the size, Fw , of the counter bore (the length of incline - see 
Fig. 13.22) is smaller than the interrogating beam width but the circum-
ferential length is normally larger than the beam width. Thus, it is necessary 
to consider the counter bore as a large but finite scatterer. The appropriate 
measurement model for this reflector is given by Eq. (11.31) for a pulse-
echo setup, i.e. 
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( ) ( )

( ) ( ) ( ) ( )

2 2
;

2

21
2 2

4

ˆ , , exp ,
cb

s

R s T a
r

s sv

S

cV s
ik Z

V ik dS

πρω ω

ω ω

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

⎡ ⎤ ⎡ ⎤⋅ ⋅⎣ ⎦⎣ ⎦∫ x x e x xA �
 (13.17)

where ( )RV ω  are the frequency components of the received voltage, ( )s ω  
is the system function, ;

1 1
T a p
r TZ c Sρ=  is the acoustic impedance of the 

transducer whose area is TS . The unit vector, 2sve , is in the direction of 
propagation of the incident SV-wave and cbS is the area of the counter 
bore. Since the counter bore is a stress-free surface if we use the Kirchhoff 
approximation to model its ultrasonic response we have from Chapter 10: 

( ) ( ) ( )2 2
2 2, exp ,

2

s sv
s sv

ik
ikω

π

− ⋅
= ⋅

e n
x e xA  (13.18)

where n is the a unit normal to the counter bore surface. Using a multi-
Gaussian beam model, the velocity field, ( ) ( )1ˆ ,V ωx , is just the incident 
field part of Eq. (13.6)as computed for the cylindrical surface response, i.e. 

( ) ( )
( ) ( )

( )

( )

( )

( )

10 1 211 :
1

1 0 1 1 2 2

1 2
2 2

1 2

det 0 det 00ˆ ,
det det

exp
2

p svp
sv pr

p svr

T sv
p s r

V
V T

v s s

s si i s
c c

ω

ωω

=

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎣ ⎦ ⎣ ⎦⎣ ⎦=
⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦
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⎡ ⎤⋅ + +⎢ ⎥⎜ ⎟⎣ ⎦
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∑
M M

x
M M

y M y

 (13.19)

where x is a point on the surface of the counter bore. In Eq. (13.19) 
( )1 2,y y=y are coordinates normal to the central ray of the refracted beam 

taken from an origin at a distance 2s  along the central ray. The ABCD 

convenient to divide the surface of the counter bore into a large number of 
small planar elements and calculate the individual responses from each 
element first. Then the total response from the entire counter bore can be 
obtained by simply summing up all the element contributions. The system 
function for the angle beam transducer can be obtained using the reflection 
from the cylindrical portion of a reference block as described previously. 
An inverse FFT  of ( )RV ω then yields a  model of  the  time domain  signal  
 

terms in Eq. (13.19). In the calculation of the integral in Eq. (13.17), it is 
matrices defined in Eqs. (13.12)-(13.14) can also be used to compute all the 
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Fig. 13.23. Comparison of the experimentally measured signal to the predicted 
time domain signal from a 4 mm wide counter bore: (a) the experimental signal, 
and (b) the signal calculated using the multi-Gaussian beam model. 

from the counter bore. Figure 13.23 (a) shows the experimentally measured 
signal obtained with a 45 degree angle beam shear wave transducer from a 
small counter bore at an inclined angle of θ = 45° . Here the width, Fw , of 
the counter bore was 4 mm in a steel specimen whose thickness was 10 mm. 
Figure 13.23 (b) shows the corresponding signal synthesized from Eq. 
(13.17). It can be seen that there is very good agreement between the 
experimental and model-based results. 
 Another weld scattering case that will be considered is the angle 
beam shear wave inspection of a surface-breaking thin, rectangular-shaped 
vertical slot of height, ch , and width , cw  
This configuration is useful  for simulating the angle beam inspection  of  a  
 

 , as shown in Figs. 13.24 (a), (b).
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Fig. 13.24. Angle beam shear wave inspection of a vertical surface-breaking slot 
to determine the corner trap signal where (a) the beam first strikes the slot in 
returning to the transducer and (b) where the beam strikes the bottom surface of 
the specimen first. 

vertical surface crack on the opposite face of a welded plate or pipe. One 
could model this configuration with the use of the Kirchhoff approxi-
mation in much the same manner as done for the counter bore. However, 
when the plane of incidence of the interrogating beam is perpendicular to 
the surface of the slot and the central ray of the transducer beam intersects 
the corner between the slot and the bottom surface, as shown in Fig. 13.24, 
it is well known that a large “corner trap” signal is generated in such a 
pulse-echo setup. This corner trap signal results from a series of direct 
multiple reflections from the slot surface and the bottom of the specimen 
so that it is possible to develop a model of this signal using an approach 
that is similar to what was done for the reflection of the beam from the 
cylindrical surface of the STB A-1 reference block where Eq. (13.9) was 
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used to simulate the received signal. The basis for this model is to note that 
a wave leaving the transducer can follow a path shown in Fig. 13.24 (a) 
where the beam leaves the transducer surface, passes through a point on 
the interface, reflects at a point on the surface of the vertical slot, reflects 
once more at a point on the bottom of the specimen, propagates through 
another point on the interface, and finally reaches to a point on the 
transducer face. However, the beam could also travel this same path but in 
a completely reversed order, as shown in Fig. 13.24 (b), i.e. where the 
beam reflects at the bottom of the specimen first. The total response from 
the surface-breaking vertical slot obviously comes from both of these 
reflected wave contributions. It is easy to show that the time of arrival of 
both of these multiply reflected waves is identical to a wave traveling 
down to the corner and back along the central ray path shown as the 
dashed line in Figs. 13.24 (a), (b). Therefore, both of these wave contri-
butions to the total response could be treated as if they were Gaussian 
beams that traveled along this central ray path but with their amplitudes 
and phases appropriately modified to characterize the individual ray paths 
just described. For example, consider the velocity generated at a point 

sy on the face of the transducer from the wave that reflected first from the 
side of the slot, ( ),side sv ωy . Using Eq. (13.5) this velocity (normalized by 
the velocity on the face of the transducer) is given by 
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 (13.20)

All of the terms appearing in Eq. (13.20) can be calculated with the following 
ABCD matrices: 
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propagation in medium 1 (the wedge): 

1 5

1 0
0 1

d d ⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
A A  1 5 1 1

1 0
0 1
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D D  (13.21)

transmission across the wedge/specimen interface from medium 1 (the 
wedge) to medium 2 (the specimen containing the slot): 
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propagation in medium 2 from the wedge to the slot: 
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reflection from the surface of the slot (incident and reflected SV-modes): 

2
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propagation in medium 3 (same as medium 2) from the slot to the bottom 
surface of the specimen: 
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reflection from the bottom of the specimen (incident and reflected SV-
modes): 
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propagation in medium 4 (same as medium 2) from the bottom of the 
specimen to the wedge: 
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transmission across the wedge/specimen interface from medium 4 to 
medium 5: 
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propagation in medium 5 (same as medium 1-the wedge): 
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In the same manner we can consider the velocity at a point by on the face 
of the transducer generated by the wave that has first reflected from the 
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bottom of the specimen with the slot, ( ),bottom bv ωy . In this case we can 
write this velocity in normalized form as: 
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 (13.30)

and all the terms in Eq. (13.30) can also be generated by appropriate 
multiplication of the ABCD matrices appearing in Eqs. (13.21)- (13.29). 
 If the slot was larger than the beam width we could simply add the 
contributions of Eq. (13.20) and Eq. (13.30) to get the total velocity field 
on the face of the transducer and then calculate the response of the slot 
directly with Eq. (13.9). However, if the slot is smaller than the beam 
width we must first suitably truncate the velocity fields in Eqs. (13.20) and 
(13.30) to account for the fact that there are points on the transducer 
surface that do not receive the corner trap signals of the type given by 
Eqs. (13.20) and (13.30). We can perform such truncation by noting that 
every point sy and by on the transducer surface has a corresponding point P 
on the surface of the slot where the incident or reflected beam strikes the 
slot. If we let ( ),y z be the coordinates of point P (see Fig. 13.24) then 

( ),s s y z=y y and ( ),b b y z=y y
( )0 , / 2 / 2c c cz h z y z< < − < < + therefore we can define a total truncated 
received velocity as: 

( ) ( ), , 0 , / 2 / 2
0 elsewhere

side s bottom b c c c
trunc

v v z h w y w
v

ω ω⎧ + ≤ ≤ − ≤ ≤
= ⎨

⎩

y y
 (13.31)

and calculate the received voltage from the slot in the same form as 
Eq.(13.10), namely 
 

. If the slot occupies the region 
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Fig. 13.25. Comparison of the predicted corner reflection from a 2 mm vertical 
surface breaking slot with the experiments: (a) the experimental signal, (b) the 
signal calculated using a multi-Gaussian beam model. 

( ) ( )
0

12 ,trunc
R

S

vV s dS
S v

ω ω= ∫  (13.32)

where S is the surface of the transducer. Figure 13.25 shows a comparison 
between experimentally measured signal and a simulated corner trap signal 
from a slot obtained using Eq. (13.32) and performing an inverse FFT to 
obtain a time domain signal. In this case the interrogating transducer was a  
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Fig. 13.26. Angle beam shear wave inspection of a 2 mm diameter side drilled hole: 
(a) the experimental signal, and (b) the signal calculated using a multi-Gaussian 
beam model. 

45 degree angle beam shear wave transducer and the surface breaking 
vertical slot had a height ch = 2 mm and a width cw = 10 mm which 
extended across the entire thickness of a steel specimen. As can be seen 
from Fig. 13.25 there is very good agreement between the model-based 
result and the experiment. 
 As a final example of modeling angle beam transducer responses 
we will consider the case where the beam from an angle beam shear wave 
transducer is scattered from a side drilled hole (SDH). This is a reference 
reflector that is often used in angle beam testing and was considered in an 
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immersion testing example in Chapter 12. The ultrasonic measurement 
model appropriate for the SDH was given in Eq. (12.36). For our angle 
beam shear wave problem this measurement model can be expressed as: 

( ) ( ) ( ) ( )( ) ( )21 2 2
2 ;

2

4ˆ , ,
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R s T a
rL

A cV s V dy
L ik Z
ω πρω ω ω
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= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦⎣ ⎦

∫ x  (13.33)

where ( ) ( ) ( ) ( )1 1
2

ˆ ˆ, ,V V yω ω=x  is the normalized velocity field incident on 
the SDH evaluated along its central axis, which is taken here as the 2y -
axis. This velocity field for the angle beam transducer can again be 
calculated with the multi-Gaussian beam model expression given by 
Eq. (13.19) and the ABCD matrices defined earlier. The normalized pulse-
echo scattering amplitude ( ) /A Lω of the SDH can be obtained using the 
Kirchhoff approximation (see Eq. (10.53)) where, for a SDH of radius b: 
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1 2 1 22 2 .

2

s s
s s

k b i k bA
J k b iS k b

L
ω

π
⎡ ⎤= − +⎣ ⎦  (13.34)

 Figure 13.26 shows a comparison between the model prediction 
and the experimental measurement for the response of a 2 mm diameter 
SDH to a 45 degree shear wave generated by an angle beam transducer 
located on the top surface of a steel specimen. The response from the SDH 
was predicted by using Eqs. (13.33) and (13.34). The early part of the 
theoretical prediction agrees very well with the experimental response. 
However, there is a small later arriving creeping wave in the experimental 
signal that is not predicted by the model. This is to be expected since the 
SDH model is based on the Kirchhoff approximation which neglects such 
creeping waves. Such a creeping wave could be included in the model-
based results by instead calculating the scattering amplitude of the SDH 
with the method of separation of variables, as discussed in Chapter 12. 

13.4 Model-Assisted Flaw Identification 

In conducting angle beam inspection of welded joints, the signals acquired 
often consist of flaw signals together with non-relevant signals caused by 
geometrical reflectors such as corners, counter bores and weld roots [13.5]. 
In some cases these non-relevant signals can be discriminated from the 
flaw signals based on prior information on the testing location and 
geometry of the welded joint. Echo-dynamic patterns obtained by scanning 
the transducer  around the indication  can also be used  in order to  identify  
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Fig. 13.27. A schematic representation of the TIFD. 

the flaw signals. However, these traditional methods have considerable ambi-
guity since they are based on the subjective experience of inspectors. B- 
and C-Scans obtained by an automated ultrasonic testing system can also 
provide information on the identification of flaw signals. However, those 
usually require expensive equipment and time-consuming (and expensive) 
scanning. 

To overcome these difficulties a technique called the TIFD 
(Technique for Identification of Flaw signals using Deconvolution), was 
proposed [13.6]. The concept of the TIFD was quite simple. Let ( )f t  and 

( )g t  be a reference and target signal, respectively. Then, a deconvolution 
pattern, ( )h t , called the similarity function was defined as 

( ) ( ) ( )1 ,h t f t g t−= ⊗  (13.35)

Ultrasonic modeling, using the angle beam ultrasonic testing 
models discussed in Section 13.3, however, can  make the  TIFD  approach  
 

where, 1−⊗  symbolically denotes deconvolution. The basic idea behind the 

function becomes a sharp impulse-like shape. Otherwise the deconvolution 
pattern will be quite different in its characteristics. Thus, by comparing a 
measured signal with a set of reference signals from non-relevant reflectors it 
was possible to discriminate a flaw signal from those non-relevant reflectors. 
The major limitation of the TIFD, when implemented in this manner, was 
that the various kinds of reference signals had to be obtained experimentally. 
This approach was costly, time-consuming, and in some cases impractical.  

use of this similarity function is illustrated in Fig. 13.27. When the refer-
ence and target signals are similar, the deconvolution pattern of the similarity 
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Fig. 13.28. A schematic representation of the model-based TIFD. 

more viable [13.7]. This new approach, called model-based TIFD, also 
relaxes the requirement of acquiring many different kinds of reference 
signals. Instead, it adopts only one reference signal which is the specular 
reflection from the cylindrical surface of the STB-A1 standard block that 
was discussed in the previous section. The idea is that geometrical reflectors 
such as counter bores and corners should look similar to the cylindrical 
surface reflection, which is also a simple geometrical reflector, but flaws 
should not. Models, instead of experimental studies can be used to validate 
this approach. 

As an example of the application of angle beam ultrasonic testing 
models for flaw identification consider a model-based TIFD approach for 
discriminating a crack or void flaw signal from the signals generated by 
reflectors such as counter bores or corners. As shown in Fig. 13.28, 
deconvolution of these four target signals by the reference signal produces 
four deconvolution patterns. The characteristics of the counter bore and 
corner patterns can be predicted by use of the ultrasonic testing models 
discussed in the previous section. We will discuss how the spherical void 
and crack responses were simulated in this section. 

Figure 13.29 shows an example of a reflection signal captured 
experimentally from the cylindrical surface of the STB-A1 standard block 
with a 45 degree angle beam shear wave transducer (the center frequency 
was 5 MHz and the diameter of the transducer on the wedge was 
0.375 inch). This wave form is the reference signal used in the model-
based TIFD. It is also the signal that can be used to determine the system 
function, ( )s ω . Using this system function and Eq. (13.17) the received 
signal  from  the  counter  bore can  be  simulated. The  result  is  shown  in  
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Fig. 13.29. An experimental reference signal obtained by the reflection of the 
beam of a 45 degree angle beam shear wave transducer (5 MHz center frequency, 
0.375 inch diameter) from the cylindrical surface of an STB-A1 standard block. 

 
Fig. 13.30. Model-based predictions of time-domain waveforms for (a) a counter 
bore, (b) a corner, (c) a crack tip, and (d) a spherical void. 
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Fig. 13.31. The deconvolution patterns obtained using the model-based TIFD for 
the counter bore signals by (a) theoretical prediction and (b) the experiments. 

Fig. 13.30 (a). The corner signal can be obtained from Eq. (13.32) but since 
the corner is larger than the incident beam, the ( ),y z truncation limits are 
taken as the width of the specimen and the beam width, respectively. The 
corner signal simulated in this manner is shown in Fig. 13.30 (b). For both 
the spherical void and the crack, the Thompson-Gray measurement model 
of Eq. (12.6) can be used. Writing that measurement model in the notation 
used in this Chapter we obtain 

( ) ( ) ( ) ( ) ( )
21 2 2

0 ;
2

4ˆ ,
s

R s T a
r

cV s V A
ik Z
πρω ω ω ω

⎡ ⎤⎡ ⎤= ⎢ ⎥⎣ ⎦ −⎣ ⎦
 (13.36)
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Fig. 13.32. The deconvolution patterns obtained using the model-based TIFD for 
the corner signals by (a) theoretical prediction and (b) the experiments. 

where the normalized velocity ( ) ( ) ( ) ( )1 1
0̂

ˆ ,cV Vω ω= x can be calculated from 
Eq. (13.19) at the point, cx , which is taken as the center of the void. The 
scattering amplitude component, ( )A ω , for the void can be calculated, in 
the Kirchhoff approximation, by Eq. (10.14). Figure 13.30 (d) shows the 
simulated angle beam response of this flaw. If the crack is large enough so 
that beam variations across its surface are significant, then we must use a 
“large flaw” measurement model like Eq. (13.17) to simulate the crack 
response. However, we can take a simpler approach by noting that the 
first-arriving crack tip flash point signal is generated by the interaction of 
the incident waves with a small part of the entire crack surface so that even 
if the crack is large we can still calculate this surface-breaking crack tip 
signal  by  placing  the  Kirchhoff  approximation  for  the  response  of  an  
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Fig. 13.33. The deconvolution patterns obtained using the model-based TIFD for 
the crack signals by (a) theoretical prediction and (b) the experiments. 

isolated crack (Eq. (10.33)) into the “small flaw” measurement model of 
Eq. (13.36), inverting the results into the time domain and then keeping 
only the first-arriving flash point response. A time domain crack tip signal 
simulated in this fashion is given in Fig. 13.30 (c).  

Comparing Figs. 13.30 (a)-(d) one sees it is very difficult to 
distinguish these various reflectors/flaws from their scattering waveforms. 
Certainly there are some amplitude differences in these signals but such 
amplitude changes are not unique to any particular flaw characteristic. 
Thus, it would be very difficult for an NDE inspector, seeing these four 
responses, to separate the flaw responses (the crack and pore) from the 
geometrical reflectors (counter bore and corner). Now, consider the results 
of obtaining the similarity function by deconvolving these four model-
based  patterns  with the reference signal, as shown in Figs. 13.31 (a), and 
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Fig. 13.34. The deconvolution patterns obtained using the model-based TIFD for 
the spherical void signals by (a) theoretical prediction and (b) the experiments. 

Figs. 13.32 (a), 13.33 (a) and 13.34 (a). One sees impulse-like patterns for 
the counter bore and corner signals, indicating that these reflectors are very 
similar to the cylindrical surface reference signal, but bi-polar like 
responses are obtained instead for both the crack and spherical void cases. 
Figures 13.31 (b), 13.32 (b), 13.33 (b) and 13.34 (b) show the deconvolved 
patterns of experimental signals obtained from these same types of 
scatterers. In the experiments, the “crack” geometry was not that of a 
circular crack but instead a thin, through-thickness slot in a block was used 
as the scatterer. However, simulations of the tip signals from such a slot 
show the same type of flash point response as for the circular crack so we 
expect similar  results  upon  deconvolution. For  the  experimental  signals  
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Fig. 13.35. A schematic representation of angle beam ultrasonic testing of (a) a 
vertical crack (corner signal) and (b) a specimen corner.  

again one sees the same impulse-like or bi-polar patterns present, in agree-
ment with the model-based predictions. These model-based TIFD results 
suggest that such similarity functions should be useful in developing an 
automated procedure for discriminating flaws from other non-relevant 
responses such as the counter bore and corner signals considered here. 

13.5 Model-Assisted Flaw Sizing 

Flaw sizing is one of the fundamental issues in the ultrasonic NDE of 
various materials and structures since the estimation of structural integrity 
using methods such as fracture mechanics requires flaw size information. 
Unfortunately, current flaw sizing approaches are often dependent on the 
skill of the NDE inspector, and in many cases do not perform well in 
practice. Models, therefore, have an important role to play in improving 
flaw sizing methods. This section describes one example of the use of 
models to help make flaw size estimates [13.8]. The specific case that will 
be considered here is the sizing of surface breaking vertical cracks using 
an angle beam shear wave inspection of the type discussed in Section 13.3.  

In section 13.3, we developed an angle beam ultrasonic testing 
model that can predict the corner trap signal received from a vertical slot. 
That model can be used to consider the response of a surface-breaking 
crack, as shown in Fig. 13.35 (a). In fact, a crack corner trap signal can be 
acquired very easily during the inspection of surface breaking vertical 
cracks  in  many  practical situations. As a  reference  for the sizing of  this  
 

www.iran-mavad.com 
ایران مواد



434      Applications of Ultrasonic Modeling 

Fig. 13.36. Ultrasonic beam footprints for (a) a vertical crack corner, and (b) the 
specimen corner: Transducer: 5 MHz center frequency, 0.375 inch diameter, and 
45 degrees diffraction angle. 

crack let us consider the signal reflected from a specimen corner as shown 
in Fig. 13.35 (b). The difference between the corner trap signal received 
from the crack and the one received from the specimen corner is primarily 
due to different “footprints” of the incident ultrasonic beam that reaches 
the receiver. Since the size of this footprint is dependent on the size of the 
crack, dividing the crack response by the specimen corner response should 
give a quantity that is strongly dependent on that size. Figure 13.36 (a) 
shows the footprint of the incident beam that is reflected by the crack 
while Fig. 13.36 (b) shows the same footprint that is reflected from the 
specimen corner. 
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Fig. 13.37. SACs constructed for two specimens with different heights. 
Transducer: 5 MHz center frequency, 0.375 inch diameter, and 45 degrees 
diffraction angle. Solid line: D = 10 mm, dashed line with markers: D = 15 mm. 

The corner trap signal of a surface-breaking vertical crack with 
crack height, ch , and crack width , cw , can be calculated by use of Eq. (13.32), 
as discussed in Section 13.3. The specimen corner signal can also be evalu-
ated by Eq. (13.32), as discussed in Section 13.4, by simply not truncating 
the reflected signal. 

We will define the amplitude-area factor ( aA ) as the peak-to-peak 
amplitude ratio (in the time-domain) of the crack corner trap signal to that 
of the specimen corner signal, i.e. 

( )100 %
p p

crack
a p p

corner

VA
V

−

−= ×  (13.37)

where p p
crackV −  is the peak-to-peak amplitude of the time domain vertical 

crack corner trap signal and p p
cornerV −  is the peak-to-peak amplitude of the 

time domain signal received from the specimen corner. Both of these 
quantities can be obtained by applying an inverse fast Fourier transform to 
Eq. (13.32).With this definition of the amplitude-area factor, it is possible 
to construct a plot that shows the variation of the aA factor according to the 
size of a surface breaking vertical crack. This plot we have called a size-
amplitude-curve (SAC). Figure 13.37 shows examples of the SACs 
constructed for two specimens having heights of 10 mm and 15 mm. As 
shown in  Fig. 13.37, the  SAC is not  sensitive  to the  specimen height  so  
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Fig. 13.38. (a) An experimentally measured corner trap signal from a 2 mm 
vertical crack, (b) the predicted corner reflection signal from a specimen with the 
height of 15 mm. 

long as that height is larger than the beam width at the specimen corner. 
Figures 13.38 and 13.39 show an example of sizing of a through-thickness 
2 mm high surface-breaking crack in a specimen having the height of 
15 mm. Figure 13.38 (a) shows the corner trap signal captured from this 
surface breaking crack with a 45 degree angle beam shear wave transducer. 
The peak-to-peak voltage of this crack signal was measured to be 1.55 
mV. The system function for this flaw measurement setup was obtained 
using the method discussed in Section 13.3 and placed into Eq. (13.32) 
(used without truncation, as described previously) to obtain the predicted 
specimen corner signal shown in Figure 13.38 (b). The peak-to-peak  
voltage of this  specimen  corner signal was estimated to be  6.5 mV. Based 
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Fig. 13.39. An estimation of the vertical crack size using the SAC: Transducer: 
5 MHz center frequency, 0.375 inch diameter, and 45 degrees diffraction angle. 

on these two values, the aA  factor was calculated to be 23.85 %. Using this 
factor the size of the crack can then be estimated from the SAC, as shown 
in Fig. 13.39. In this case, the estimated crack size was 1.95 mm, which is 
very close to the actual size of 2.0 mm. Although this is a simple flaw 
sizing example, it is a nice illustration of the value that models can have in 
making flaw size estimates. 
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A Fourier Transforms and the Delta Function 

Ultrasonic NDE involves the propagation of short, transient pulses. A 
pulser, for example, generates voltage pulses that drive an ultrasonic trans-
ducer. That transducer transforms the electrical pulses into mechanical 
pulses that travel as waves and are converted back into electrical pulses at 
the receiving transducer. The received electrical pulses are then often 
displayed on an oscilloscope as a voltage versus time signal. In order to 
model ultrasonic systems ultimately we must be able to describe such 
transient behavior. If we directly simulate these time varying signals this is 
referred to as modeling in the time domain. However, it is often more 
convenient to describe the ultrasonic system and its components in terms 
of their frequency domain response, which is obtained by applying the 
Fourier transform to the time domain signals. It is always possible to 
recover the time domain signal from its Fourier transform through an 
inverse Fourier transform, so that working in the frequency domain does 
not imply a loss of information. In this Appendix we will describe some of 
the basic properties of Fourier and inverse Fourier transforms and we will 
show how these transforms can be implemented numerically with Fast 
Fourier Transform (FFT) algorithms. We will also introduce the delta 
function and its Fourier transform since that function plays a key role in 
modeling linear systems, as shown in Appendix C. 

A.1 The Fourier Transform and Its Inverse 

Consider a pulse, ( )v t , a signal that is a function  of the time, t. The 
Fourier transform of ( )v t , ( )V f , is given by [A.1], [A.3], 

( ) ( ) ( )exp 2V f v t i f t dtπ
+∞

−∞

= ∫ . (A.1)

The variable f is the frequency.  Typically in ultrasonic NDE problems f is 
given in MHz (millions of cycles/sec), where 1 cycle/sec = 1 Hz, and the  
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corresponding time, t, is given in microseconds. Although we integrate 
over all times in Eq. (A.1), most ultrasonic pulses are non-zero only over a 
finite time interval. The inverse Fourier transform, which allows us to 
obtain ( )v t , is 

( ) ( ) ( )exp 2v t V f i f t dfπ
+∞

−∞

= −∫ . (A.2)

Equation (A.2) shows that in order to recover ( )v t  one must integrate over 
both negative and positive frequencies. If the time domain function is real, 
however, it can be shown that its Fourier transform satisfies 
( ) ( )*V f V f− = , where ( )*  denotes the complex conjugate. Thus, the 

negative frequency components can be obtained from the positive 
components and in this sense they are redundant. Later, we will show how 
to recover the time domain signal, ( )v t , from only the positive frequency 
components.  

 There are other definitions of the Fourier transform and its inverse 
that are used in the literature so that one must be careful when comparing 
results, using Eqs. (A.1) and (A.2), to similar results from other authors. 
We will use the definitions of Eqs. (A.1) and (A.2) exclusively in this 
work, or their equivalent definitions given by 

( ) ( ) ( )

( ) ( ) ( )

exp

1 exp
2

V v t i t dt

v t V i t d

ω ω

ω ω ω
π

+∞

−∞

+∞

−∞

=

= −

∫

∫
 (A.3)

in terms of the circular frequency, ω , as measured in rad/sec, where 
2 fω π= . Since ( )v t  and ( )V f  can be obtained from each other, we can 

write this relationship as ( ) ( )v t V f↔ . In a similar fashion we write the 
corresponding relationships for a time shifted or differentiated signal as: 

( ) ( ) ( )

( )

0 0exp 2

2 .

v t t i f t V f
dv if V f
dt

π

π

− ↔

↔ −
 (A.4)
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Fig. A.1.  (a) An example of a simple “box” time domain function and (b) the 
same function shifted in time. 

For many other relationships see [A.3] or [Fundamentals].   
 As an example of a Fourier transform, consider the simple “box” 

function shown in Fig. A.1 (a). The Fourier transform of this function can 
be obtained analytically as 

( ) ( )

( ) ( )

0

0

0

0

exp 2

exp sin
.

t

o o

V f A ift dt

At i ft ft
ft

π

π π
π

=

=

∫
 (A.5)

 The magnitude of this complex Fourier transform is shown in Fig. A.2 (a) 
and its phase is given in Fig. A.2 (b). The phase plot shows periodic jumps 
of π radians corresponding to the sign changes at these points of the 

( )0sin f tπ  function. Otherwise the phase of the Fourier transform is a 
linearly increasing function of frequency due to the ( )0exp i f tπ  term in 
Eq. (A.5). If we shift this box function to the left by 0 / 2t , the shifting 
property of the Fourier transform given in Eq. (A.4) shows that for this 
symmetrical function (see Fig. A.1 (b)) we instead obtain a purely real 
Fourier transform given by 

   ( ) ( )0

0

sin oAt ft
V f

ft
π

π
=  
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Fig. A.1 (a) and (b) the phase of this transform. 

As another example of the use of the Fourier transform, consider 
the following time function and its Fourier transform (also called the 
Fourier spectrum of the signal): 

( ) ( )

( ) ( ) ( ){ }
2 2

2 22 2 2 2

cos 2 exp / 4

exp 4 exp 4 .

c

c c

v t f t t A

V f A A f f A f f

π

π π π

⎡ ⎤= −⎣ ⎦

⎡ ⎤ ⎡ ⎤= − − + − +⎣ ⎦ ⎣ ⎦
 (A.6)

 

Fig. A.2.  (a) The magnitude of the Fourier transform of the “box” function of 
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Fig. A.3.  (a) The time domain function in Eq. (A.6) and (b) the Fourier transform 
of Eq. (A.6) for  A = 0.2, cf  = 5 MHz. 

These functions are shown in Fig. A.3 for A = 0.2 and cf  = 5 MHz. The 
time domain function is a transient that has a shape typical of many 
ultrasonic signals. The frequency domain spectrum is a pair of Gaussians 
whose maxima are located at the frequencies cf  and - cf . The constant A 
controls both the amplitude of these Gaussians and their widths. Normally, 
one specifies the characteristics of a frequency domain spectrum as shown 
in Fig. A.4 by a center frequency, cf , defined as the frequency at which the 
maximum frequency domain response occurs, and a width of the spectrum.  
One measure of the width that is commonly used  in  ultrasonic NDE is the  
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Fig. A.4.  Definition of the center frequency, cf , and −6 dB bandwidth, bw, of a 
spectrum. 

−6 dB bandwidth, bw, which is defined in this case as the width of the 
Gaussian when the amplitude drops 6 decibels (dB) below its maximum at 

cf f= , as shown in Fig. A.4. Note that an amplitude ratio / rV V  is defined 
in terms of decibels (dB) as 

( ) 1020log
r r

V VdB
V V

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. (A.7)

Since ( )1020log 1/ 2 6.02 dB= − , at −6 dB the amplitude has been reduced 
to a value of approximately one half that of the reference value, where in 
our case the reference value is the maximum at cf f= . The parameter, A, 
can be shown to be related to the –6 dB bandwidth, bw, by the 
relation ( )ln 2 /A bwπ= . Figure A.5 shows the functions in Eq. (A.6) for 
a center frequency cf = 10 MHz and for various choices of the −6 dB 
bandwidth, bw. It can be seen that a narrow bandwidth results in a wide 
pulse with significant ringing in the time domain signal while a wide 
bandwidth generates a very short pulse with little ringing. Ultrasonic 
transducers with a large bandwidth are called wide-band, high resolution 
transducers because the short time domain signals they generate allow one 
to resolve signals that are near  to one another. Ultrasonic transducers  with  
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 Fig. A.5. Wave forms and spectra obtained from Eq. (A.6) for cf  = 10 MHz and 
(from top to bottom) bw = 4, 2, 1 MHz, respectively. Note that the amplitudes of 
the spectra are getting larger and their widths narrower as the bandwidth decreases 
although the amplitudes appear to be decreasing with decreasing bandwidth 
because of the changing vertical scale. 

small bandwidths are called narrow-band, high sensitivity transducers. 
Although they cannot as easily resolve closely separated signals, the longer 
duration pulses they generate normally have more energy than wide-band 
signals and they can therefore penetrate deeper into materials. 

 As a final example of a Fourier transform pair, consider a 1-D 
wave pressure pulse traveling along the positive x-direction in a fluid. 
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Such a pulse has the form ( )/p t x c−  where c is the wave speed. If we 
take the Fourier transform of this traveling wave we find 

( ) ( )

( ) ( ) ( )

( ) ( )

/ exp 2

exp 2 / exp 2

exp 2 / ,

p t x c ift dt

i f x c p u ifu du

P f i f x c

π

π π

π

+∞

−∞

+∞

−∞

−

=

=

∫

∫  (A.8)

where ( )P f is the Fourier transform of ( )p t . Note that we could also have 
obtained this result directly by using the shifting property relationship of 
Eq. (A.4). If we put this Fourier transform back into the inverse Fourier 
transform expression, we obtain 

( ) ( ) ( )

( ) ( )

/ exp 2 / 2

1 exp ,
2

p t x c P f ifx c ift df

P ikx i t d

π π

ω ω ω
π

+∞

−∞

+∞

−∞

− = −

= −

∫

∫
 (A.9)

where / 2 /k c f cω π= =  is called the wave number. Equation (A.9) shows 
that we can consider a 1-D pulse as a superposition of terms of the form 

( )expp A ikx i tω= −  which is a harmonic plane wave traveling in the 

( ) / 2ω π . The 
wave number is related to the wavelength,λ , of the wave through the 
relation 2 /k π λ= . To see the meaning of the terms in the exponential 
factor of this harmonic wave, first fix x (i.e. sit at a fixed location in space) 
and watch the wave go by as a function of the time, t. The pressure will go 
through a complete cycle (the exponential will change by 2π radians) in a 
time, pT , (in seconds) called the period of the wave. Thus, over one cycle 
2 2pfTπ π= . This shows that the frequency, f, (in Hz or cycles/sec) is 
just 1/ pf T= . Since ( )( )2 / / secrad cycle f cyclesω π=  we see that ω is 
just the rate at which the argument of the exponential term of the pressure 
is changing in time at a fixed location in units of rad/sec. Now, instead fix 
the time t and consider the pressure changes as a function of x.  Physically, 
this would correspond to taking a “snapshot” of the wave variations at a 

positive x-direction. The amplitude, A, of the plane wave is just pro- 
Pportional to the spectrum of the pressure wave, i.e. A =
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fixed time as a function of the distance, x. Again the pressure will go 
through a complete cycle over a distance, D, when 2 / 2kD Dπ λ π= = so 
that the wave length, λ, is just that distance, measured in units of length/ 
cycle. But ( ) ( )2 / / /k rad cycle length cycleπ λ=  so the wave number is just 
the rate at which the argument of the exponential term of the pressure is 
changing in distance at a fixed time in terms of units of rad/length.  

Equation (A.9) shows that in solving wave propagation and inter-
action problems, we can consider the behavior of harmonic waves and then 
obtain the solution for a pulse by Fourier superposition. We have shown 
this fact here only for 1-D plane waves, but it is also true for other types of 
waves as well. 

A.2 The Discrete Fourier Transform 

In practice, experimental ultrasonic NDE signals are manipulated digitally, 
i.e. the analog (continuous) time domain signals are first sampled and then 
these sampled values are stored digitally for later processing. Thus, it is 
also important to be able to deal with Fourier transforms and their inverses 
in terms of discrete, sampled signal values. This can be done using forms 
similar to Eqs. (A.1) and (A.2) given by the discrete Fourier transform pair 
[A.2]: 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

1

1

exp 2 1 1 / 1,2,...,

1 exp 2 1 1 / 1,2,..., ,

N

n j
j

N

k n
n

V f t v t i j n N n N

v t V f i n k N k N
N t

π

π

=

=

= ∆ ⎡ − − ⎤ =⎣ ⎦

= ⎡− − − ⎤ =⎣ ⎦∆

∑

∑
 (A.10)

where ( ) ( ),k kv t V f  are values of a time domain function and its Fourier 
transform at discrete frequency and time values, respectively, 1k kt t t+∆ = −  
is the sampling time interval, and N is the total number of sampled points. 
As with the Fourier transform and its inverse, the discrete Fourier 
transform pair of Eq. (A.10) may appear in different forms in the literature. 

Eqs. (A.1) and (A.2).  
 While the Fourier transform and its inverse are usually applied to 

non-periodic functions their discrete Fourier transform counterparts in 
Eq. (A.10) are always periodic  functions. For example,  the  first  sampled  

Here, Eq. (A.10) is the discrete transform pairs corresponding directly to 
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Fig. A.6. A sampled periodic time domain function showing the N sampled values 
used in the discrete Fourier transform (dark circles) and other sampled values 
(light circles). The sampling time interval is t∆ , the time maxt  is the time at which 
the transient signal ends, and the time T N t= ∆  is the period. 

value in the time domain, ( )1v t , is normally taken to be the value sampled 
at t = 0. There are then N sampled values from t = 0 to t = (N-1)∆t. The 
sampled value ( ) ( )1Nv t v N t+ = ∆ , however, is the same as the value at time 
t = 0 and subsequent samples ( ) ( )2 3,N Nv t v t+ +  etc. also repeat previous 
values. As Fig. A.6 shows the sampled time function is periodic with 
period T = N∆t . Similarly, in the frequency domain the first sampled 
value, ( )1V f , is the frequency component for f = 0 (the d.c. value) and 
there are then N sampled frequency components from f = 0 to f = (N-1)∆f, 
where ∆f = 1/T. The sampled value ( ) ( )1NV f V N f+ = ∆ , is again the d.c. 
value. The frequency domain function is therefore also periodic with 
period sf = 1/∆t, where sf  is the sampling frequency (see Fig. A.7). In 
Appendix G a MATLAB function s_space is given that generates a 
sampled time or frequency axis with precisely these values needed for 
application of the discrete Fourier transform or its inverse. For example, 
s_space(0, T, N) generates a set of N evenly spaced sampled values going 
from 0 to T - ∆t, where ∆t = T/N is the sample spacing. Note that if we 
used the built-in MATLAB function linspace(0, T, N) we would obtain 
instead a set of N evenly sampled values going from 0 to T with sample 
spacing ∆t = T/(N-1). 
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Fig. A.7.  The magnitude of a sampled periodic frequency domain function 
showing the N sampled values use in the discrete inverse Fourier transform (dark 
circles) and other sampled values (light circles). The frequency sampling interval 
is 1/f T∆ = , the frequency maxf  is the maximum frequency contained in the signal 
and the sampling frequency  1/sf t= ∆  is the period. 

As long as the original time domain signal is shorter than the 
sampling period, T, and the sampling frequency is sufficiently high to 
capture all the significant “wiggles” in the signal it can be seen from 
Fig. A.6 that the N sampled time domain components contained in the 
discrete Fourier transform will capture the entire signal adequately. Note 
that if the time signal has non-zero values before t = 0, those values will 
appear in the upper half of the N time domain samples as shown in Fig. 
A.6. The MATLAB function c_shift (see section G.8 in Appendix G for a 
code listing) can be used to shift the entire time domain function and place 
these negative time values back into their proper position so that the 
function does not appear to be split. Similarly, a MATLAB function t_shift 
given in Appendix G changes the time-axis appropriately. 

In the frequency domain the negative frequency components in the 
discrete Fourier transform are also contained in the upper half of the N 
frequency domain samples as can be seen from Fig. A.7. Since inherently 
the frequency spectrum of a real time domain function must contain both 
negative as well as positive frequency components, Fig. A.7 shows that 
unless the sampling frequency, sf , is at least double maxf , the highest fre-
quency contained in the signal, these periodically repeated functions will 
overlap and we will not recover the original spectrum of the signal. To 
prevent this phenomenon, which is called aliasing, we must therefore 

 
always  choose a  high  enough  sampling  frequency. This  requirement  is 
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embodied in what is called the Nyquist criterion (or the sampling theorem) 
which is [A.1]: 

The sampling frequency, 1/sf t= ∆ , must be at least twice the maximum 
significant frequency, maxf , contained in the waveform being sampled. 

In ultrasonic NDE, the transducers commonly used do not produce signi-
ficant frequencies above about 20 MHz and inspected materials (steel, 
 
Code Listing A.1. The FFT corresponding to Eq.(A.10). 
 
 
function y = FourierT(x, dt) 
% FourierT(x, dt) computes forward FFT of x, with sampling time interval dt 
% FourierT assumes the Fourier transform  is in terms of exp(2*pi*i*f*t) 
% For NDE, frequency components are normally in MHz, dt in microseconds 
% If x is a matrix, the transform is performed on the columns of x  
[nr, nc] = size(x); 
if nr == 1 
N = nc; 
else  
 N = nr; 
end 
y = N*dt*ifft(x);  
 
 

Code Listing A.2. The Inverse FFT corresponding to Eq.(A.10). 
 
 
function y = IFourierT(x, dt) 
% IFourierT(x, dt) computes the inverse FFT of x, for a sampling time interval dt 
% IFourierT assumes the inverse transform is in terms of exp(-2*pi*i*f*t)  
% For NDE, frequency components are normally in MHz, dt in microseconds  
% If x is a matrix, the inverse transform is performed on the columns of x 
[nr,nc] = size(x); 
if nr == 1 
 N = nc; 
else 
 N = nr; 
end 
y =(1/(N*dt))*fft(x); 
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aluminum, etc.) also attenuate ultrasound severely above such frequencies. 
Thus, a frequency of 100 MHz is normally a conservative choice for the 
sampling frequency that will satisfy the Nyquist criterion. This 
corresponds to a sampling time interval 10t∆ = nanoseconds. The number 
of sampling points, N, then determines the total length of the time 
record,T N t= ∆ , being digitized which in turn determines the sampling 
interval in the frequency domain, f∆ , since / 1/ 1/sf f N N t T∆ = = ∆ = . 

efficiently, one uses Fast Fourier Transform (FFT) algorithms, which are 
widely available [A.4]. Numerous books have been written on FFTs if one 
is interested in the details of those algorithms. To perform these discrete 
transforms in MATLAB, we must be aware that the built-in MATLAB 
FFT functions fft and ifft are defined such that the signs are exchanged in 
the exponentials appearing in Eq. (A.10) and the MATLAB functions do 
not include the sampling time constant ∆t  or N appearing in the 
coefficients of Eq. (A.10). Thus, we have defined a new set of MATLAB 
functions, FourierT and IFourierT, to implement the discrete transforms in 
Eq. (A.10). Those functions are defined in Code Listings A.1 and A.2. The 
functions FourierT and IFourierT, like fft and ifft, will perform Fast 
Fourier Transforms and their inverse on either vectors or matrices. If the 
input data is a vector, it can be a column or row vector. If the input data of 
these functions is a matrix, then they will perform the FFTs or inverse 
FFTs on the columns of the matrix. Fast Fourier Transform algorithms are 
often implemented with the number of samples 2mN =  for some integer 
m. In fact some FFT algorithms require the number of samples be a power 
of two. The MATLAB functions fft and ifft do not have this restriction so 
that neither do the functions FourierT and IFourierT. However, these 
functions are also more efficient when the number of samples is a power of 
two.  

If we give the function IFourierT only the positive frequency 
components of a real time domain function, then to recover that real time 
function we need to compute twice the real part of the output of IFourierT 
(which will be complex), This is necessary since if we compute the inverse 
Fourier transform of a function ( )V f  using only the positive frequency 
components we do not obtain the function ( )v t  but instead find the function 

( )v t+  where [Fundamentals]: 

 To implement the discrete Fourier transform pair of Eq. (A.10) 
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Fig. A.8. (a) A delta function, and (b) its Fourier transform. 

( ) ( ) ( )

( ) ( )
0

exp 2

1
2 2

v t V f i f t df

viv t d
t

π

τ
τ

π τ

∞

+

+∞

−∞

= −

= +
−

∫

∫
 (A.11)

so that one-half of  the original function v is in the real part of ( )v t+  and 
one half of the Hilbert transform [A.3] of v shows up in the imaginary 
part. [Note that if ( ) ( )1 0f

V f V f
=

= is non-zero, which can happen with 
time functions whose average (dc) value is not zero, then one half of that 
value must be associated with the positive frequencies and one half with 
the negative frequencies, i.e. we should compute IFourierT on the positive 
frequencies only after first making the replacement ( ) ( )1 1 / 2V f V f→ ]. 

A.3 The Delta Function 

One function that plays a key role in analyzing linear systems is the delta 
function [A.1]. We can define a  delta function  from a  limit  of  the  “box”  
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Fig. A.9.  A shifted delta function. 

function shown in Fig. A.1 (a). If we let 0 0t →  but keep the product 
0 1At =  so that the function always contains unit area, then the box 

we will denote symbolically by the delta function ( )tδ . In the same limit 
the Fourier transform of the box function becomes simply unity at all 
frequencies, as shown in Fig. A.8 (b) so that we have the Fourier transform 
pair ( ) 1tδ ↔ . Thus, a delta function generates all frequencies equally. It 
is this property that makes a delta function an ideal function to serve as a 
system input since the output of a system with such an input will then 
reflect how the system modifies this uniform input at all frequencies. As 
discussed in Appendix C, this allows us to obtain the transfer function of a 
linear system. The shifted delta function ( )tδ τ− is an infinite spike at 

( )t τ−  
are: 

( )

( ) ( ) ( )
( )

0

0

/ 2

b

a

t t

a or b
g t t dt g a b

g a or b

δ τ τ

τ τ
δ τ τ τ

τ τ τ

− = ≠

⎧ < >
⎪

− = < <⎨
⎪ = =⎩

∫
 (A.12)

and 

( ) ( )
0
1/ 2 ,
1

u t

u

t
u du H t t

t

τ
δ τ τ τ

τ

=

=−∞

<⎧
⎪− = − = =⎨
⎪ >⎩

∫  (A.13)

time t =τ , as shown in Fig. A.9. Some important properties of δ

function becomes an infinite spike at t = 0 as shown in Fig. A.8 (a), which 
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Fig. A.10.  A unit step function at t = τ. 

where g(t) is an arbitrary function and H(t) is the unit step function. 
Equation (A.12) shows the sampling properties of the delta function while 
Eq. (A.13) shows that the integral of the delta function ( )tδ τ− is the step 
function ( )H t τ− , as shown in Fig. A.10. If we examine the several 
Fourier transform relations of Eq. (A.4) for the delta function we find 

( ) ( )0 0exp 2

2 .

t t i f t
d i f
dt

δ π
δ π

− ↔

↔ −
 (A.14)
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A.5 Exercises 

1 (a). Write a MATLAB function, spectrum1, which computes the positive 
frequency components of a signal given by 

  ( ) ( )22 2exp 4 cV f A A f fπ π⎡ ⎤= − −⎣ ⎦ , 

where A is given in terms of the -6 dB bandwidth, bw, as ( )ln 2 /A bwπ= . 
Spectrum1 should return sampled values of V for a set of sampled 
frequencies, f (in MHz), and a specified center frequency, fc , (in MHz), 
and bandwidth, bw,  (in MHz), i.e. we should have for the MATLAB 
function call: 
 
>> V = spectrum1(f, fc, bw) 
 

Show that your function is working by evaluating the spectrum for 
512 frequencies ranging from zero to 100 MHz with fc = 5 MHz, bw = 1 
MHz. Generate the frequencies with the function s_space (see Appendix 
G), i.e. evaluate 

 
>> f = s_space(0, 100, 512); 
 
Plot V over a range of frequencies 0 – 10 MHz (approximately). 

 

1 (b). Use the MATLAB function IFourierT to obtain a sampled time 
domain function, ( )v t , from the sampled spectrum computed in problem 
1 (a). Plot ( )v t  by first generating a set of 512 time domain values with 
the function s_space, i.e. 
 
>> t  = s_space(0,  512*dt, 512); 
 
where dt is the time interval between samples (which in this case is 
dt = 1/100). Then use the t_shift and c_shift functions given in Appendix 
G so that the sampled values of ( )v t   shown are not split between the first 
and last half of the window. Show that your results agree with the 
analytical result:  
        ( ) ( ) 2 2cos 2 exp / 4cv t f t t Aπ ⎡ ⎤= −⎣ ⎦  
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if we take into account the fact that we only used the positive frequency 
components. 
 
1 (c). Now apply the FourierT function to the sampled ( )v t obtained from 
part 1 (b) and plot the magnitude of the resulting spectrum ( )V f . How is 
this ( )V f  different from the one you started with? 
 
1 (d). If you look carefully at your plot of V(f) in part 1 (a) you should see 
that the sampling interval, f∆ , in the frequency domain is not quite small 
enough to give an accurate representation of the Gaussian function. Take 
the ( )v t signal obtained in 1 (b), shift it so that all the values in the second 
half of the time domain window are zero, and then append 512 zeros to 
that signal. Apply FourierT to this longer signal to obtain the spectrum. 
Show that this process, which is called zero padding, improves our 
resolution in the frequency domain. Note that zero padding does not affect 
the sampling frequency. 

 
2. The Hilbert transform, ( )f t⎡ ⎤⎣ ⎦H , of a function ( )f t is defined as 

 

          ( ) ( )1 f d
f t

t
τ τ

π τ

+∞

−∞

⎡ ⎤ =⎣ ⎦ −∫H . 

 
When a plane traveling wave of the form ( )/f t x c−  is reflected from a 
surface beyond a critical angle, as discussed in Appendix D, the Hilbert 
transform of the function ( )f t appears in the reflected wave causing the 
reflected waveform to be distorted from the incident wave. It can be shown 
[A.2] that if ( )F ω is the Fourier transform of ( )f t  then the Fourier 
transform of the Hilbert transform of ( )f t , ( )ωH , is given by 

( ) ( ) ( )sgni Fω ω ω= −H  where 
 

   ( )
1 0

sgn
1 0

ω
ω

ω
+ >⎧

= ⎨− <⎩
. 

 
We can use this fact in conjunction with the Fast Fourier transform as a 
convenient way to compute the Hilbert transform of a function. To see this 
consider the follow example: 
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In MATLAB, define a sampled time axis consisting of 1024 points 
going from t = 0 to t = 10 µsec. Over this time interval define a sampled 
function  ( )f t  that has unit amplitude for 4.5 5.5t< <  µsec and is zero 
otherwise. Use FourierT to calculate the Fourier transform, ( )F ω , of ( )f t . 
Then use the relationship ( ) ( ) ( )sgni Fω ω ω= −H  to find the Fourier 
transform of the Hilbert transform of ( )f t  and compute the Hilbert 
transform itself by performing an inverse Fourier transform on this result 
with IFourierT. [Note that if you use only the positive frequency values to 
compute the inverse, then we only need to multiply those values by i− ]. 
Plot your results versus time. In this case the Hilbert transform of ( )f t  
can be obtained analytically [Fundamentals]. It is 

  

   ( ) 1 5.5ln
4.5

tf t
tπ
−

⎡ ⎤ =⎣ ⎦ −
H . 

 
Using a different plotting symbol, plot this function also on the same 
graph. How do your results compare? 
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B Impedance Concepts and Equivalent Circuits 

Impedance is very important concept for ultrasonic systems since it appears 
in a variety of contexts [B.1]. Thus, in this Appendix we will discuss briefly 
impedance as it appears in both electrical and acoustical components. We 
will also examine the concept of equivalent circuits and the use of Thévenin’s 
theorem to represent active electrical systems such as an ultrasonic pulser. 

B.1 Impedance 

Impedance is a quantity that is most often associated with electrical circuits. 
Consider, for example, the electrical elements shown in Fig. B.1. The time 
varying voltage and current for these elements are related to one another 
through the following relations: 

 

Resistor– ( ) ( )V t R I t=  (B.1a)

 

Capacitor– ( )( )dV tC I t
dt

=  (B.1b)

 

Inductor–  ( ) ( ) .
dI t

V t L
dt

=  (B.1c)

If we assume these voltages and currents are harmonic, i.e. ( )0 expV V i tω= − , 
( )0 expI I i tω= − , then for these elements we have 

 

Resistor–                               0 0V R I=  (B.2a)
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Fig. B.1. The voltage and current flowing (top to bottom) in a resistor, capacitor, 
and inductor, respectively. 
 

Capacitor– 0
0

IV
i Cω

=
−

 (B.2b)

 

Inductor–   0 0.V i L Iω= −  (B.2c)

We could instead take the Fourier transform of all the relations in 
Eqs. (B.1a-c) and view Eqs. (B.2a-c) as the relations between the Fourier 
transform of the voltage, ( )0V ω , and the Fourier transform of the current, 
( )0I ω , for these elements. In general, we see we can write for all these 

elements ( ) ( ) ( )0 0
eV Z Iω ω ω= , where ( )eZ ω is the complex electrical 

impedance. The impedance has the dimensions of volts/amps = ohms (Fourier 
transforms of voltage and current will have dimensions such as volts/Hz 
and amps/Hz but their ratio is still ohms). We see that ( ) ( ) ( )0 0

eV Z Iω ω ω=  
is true for these simple individual circuit elements. However, we can also 
take a complex circuit composed of many of these elements and also 
replace them by an equivalent complex impedance in the same fashion. 

Impedance also is associated with mechanical systems [B.1]. 
Consider, for example, the  mechanical  elements  shown  in Fig. B.2. The  
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Fig. B.2. The forces and displacements acting (top to bottom) in a spring, dashpot, 
and mass, respectively. 

time varying forces and displacements for these elements are related to one 
another through the following relations: 

 
 

Spring– ( )2 1F k u u= −  (B.3a)

 

Dashpot–     2 1
d

du duF c
dt dt

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (B.3b)

 

Mass–                              
2

2 .d uF m
dt

=   (B.3c)

Again, if we assume these forces and displacements are harmonic 
so that ( )0 expF F i tω= − , ( )expu U i tω= −  or take the Fourier transforms of 
Eq. (B.3a-c) we find 
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Spring– ( )0 2 1F k U U= −  (B.4a)

 

Dashpot–     ( )0 2 1dF i c U Uω= − −  (B.4b)

 

Mass–                              2
0 ,F m Uω= −  (B.4c)

which also can all be expressed in terms of a complex mechanical impedance, 
( )mZ ω , where ( ) ( ) ( )0

mF Z Uω ω ω= ∆ . In this case the dimensions of the 
mechanical impedance are that of stiffness, i.e. force/displacement. 

Ultrasonics inherently involves the propagation of waves and the 
concept impedance also is an important one for wave motion [Fundamentals]. 
Consider, for example, a 1-D plane pressure wave in a fluid propagating in 
the positive x-direction. The pressure and x-component of the velocity in 
the wave can be expressed in the forms 

( )
( )

/

/ ,x

p P f t x c

v V f t x c

= −

= −
 (B.5)

where P, V are pressure and velocity amplitudes of the waves (the function 
f is dimensionless) and c is the wave speed. However, the pressure and 
velocity in the fluid are related to one another though the equation of 
motion of the fluid, which is (see Appendix D) 

,xvp
x t

ρ
∂∂

− =
∂ ∂

 (B.6)

where ρ is the density of the fluid. Placing the pressure and velocity 
expressions of Eq. (B.5) into Eq. (B.6) then gives 

( ) ( )/ / ,P f t x c V f t x c
c

ρ′ ′− = −  (B.7)

where ( ) /f df u du′ = . It then follows that 

.P cVρ=  (B.8)

The quantity az cρ=  is called the specific acoustic impedance of a plane 
wave. If  we consider the  force in  the wave, F, generated  by the  pressure 
 

www.iran-mavad.com 
ایران مواد



B.2 Thévenin’s Theorem      463 

 
Fig. B.3. A plane wave traveling in the x-direction and a cross-sectional area, S, of 
the wave front.  

acting on a cross-sectional area, S, of the wave front, as shown in Fig. B.3, 
then we have  

,F PS cSVρ= =  (B.9)

where aZ cSρ=  is called the acoustic impedance of the plane wave. This 
acoustic impedance has the dimensions in the SI system of  Newtons-second/ 
meter (N-s/m) and the specific acoustic impedance has the dimensions  
N-s/m3. For more general wave types the acoustic impedance or specific 
acoustic impedance is in general a complex quantity. 

An ultrasonic system inherently contains electrical and electromecha-
nical elements as well as propagating acoustic and elastic waves. Thus, the 
system will be described by a variety of different impedances and we need 
to distinguish between them. In this book we will use the symbol “Z” for 
impedances and denote electrical impedance by an “e” superscript and 
acoustical impedance by an “a” superscript, a notation also followed in 
this section. For example, in Chapter 4 the electrical input impedance of a 
transmitting transducer A is given as ;A e

inZ  while the same transducer’s 
acoustic radiation impedance is given as ;A a

rZ . 

B.2 Thévenin’s Theorem 

An ultrasonic system contains both active and passive electrical and 
electromechanical elements. The pulser, for example is an active electrical 
network since it contains the driving elements of the ultrasonic system. 
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Fig. B.4. An electrical network with sources connected to a passive network. 

 
 

Fig. B.5. Introduction of a voltage source that makes the current flow between the 
two networks zero. 

Cables and transducers are passive networks since they merely transfer 
and/or transform energy but do not generate it. To model in detail an active 
electrical network like a pulser would be a very challenging task since a 
pulser is a very complex set of circuits. If we assume the pulser acts as a 

and replace a pulser with a simple equivalent circuit consisting of a voltage 
source and electrical impedance in series. Here, we will outline briefly the 
proof of this important theorem [B.2]. 

Consider an electrical network, AN , that contains both passive 
elements and sources and connect it at its terminals to a network, BN , that 

( )i t be the current flowing 
between two networks at terminals a-b. It is assumed here that both AN  
and BN  are linear networks. Now introduce an opposing voltage source, 
( )V t , in front of the terminals a-b such that the current is driven to zero, as 

AN  and 
 

linear device then Thévenin’s theorem allows us to avoid this complexity 

is passive (no sources) as shown in Fig. B.4. Let 

shown in Fig. B.5. Since now there is no current  flowing  between 
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Fig. B.6. The network AN detached from the passive network BN . 

 
Fig. B.7. Re-attaching the network A with all the sources replaced by ( )0V t . 

BN , the voltage across terminals a-b, abV , is zero and we can break the 
circuit at a-b , as shown in Fig. B.6, without disturbing any voltages or 
currents. Because there is no current flowing out of the network AN in 
Fig. B.6 the voltage ( )0V t  in that figure is the output voltage of the 
network AN  under open-circuit conditions and it follows that 

( ) ( )0 0,abV t V t V− = =  (B.10)

which shows that V(t) is just the open-circuit voltage, V0(t), of network 
AN . If we now reverse the polarity of V(t) and remove all the sources in 
AN  (by replacing them with short circuits), when we reattach AN  to BN  

the original current will be set up between AN  and BN , as shown in 
Fig. B.7. Since BN  is a passive network, the voltage across terminals a-b 
will also  be  the  same  as  in the  original  setup. Thus, we can say that the 
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Fig. B.8. (a) The Thévenin equivalent network of Fig B.7 represented in the 

 
A two terminal network containing sources and passive elements is 
equivalent (as far as its external effects are concerned) to a voltage source 
in series with the network with all the sources removed; the voltage of the 
equivalent source has the same magnitude and polarity as those of the 
voltage appearing across the terminals of the original network under 
open-circuit conditions.  

 
If we Fourier transform all the voltages and currents appearing in 

these networks and work in the frequency domain, then the original 
network with it sources removed is equivalent to a complex electrical 
impedance, ( )e

AZ ω , and we can replace our original network with the 

two equations 

( ) ( ) ( )
( ) ( ) ( )0 ,

e
c A

c

V Z i

V V V

ω ω ω

ω ω ω

=

− =
 (B.11)

which give 

( ) ( ) ( ) ( )0 .e
AV V Z iω ω ω ω− =  (B.12)

It is often customary to exchange the positions of the source and 
impedance so that the source “drives” that impedance, as shown in 
Fig. B.8 (b). If we let ,V V i i′ ′= − = −  and 0 0V V= −  in Eq. (B.12) then that 

frequency domain by a complex source and impedance, and (b) the same equivalent 
circuit with the source and impedance exchanged.  

equation still  holds for the  equivalent circuit  shown in Fig. B.8 (b). Thus,  

circuit shown in Fig. B.7 is equivalent to the original circuit of Fig. B.4. This
is the essence of Thévenin’s theorem which states that: 

equivalent circuit of Fig. B.8 (a). However, from that figure we have the 
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Fig. B.9. An RC-circuit and voltage source. 

 
Fig.B.10. (a) The RC-circuit showing the open-circuit voltage, 0V , and the current, I, 
flowing in the circuit, and (b) the source-free circuit that must be placed in series 
with the open-circuit voltage to obtain the Thévenin equivalent circuit. 

 
the complex source and impedance of Fig. B.8 (b) is the Thévenin equi-
valent circuit corresponding to our original network. 

Example: Consider the simple circuit shown in Fig. B.9 where a 
voltage source with frequency components  ( )iV ω  is connected to a resis-
tance, R, and a capacitance, C. Determine the Thévenin equivalent source 
and impedance that replaces this circuit. 

Consider the open-circuit voltage, ( )0V ω , and the current, ( )I ω , 
in the circuit as shown in Fig. B.10 (a). We have the relations 

0

0 .

iV V IR
IV

i Cω

− =

=
−

 (B.13)
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Fig. B.11. The Thévenin equivalent circuit for a pulser attached to a known external 
resistance, LR , for measuring the impedance, ( )eZ ω . 

If we eliminate I from these two equations we find the Thévenin equivalent 
source is 

( ) ( )
0 .

1
iV

V
i RC
ω

ω
ω

=
−

 (B.14)

This circuit in series with the original circuit with the sources removed 
(short-circuited) is our Thévenin equivalent circuit. The source-free circuit 
is shown in Fig. B.10 (b) where we see that we just have the resistor and 
capacitor in parallel. Thus, the equivalent impedance, eZ ,  of this source-free 
circuit is just 

( ) ( )
1 1 1 ,

1/eZ R i Cω ω
= +

−
 (B.15)

which gives 

( ) .
1

e RZ
i RC

ω
ω

=
−

 (B.16)

B.3 Measurement of Equivalent Sources and Impedances 

A pulser in an ultrasonic measurement system is an example of an 

 
electrical network containing sources. As shown in Chapter 2 if we assume  
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Fig. B.12. A setup for determining the impedance of the RC-circuit. 

 
the pulser acts as a linear system we can find the Thévenin equivalent source 
for the pulser, ( )0V ω , by measuring the open-circuit voltage, ( )0V t , at the 
output terminals of the pulser and Fourier transforming this measured 
voltage to obtain ( )0V ω . But how do we find the equivalent impedance, 

( )eZ ω  , of a real instrument such as a pulser since we cannot go into the 
instrument and physically short circuit the sources, as we did with the 
known circuit in the previous example? Instead, as shown in Chapter 2, we 
can place a known load resistance, LR , at the output terminals of the 
pulser and measure the voltage, ( )LV t , across this load. Fourier 
transforming this voltage then gives ( )LV ω (see Fig. B.11). But from the 
Thévenin equivalent circuit of the pulser shown in Fig. B.11 (see also 
Chapter 2), we find that 

0

.

e
L

L L

V V Z I
V R I

− =

=
 (B.17)

So eliminating the current, I, we find 

( ) ( )
( )

0 1 .e
L

L

V
Z R

V
ω

ω
ω

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 (B.18)

Equation (B.18) shows that with measurements of both ( )0V ω  and ( )LV ω , 
with the resistance, LR , known, we can determine the Thévenin equivalent 
impedance, ( )eZ ω . Note that this impedance does not depend on the 
value of the known resistance. It is only a function of the properties of the  
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pulser itself. We can demonstrate this method for determining the impedance 
for our RC-circuit example again. Figure B.12 shows that circuit and the 
resistance, LR , at its output terminals. From Fig. B.12, we have 

( )

1

2

1 2 .

i L

L L

L

V V I R
V I R

I I
V

i Cω

− =

=

−
=

−

 
(B.19)

Eliminating the currents 1 2,I I  from these equations gives 

( )
.

1 /
i

L
L

VV
i RC R Rω

=
− +

 (B.20)

Using Eq. (B.20) and Eq. (B.14) for the Thévenin equivalent source, we 
find 

( ) ( )
( )

( )
( )

( ) ( )

0 1 /
1 1

1

/ ,
1 1

Le
L L

L

L
L

V i RC R R
Z R R

V i RC

R R RR
i RC i RC

ω ω
ω

ω ω

ω ω

⎛ ⎞ ⎧ ⎫− +⎪ ⎪= − = −⎜ ⎟ ⎨ ⎬⎜ ⎟ −⎪ ⎪⎝ ⎠ ⎩ ⎭
⎧ ⎫⎪ ⎪= =⎨ ⎬

− −⎪ ⎪⎩ ⎭

 (B.21)

which is the same value for the impedance obtained earlier in Eq. (B.16) 
and is indeed independent of LR . 

B.4 References 

B.1 Cremer L, Heckl M, Ungar EE (1973) Structure-borne sound. Springer-
Verlag, Berlin, Germany  

B.2 Cheng DK (1959) Analysis of linear systems. Addison Wesley, Reading, PA 

B.5 Exercises 

1. A propagating harmonic spherical pressure wave from a point source in 
a fluid is given by ( )exp /p P ikr i t rω= − , where r is the radial distance 
from  the source  (see Fig. B.13).The  radial  velocity can also similarly  be 
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Fig. B.13. A spherical wave arising from a point source in a fluid. 

 

Fig. B.14. An example circuit. 

 
     
 

written as ( )exp /rv V ikr i t rω= − . If the equation of motion of the fluid in 
spherical coordinates is given by  

 

,rvp
r t

ρ ∂∂
− =
∂ ∂

 

 
determine the specific acoustic impedance P/V of this spherical wave. 
What happens to this impedance when the frequency,ω , is very large? 

 
2. For the circuit shown in Fig. B.14 obtain the Thévenin equivalent source 
and impedance in terms of the given circuit elements. 
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C Linear System Fundamentals 

In this book an ultrasonic system is modeled as a series of interconnected 
linear systems. Thus, linear system theory will be a fundamental part of all 
our discussions. This Appendix will outline a number of key linear 
systems concepts such as two port systems and linear time-shift invariant 
systems. We will also discuss the role that the convolution theorem plays 
in linear systems as well as related quantities such as impulse response 
functions and transfer functions. 

C.1 Two Port Systems 

The pulser in an ultrasonic system is an active circuit (a circuit with 
sources) that drives the rest of the ultrasonic system through the pulser 
output port. The cabling and transducer(s) in an ultrasonic system normally 
are passive elements (no sources) and they contain both input and output 
ports, as shown in Fig. C.1. In the case of a cable, it is purely an electrical 
system so the inputs and outputs are both of the same type (voltage, 
current). An ultrasonic transducer transforms voltage, V, and current, I, at 
its electrical port into a mechanical force, F, (arising from a pressure 
distribution on the face of a piezoelectric crystal as shown in Fig. C.1 (b)) 
and a velocity, v, (which represents the average velocity of motion of the 
crystal) at its acoustic port. The underlying velocity distribution is shown 
in Fig. C.1 (b) as being uniform at the acoustic port. A transducer with this 
type of velocity profile is called a piston transducer. [Note: piston trans-
ducer models have been shown to often be very effective for modeling real 
commercial ultrasonic transducers but one should be aware that this 
idealized model may not be suitable for all transducers. In this book we 
will generally assume a piston transducer model is valid]. 

We can represent a purely electrical two port system such as a 
cable schematically as shown in Fig. C.2 [C.1]. Note that it is customary to 
assign the currents so that they flow into the two port system on the input 
side and flow out on the output side, a convention that we will also follow 
here. 
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Fig. C.1. (a) Cabling as a two port electrical system, and (b) an ultrasonic trans-
ducer as two port system with voltage, V, and current, I, at the electrical port and 
force, F, and velocity, v, at the acoustic port. The force F is the net compressive 
force generated by the pressure distribution acting across the face of the transducer 
and v is the average velocity due to the velocity distribution of the transducer face. 
The pressure distribution is non-uniform, as shown, but the velocity distribution is 
taken to be the uniform velocity profile of a piston transducer.  

Since we will assume this is a linear system the inputs and outputs 
are proportional to each other through a 2x2 transfer matrix, [ ]Τ , where 

( )
( )

( )
( )

1 211 12

1 221 22

.
V VT T
I IT T

ω ω
ω ω

⎧ ⎫ ⎧ ⎫⎡ ⎤⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

 (C.1)

The dimensions of the elements of the transfer matrix are: 11 22,T T : 
dimensionless, 12T :ohms, 21T :1/ohms. Note that the voltages and currents in 
Eq. (C.1) are all in the frequency domain, i.e. they are the Fourier transforms 
of the time varying voltages and currents present at the input and output 
ports. Thus, the transfer matrix is also in the frequency domain. Another 
common way to represent a two port system is in terms of a 2x2 impedance 
matrix, e⎡ ⎤⎣ ⎦Z . In this case it is usual to represent the currents on both sides 
of the two port system as flowing into the system, as shown in Fig. C.3, 
and write: 
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Fig. C.2. An electrical two port system represented by a transfer matrix. [ ]T . 

 
Fig. C.3. An electrical two port system represented by an impedance matrix, 

e⎡ ⎤⎣ ⎦Z . 

( )
( )

( )
( )

1 111 12

2 221 22

,
e e

e e

V IZ Z
V IZ Z

ω ω
ω ω

⎧ ⎫ ⎧ ⎫⎡ ⎤⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥ ′⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭
 (C.2)

where 2 2I I′ = − . In this case the dimensions of the elements of the 
impedance matrix are all ohms. In addition to linearity, we will assume 
that a two port system is reciprocal. The meaning of reciprocity is as 
follows. Consider a two port system, characterized by its transfer matrix 
[ ]T (or, equivalently, by its impedance matrix, e⎡ ⎤⎣ ⎦Z ). Let us attach this 
two port system to electrical networks A and B at its input and output 
terminals, respectively, as shown in Fig. C.4. We will call this connected 
set of systems state (1). Under these conditions the voltage and current at 
the input  port are ( ) ( )1 1

1 1,V I  and the voltage and  current  at  the  output  port  
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Fig. C.4. A two port system with its ports terminated differently in two states, 
labeled states (1) and (2). 

are ( ) ( )1 1
2 2,V I . Now, attach the same two port system to two other networks 

C and D, as shown in Fig. C.4. Call this connected set of systems state (2). 
Then in this state we have ( ) ( )2 2

1 1,V I  and ( ) ( )2 2
2 2,V I  for the voltages and 

currents at the input and output port, respectively. Our two port system is 
said to be reciprocal if for any two states (1) and (2) the inputs and outputs 
satisfy the reciprocity relation given by 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 2 1 1 2 2 1
1 1 1 1 2 2 2 2 .V I V I V I V I− = −  (C.3)

Equation (C.3) is a rather “opaque” equation in that it is difficult to see 
what it really means. However, when it is applied to our two port system 
written in terms of its impedance matrix, one can show that reciprocity 
simply implies that the impedance matrix is symmetric, i.e. 21 12

e eZ Z= [C.1]. 
Similarly, Eq. (C.3) implies that determinant of the transfer matrix of the 
two port system equals one, i.e. [ ] 11 22 12 21det 1T T T T= − =T [C.1]. 

 For a linear, reciprocal two port system the components of the 
transfer matrix and the impedance matrix are obviously related. It is not 
difficult to show that the transfer matrix can be expressed in terms of the 
impedance matrix components as: 

www.iran-mavad.com 
ایران مواد



C.1 Two Port Systems      477 

 
Fig. C.5. A cascade of linear, reciprocal two port systems and their replacement 
by a single “global” two port system. 

[ ] ( )( )2

11 12 11 22 12 12

12 22 12

/ /
.

1/ /

e e e e e e

e e e

Z Z Z Z Z Z

Z Z Z

⎡ ⎤−⎢ ⎥=
⎢ ⎥
⎣ ⎦

T  (C.4)

From Eq. (C.4) it follows directly that [ ]det 1=T , as it should be. 
Similarly, the impedance matrix can be written in terms of the transfer 
matrix components as: 

11 21 21

21 22 21

/ 1/
,

1/ /
e T T T

T T T
⎡ ⎤

⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎣ ⎦

Z  (C.5)

which shows that 21 12
e eZ Z=  is automatically satisfied.  

 One can express impedance components in terms of transfer 
matrix components and vice versa so in principle it does not matter which 
of these representations we use for a two port system. However, when one 
is dealing with a series of connected two port systems, as is the case for an 
ultrasonic system (e.g. the cabling is attached to the transducer, both of 
which are two port systems) then the transfer matrix is more convenient to 
use since one can replace a series of connected two port systems, each 
characterized by their own transfer matrices [ ] [ ] [ ]1 2, ,..., NT T T as shown in 
Fig. C.5, by a  single  global  2x2  transfer matrix , [ ]GT , where the  global  
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Fig. C.6. An RC-circuit modeled as a two port system.  
 
matrix is obtained by matrix multiplication of each of the individual transfer 
matrices, i.e. 

[ ] [ ][ ] [ ]1 2 ... .G N=T T T T  (C.6)

This global transfer matrix is also reciprocal if the individual transfer 
matrices are reciprocal since 

[ ] [ ] [ ] [ ]1 2det det det ...det 1.G N= =T T T T  (C.7)

As a simple example of a linear, reciprocal two port system, consider the 
RC-circuit example used in Appendix B with the voltage source removed 
to form the two port system shown in Fig. C.6. To determine the transfer 
matrix for this circuit, consider first the voltage across the resistance and 
the current flowing through it. We have 

1 2 1.V V RI− =  (C.8)

Also, considering the voltage across the capacitor and the current flowing 
through it (which is 1 2I I−  flowing downwards) we find 

1 2
2 .I IV

i Cω
−

=
−

 (C.9)

Equation (C.9) can be written directly in transfer matrix form (inputs in 
terms of outputs) as 

1 2 2.I i CV Iω= − +  (C.10)
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Fig. C.7. (a) An RC-circuit with a voltage source at the input and open-circuit 
conditions at the output, and (b) the representation of this terminated system as a 
single input-single output system. 

If we now place Eq. (C.10) into Eq. (C.8), the resulting equation can also 
be placed in transfer matrix form as 

( )1 2 21 .V i RC V RIω= − +  (C.11)

From Eqs. (C.10) and (C.11) the transfer matrix follows directly, giving 

( )1 2

1 2

1
.

1
V Vi RC R
I Ii C

ω
ω

⎡ ⎤−⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥−⎩ ⎭ ⎩ ⎭⎣ ⎦

 (C.12)

Equation (C.12) shows that [ ]det 1=T is indeed satisfied for this system so 
that it is reciprocal. Using Eq. (C.5) we can also obtain the impedance 
matrix directly for this two port system, where 

( )1 1

2 2

1 / 1/
,

1/ 1/
V Ii RC i C i C
V Ii C i C

ω ω ω
ω ω

⎡ ⎤− −⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥ −− −⎩ ⎭ ⎩ ⎭⎣ ⎦

 (C.13)

and obviously we also have 21 12
e eZ Z= . 
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Fig. C.8. A general linear time-shift invariant (LTI) system. 

C.2 Linear Time-Shift Invariant (LTI) Systems 

If we have a two port linear system that is terminated in some fashion at 
both its ports, then this two port system reduces to a system where single 
inputs and outputs can be linearly related to each other [C.2], [C.3], [C.4]. 
As an example, consider again the RC-circuit two port system of Fig. C.6. 
If we attach a voltage source ( )iV t  at its input port and leave the output 
port open-circuited (Fig. C.7 (a)), we have a linear system where we can 
relate the open-circuit voltage, ( )0V t , to the input voltage, ( )iV t . This 
type of single input-single output system can be represented schematically 
as shown in Fig. C.7 (b). For this simple system it is easy to see that 

( ) ( ) ( )

( )

0

0 .

iV t V t i t R
dVi t C
dt

− =

=
 (C.14)

Eliminating the current between the two equations in Eq. (C.14), we see 
that 0V  is related implicitly to iV  through the solution of the differential 
equation given by 

( ) ( ) ( )0 0 .idV t V t V t
dt RC RC

+ =  (C.15)

We can write this relation symbolically as 

( ) ( )0 ,iV t L V t= ⎡ ⎤⎣ ⎦  (C.16)

where [ ]L  is a linear operator since the underlying RC-circuit is linear. 
An important class of linear single input, single output systems is 

called a linear time-shift invariant (LTI) system, as shown schematically in  
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Fig. C.9. (a) An LTI system driven by a delta function input, and (b) driven by a 
general input. 

Fig. C.8. for a general input, ( )i t , and output, ( )o t . An LTI system is defined 
as a linear system where a time shift of the input signal produces exactly 
the same time shift of the output signal. These properties can be stated 
mathematically as follows: 

 
Linearity: 

If 
( ) ( )
( ) ( )

1 1

2 2

o t L i t

o t L i t

= ⎡ ⎤⎣ ⎦
= ⎡ ⎤⎣ ⎦

 then 
( ) ( ) ( )

( ) ( )
1 1 2 2

1 1 2 2

o t L a i t a i t

a L i t a L i t

= ⎡ + ⎤⎣ ⎦
= ⎡ ⎤ + ⎡ ⎤⎣ ⎦ ⎣ ⎦

 (C.17)

Time-Shift Invariance: 

If ( ) ( )o t L i t= ⎡ ⎤⎣ ⎦  then ( ) ( )0 0o t t L i t t− = ⎡ − ⎤⎣ ⎦  (C.18)

 
It is clear that The RC-circuit example just considered is an LTI system. 
We expect that elements of an ultrasonic NDE system in general may also 
be modeled as LTI systems. LTI systems have the important property that 
they can be characterized completely by their response to a delta function 
input, ( )tδ . This delta function response is called the impulse response 
function, ( )g t , of the system, and the Fourier transform of this impulse 
response, ( )G f , we will call the transfer function of the LTI system.  
Figure C.9 (a) shows an LTI system being driven by a delta function input, 
 

www.iran-mavad.com 
ایران مواد



482      Linear System Fundamentals 

 
Fig. C.10. Representing a general input function as a superposition of delta 
function inputs. 

 
Fig. C.11. A series of LTI systems. 

while Fig. C.9 (b) shows the same system under a general input. It can be 
shown that the output, o(t), of an LTI system to a general input, i(t), is 
given in terms of a convolution integral of that input with the impulse 
response function, g(t), i.e. 

( ) ( ) ( )

( ) ( ) .

o t i g t d

g i t d

τ τ τ

τ τ τ

+∞

−∞

+∞

−∞

= −

= −

∫

∫
 (C.19)

Equation (C.19) follows directly from the properties of an LTI system 
since we can take a general input function and consider it as a super-
position of small rectangular elements as shown in Fig. C.10. A general 
rectangular element at time τ of width ∆τ and amplitude i(τ) is shown in 
that figure. This element, however, acts like a shifted delta function 
(located at t = τ) a with strength (area) i(τ)∆τ. Thus, from the linearity  
and time shift invariance properties of the system, we have that the output, 
∆o, from this rectangular element is given by ( ) ( ) ( )o t i g tτ τ τ∆ ≅ ∆ −  

www.iran-mavad.com 
ایران مواد



C.2 Linear Time-Shift Invariant (LTI) Systems      483 

and so by superposition over all elements, we have the total output, o(t), 
due to the total input given by 

( ) ( ) ( )

( ) ( ) .

o t i g t

i g t d

τ τ τ

τ τ τ
+∞

−∞

≅ ∆ −

= −

∑

∫
 (C.20)

The convolution integral of Eq. (C.19) is a fundamental relationship for 
LTI systems. If we take the Fourier transform of this relationship we  obtain 
an even simpler result since, if we define the following Fourier transforms 
of the input, output, and impulse response functions, respectively: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

exp 2

exp 2

exp 2

I f i t ift dt

O f o t ift dt

G f g t ift dt

π

π

π

+∞

−∞

+∞

−∞

+∞

−∞

=

=

=

∫

∫

∫

 (C.21)

and if  the output and input are related through the convolution integral of 
Eq. (C.19), then it is easy to show that their Fourier transforms are related 
through [Fundamentals] 

( ) ( ) ( ) ,O f G f I f=  (C.22)

i.e. convolution in the frequency domain is just obtained by complex-
valued multiplication. In a similar fashion, deconvolution in the frequency 

example, we can write 

( ) ( )
( )

.
O f

G f
I f

=  (C.23)

In practice, however, such division must be done with care since noise 
may contaminate both the numerator and denominator and make the ratio 
unreliable. Often filters are used to desensitize the deconvolution process 
to such errors. A Wiener filter is a particular filter commonly used for 
deconvolution purposes in ultrasonic NDE. With that filter, Eq. (C.23) is 
replaced by 

domain is in principle accomplished by complex-valued division.  F or  
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Fig. C.12. An ultrasonic flaw measurement system. 

( ) ( ) ( )
( ) ( ){ }

*

2 22
,

max

O f I f
G f

I f I fε
=

+
 (C.24)

where ( )*  denotes the complex conjugate and ε is a small constant that is 
used to represent the noise level present. The quantity ( ){ }2

max I f  is a 
constant. It is the maximum value of the magnitude squared of the values 
of ( )I f present. In this form ε gives a measure of the noise as a fraction of 
the size of the signals present. Generally, small values such as 0.01ε = to 
0.05 work well for many ultrasonic problems. When 0ε → , Eq. (C.24) 
reduces to Eq. (C.23). Code listing C.1 gives a MATLAB function for 
implementing the Wiener filter of Eq. (C.24).The use of transfer functions 
such as ( )G f is very convenient, particularly when we have a series of 
connected LTI systems as shown in Fig. C.11 since the input and output of 
the entire system can be related through simply a product of the transfer 
functions of each subsystem, i.e. 

( ) ( ) ( ) ( ) ( )1 2 .NO f G f G f G f I f= ⋅⋅ ⋅  (C.25)

In the time domain, the relationship equivalent to Eq. (C.25) would be a 
series of nested convolution integrals. By working in the frequency domain 
we can avoid having to deal with multiple integrations and instead we need 
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 Code Listing C.1. A MATLAB function for the generation of a Wiener filter. 
 
  
function Y = Wiener_filter( O, I, e) 
% WIENER_FILTER provides a 1-D filter for desensitizing 
% division in the frequency domain (deconvolution) to noise. 
% The filter takes a sampled output spectrum ,O, and an  
% input spectrum, I, and computes Y = O*conj(I)/(|I|^2 + e^2*M^2) 
% where M is the maximum value of |I| and conj(I) is the 
% complex conjugate of I. The constant e is generally taken as 
% a constant to represent the noise level. Small values of e  
% such as e = 0.01 often work well for ultrasonic systems. 
%The calling sequence is: 
%Y = Wiener_filter(O,I,e); 
% 
M = max(abs(I)); 
Y = O.*conj(I)./((abs(I)).^2 + e^2*M^2); 

 
 
 
only a series of complex multiplications to obtain ( )O f  from the input. 
The time domain output, ( )o t , can then be obtained by an inverse Fourier 
transform. 

 As an example of such a cascade of LTI systems, consider an 
ultrasonic pitch-catch flaw measurement system, as shown in Fig. C.12. 
Let ( )iV f be the frequency components of the Thévenin equivalent input 
voltage of the pulser. This input then travels through the sending cable and 
drives the sending transducer which outputs a mechanical force, ( )tF f at 
its acoustic port. This force launches a wave into the specimen which then 
interacts with a flaw and in turn produces a driving force, ( )BF f , on the 
receiving transducer. This driving force is converted into electrical energy 
which is transmitted by the receiving cable back to the receiver, where it is 
amplified and output as the received flaw signal, ( )RV f . If we treat this 
entire measurement system as a series of  LTI systems, then we can write: 
 

( ) ( )
( )

( )
( )

( )
( ) ( )

( ) ( ) ( ) ( ) ,

R B t
R i

B t i

R A G i

V f F f F f
V f V f

F f F f V f

t f t f t f V f

=

=

 (C.26)
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where ( )Gt f  is the transfer function for the sound generation process 
(containing properties of the pulser, cabling, and sending transducer), 

( )Rt f  is the transfer function for the sound reception process (containing 
properties of the receiving transducer, cabling, and receiver), and ( )At f  is 
the transfer function describing the acoustic/elastic processes (wave 
propagation to the flaw, scattering from the flaw, and propagation from the 
flaw to the receiving transducer). We will see that it is possible to model 
and/or measure all of these transfer functions so that through Eq. (C.26) 
we have an ultrasonic measurement model of our entire ultrasonic system. 
The challenge, of course, is to obtain explicit expressions for the transfer 
functions in Eq. (C.26). Much of this book is devoted to just that task. 

C.3 References 

nd

C.2 Cheng DK (1959) Analysis of linear systems. Addison Wesley, Reading, PA  

Hill, New York, NY  

C.4 Exercises 

1. Consider a two port electrical system where 

( )
( )

( )
( )

1 211 12

1 221 22

.
V VT T
I IT T

ω ω
ω ω

⎧ ⎫ ⎧ ⎫⎡ ⎤⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

 

We wish to measure the transfer matrix components (as a function of 
frequency). This is easy to do if we first measure the inputs and outputs 
under open-circuit conditions at the output port since 2 0I = . Thus, if we let 
the voltages and currents be ( )1 1,oc ocV I and ( )2 2, 0oc ocV I =  we have 

1 1
11 21

2 2

, .
oc oc

oc oc

V IT T
V V

= =  
 

 

C.4 Papoulis A (1968) Systems and transforms with applications in optics. McGraw-

New York, NY  

New York, NY  
C.3 Gaskill JD (1978) Linear systems, transforms, and optics. McGraw-Hill, 

ed. John Wiley and Sons, C.1 Pozar DM (1998) Microwave engineering, 2 
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Fig. C.13. A measurement setup for obtaining the transfer matrix components of a 
two port system using different output terminations. 

Similarly, if under short- circuit conditions at the output port ( 2 0V = ) we 
measure the voltages and currents ( )1 1,sc scV I , ( )2 20,sc scV I=  we have 

1 1
12 22

2 2

, .
sc sc

sc sc

V IT T
I I

= =  

Now, perform these “measurements” in MATLAB for an unknown two 
port system, two_portX, which is written in terms of a MATLAB function 
which has the calling sequence: 
 
>> [ v1, i1, vt, it] = two_portX( V, dt, R, 'term'); 
 
The input arguments of two_portX are as follows. V is a sampled voltage 
source versus time, where the sampling interval is dt. R is an external 
resistance (in ohms). This source and resistance are connected in series to 
one end of the two port system as shown in Fig. C.13. The other end of the 
system can be either open-circuited or short-circuited. The string 'term' 
specifies the termination conditions. It can be either 'oc' for open-circuit or 
'sc' for short-circuit. The function two_portX then returns the “measured” 
sampled voltages and currents versus time: v1, i1, vt, it (Note: for open-
circuit conditions the function returns it = 0 and for short-circuit conditions 
vt = 0). 
 As a voltage source to supply the V input to two_portX use the 
MATLAB function pulserVT. For a set of sampled times this function 
returns a sampled voltage output that is typical of a “spike” pulser. Make a 
vector, t, of 512 sampled times ranging from 0 to 5 µsec, and call the 
pulserVT function with the following call sequence: 
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>> V = pulserVT(200, 0.05, 0.2, 12, t); 
 
For the resistance, take R = 200 ohms. Using Eq. (C.14), determine the 
four transfer matrix components and plot their magnitude and phase from 
zero to approximately 30 MHz. Note that the outputs of two_portX are all 
time domain signals but the quantities we wish to measure are all in the 
frequency domain. 
  
2. It is not physically possible to generate a delta function as the input of 
an LTI system to obtain its impulse response. However, it is possible to 
obtain the transfer function of an LTI system by deconvolution of a 
measured output with a known input as shown in Eq. (C.23). Consider a 
MATLAB function LTI_X that represents a “black box” LTI system. It 
can be evaluated in the form 
 
>> O =LTI_X(I, dt)  
 
Where I is a sampled time domain input (with sampling interval dt) and O 
is the time domain output. Use as an input for this LTI system the voltage 
output of the pulserVT function of problem 1 and obtain the transfer 
function of this system as a function of frequency by deconvolution. Plot 
the magnitude and phase (in degrees) of this transfer function from zero to 
approximately 30 MHz. To obtain the impulse response function from this 
transfer function we would have to compute its inverse Fourier transform. 
Is that possible with this function? 
  
3. Consider an LTI system which has as its transfer function 

( )
cos( / 40) 0 20

.
0

f f MHz
G f

otherwise
π < <⎧

= ⎨
⎩

 

Also, consider an input spectrum to this system given by 

( )
1 / 20 0 20

.
0

f f MHz
I f

otherwise
− < <⎧

= ⎨
⎩

 

We expect the output of this system will then have the spectrum 

( ) ( ) ( ).O f G f I f=  

However, if we add noise to these functions then given O and I it may not 
be possible to reliably obtain G by simple division and we must use some 
filter instead such as the Wiener filter. The MATLAB function noisy will 
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generate noisy sampled versions of both the O and I given previously over 
a range 0-40 MHz. The function call is: 
   
>> [O, I] = noisy(  ) ; 
 
Plot both O and I from 0 to 40 MHz to verify those functions are correct 
(the noise you will see is very small) and then attempt to obtain G by direct 
division, i.e. compute 

( ) ( )
( )

O f
G f

I f
=  

and plot your results 0-40 MHz. Then use a Wiener filter instead to find G 
and plot your results. Take ε = 0.01. Are the results sensitive to ε? Is there 
any other way (besides using the Wiener filter) that you can get the “right” 
answer? 
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D Wave Propagation Fundamentals 

D.1 Waves in a Fluid 

In immersion testing the waves are generated by a transducer radiating 
sound into a fluid. Sound propagation in the fluid can be modeled by 
considering the fluid to be an ideal (viscous-free) compressible fluid. In 
this case, an element of the fluid only has pressures (compressive normal 
stresses) acting on its surfaces. If a wave in the fluid generates pressure 
changes in the x1-direction, as shown in Fig. D.1, then we can relate those 

to a small element as shown in Fig. D.1 [Fundamentals], [D.1]. We find 
from 

x xF ma=∑  (D.1a)

that 
2

1
2 3 1 2 3 1 1 2 3 1 2 3 2

1

,uppdx dx p dx dx dx f dx dx dx dx dx dx
x t

ρ
⎛ ⎞ ∂∂

− + + =⎜ ⎟∂ ∂⎝ ⎠
 (D.1b)

which gives the equation of motion of the fluid in the x1-direction as 
2

1
1 2

1

,up f
x t

ρ ∂∂
− + =

∂ ∂
 (D.1c)

where p is the pressure, ρ is the density of the fluid, 1u  is the displacement 
in the 1x -direction and 1f  is the body force (force/unit volume) acting on 

2 3
directions we find the equations of motion: 
 
 
 
 

changes to the motion of the fluid by simply applying Newton’s third law 

the fluid. Similarly, if we consider the pressure changes in the  x , x  
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Fig. D.1. The pressures and body force acting on an element of an ideal, 
compressible fluid. Only the pressure changes in the x1-direction are shown 
explicitly. 

2
2

2 2
2

2
3

3 2
3

.

up f
x t

up f
x t

ρ

ρ

∂∂
− + =

∂ ∂

∂∂
− + =

∂ ∂

 (D.2)

These three equations of motion of the fluid can also be written in vector 
form as 

2

2 ,p
t t

ρ ρ∂ ∂
− + = =

∂ ∂
u vf∇  (D.3)

where / t= ∂ ∂v u  is the velocity of the fluid. If we assume that the fluid is 
an ideal compressible fluid, then the pressure is related to the relative 
volume changes, /dV V , occurring in the fluid through the constitutive 
equation 

,dVp
V

λ= −  (D.4)

where λ  is the bulk modulus of the fluid. For water, for example, the bulk 
modulus is approximately 2 GPa. These relative volume changes can be 
written in terms of the displacements, so we also have 
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Fig. D.2. 1-D waves traveling in a fluid. 

31 2

1 2 3

.uu up
x x x

λ λ
⎛ ⎞∂∂ ∂

= − ⋅ = − + +⎜ ⎟∂ ∂ ∂⎝ ⎠
u∇  (D.5)

To place this constitutive equation in the equations of motion, we first take 
the divergence ( ⋅∇  ) of Eq. (D.3) which gives 

( )2
2

2 ,bp f
t

ρ
∂ ⋅

−∇ − =
∂

u∇
 (D.6)

where bf = − ⋅ f∇ and 2 2 2 2 2 2 2
1 2 3/ / /x x x∇ = ∂ ∂ + ∂ ∂ + ∂ ∂  is the Laplacian 

operator. We then can place Eq. (D.5) into Eq. (D.6) to obtain the 
inhomogeneous wave equation for the pressure given by 

2
2

2 2

1 ,b
pp f

c t
∂

∇ − = −
∂

 (D.7)

where /c λ ρ=  is the wave speed of compressional waves (also called 
P-waves) in the fluid. For water, for example, c = 1480 m/sec, 
approximately. In NDE tests the ultrasonic waves that are generated are 
freely traveling so that they must satisfy the homogeneous wave equation, 
i.e. where 0bf = . 

D.2 Plane Waves in a Fluid 

If we consider 1-D disturbances of the fluid where ( )1,p p x t= , then these 
disturbances must satisfy the 1-D homogeneous wave equation: 
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Fig. D.3. A plane wave traveling along the x1-direction. 

 
Fig. D.4. A plane wave traveling in a general direction, n, in three dimensions. 

 

2 2

2 2 2
1

1 0,p p
x c t

∂ ∂
− =

∂ ∂
 (D.8)

which has general solutions of the form ( ) ( )1 1/ /p f t x c g t x c= − + + . 
The f  function represents a wave traveling in the plus x1-direction while 
the g  function represents a wave traveling in the negative x1-direction, as 
shown in Fig. D.2. Consider the pressure wave ( )1 /p f t x c= − . The 
pressure in this 1-D wave is constant on the moving plane 1 /t x c constant− = , 
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so this is a plane wave traveling in the fluid (see Fig. D.3). Now, consider 
this plane wave traveling along an 1x′ -axis which is oriented along the n 
direction as shown in Fig. D.4 (n is a unit vector). Then this plane wave 
can be written as 

( )
( )

1 /

/ ,

p f t x c

f t c

′= −

= − ⋅x n
 (D.9)

which is the general expression for a plane wave traveling in the n-
direction in three dimensions, where here ( )1 2 3, ,x x x=x . It can be easily 
verified that this 3-D plane wave satisfies the full 3-D homogeneous wave 
equation for the fluid. Plane wave solutions are important types of waves 
since they can be used to model many of the wave propagation and wave 
interaction problems we encounter in ultrasonic NDE. An important 
special type of plane wave solution is a harmonic plane wave. For 
example, we can write a 1-D harmonic wave of frequency f (measured in 
Hz = cycles/sec) traveling in the x-direction as 

( ) ( )exp 2 / .p F f if x c tπ= ⎡ − ⎤⎣ ⎦  (D.10)

As discussed in Appendix A, such harmonic wave solutions can be used to 
synthesize an arbitrary traveling plane wave since we have the Fourier 
transform relationship 

( ) ( ) ( )/ exp 2 / ,f t x c F f if x c t dfπ
+∞

−∞

− = ⎡ − ⎤⎣ ⎦∫  (D.11)

where ( )F f is the Fourier transform of the function ( )f t . Thus, there is 
no loss in generality in considering harmonic plane wave solutions. We 
can write such 1-D harmonic plane waves in a number of forms. For 
example, we have 

( ) ( )
( ) ( )

( ) ( )

( ) ( )

exp 2 /

exp

2exp

exp / ,

F f if x c t

F f ik x ct

iF f x ct

F i x c t

π

π
λ

ω ω

⎡ ± − ⎤⎣ ⎦
= ⎡ ± − ⎤⎣ ⎦

⎡ ⎤= ± −⎢ ⎥⎣ ⎦
= ⎡ ± − ⎤⎣ ⎦

 (D.12)
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where 2 fω π=  is the circular frequency (in rad/sec), /k cω= is the wave 
number (in rad/length) and 2 / /k c fλ π= =  is the wave length (in length/ 
cycle). The plus sign is for plane waves traveling in the positive x-direction 
and the minus sign is for waves traveling in the negative x-direction. A 
harmonic plane wave traveling in the plus n-direction in three dimensions 
can also be written in a number of forms. The most commonly used forms 
seen in the literature are  

( ) ( )
( ) ( )

exp

exp ,

F ik i t

F i i t

ω ω

ω ω

⋅ −

⋅ −

n x

k x
 (D.13)

where k=k n is a vector wave number. 
 Note, however, in all our forms we have used the time dependent 

factor ( )exp i tω− . Other authors may assume a factor ( )exp i tω+ or 
( )exp j tω+ instead (i = j = 1− ) . In that case, we must also change the 

( ) ( )exp 2 / )F f if x c tπ⎡ − + ⎤⎣ ⎦  represents a plane wave traveling in the 
positive x-direction.  

Also note that the last form in Eq. (D.13) can alternatively be 
written as 

( ) ( )exp .x y zF i k x k y k z tω ω⎡ ⎤+ + −⎣ ⎦  (D.14)

But we must have 2 2 2 2 2 2/x y zk k k k cω+ + = =  for Eq. (D.14) to represent a 
plane wave solution of the wave equation so we must have 

2 2 2
z x yk k k k= ± − −  where the plus sign would represent a plane wave 

traveling in three dimensions in the positive z-direction while the minus 
sign would give a wave traveling in the negative z-direction. In Chapter 8 
these forms arise when we discuss the use of plane waves to synthesize the 
wave field of an ultrasonic transducer. 

D.3 Waves in an Isotropic Elastic Solid 
 
The equations of motion for waves in an isotropic elastic solid can be 
obtained in the same manner as for the fluid. They are [Fundamentals], 
[D.1-D.3]: 

signs appropriately on the spatial terms as well. For example, 
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( )
23

2
1

1,2,3 ,ji i

j j

u i
x t
τ

ρ
=

∂ ∂
= =

∂ ∂∑  (D.15)

where ijτ  are the stresses, iu  the displacement components in the ix -direct-
ions, and ρ  is the density of the solid. The constitutive equations for an 
isotropic elastic solid are more complicated than that of a fluid. They are 
given by generalized Hooke's law: 

1 1 2
11 12

1 2 1

32 1
22 13

2 3 1

3 32
33 23

3 3 2

2

2

2

u u u
x x x

uu u
x x x

u uu
x x x

τ λ µ τ µ

τ λ µ τ µ

τ λ µ τ µ

⎛ ⎞∂ ∂ ∂
= ∆ + = +⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞∂∂ ∂
= ∆ + = +⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂∂
= ∆ + = +⎜ ⎟∂ ∂ ∂⎝ ⎠

 (D.16)

only two independent material constants. Some authors instead may use as 
ν  is 

by 

( )( )

( )

1 1 2

.
2 1

E

E

νλ
ν ν

µ
ν

=
+ −

=
+

 (D.17)

If one places the constitutive equations into the equations of motion we 

( ) ( )
2

2
2 0,

t
µ λ µ ρ ∂

∇ + + ⋅ − =
∂

uu u∇ ∇  (D.18)

where u is the displacement vector. This vector will be written in terms of 
its scalar components as ( ) ( )1 2 3, , , ,x y zu u u u u u= ≡u .  

the independent constants E,ν , where E is Young’s modulus and 

obtain  Navier’s equations for the displacements. In vector form we have 

where λ, µ  are the Lame’ constants. For an isotropic elastic solid there are 

Poisson’s ratio. In terms of these constants the Lame’ constants are given 

www.iran-mavad.com 
ایران مواد



498      Wave Propagation Fundamentals 

 
Fig. D.5. The displacements for P-waves and S-waves traveling in the n-direction 
in an isotropic elastic solid. 

D.4 Plane Waves in an Isotropic Elastic Solid 
 
Navier’s equations are not wave equations, but they do have plane wave 
solutions. However, unlike the fluid case, there are actually two types of 
plane waves possible in an isotropic, elastic solid. They are called plane  
P-waves and plane S-waves. The P-waves are also referred to as pressure, 
compressional, primary, longitudinal (L), dilatational, or irrotational 
waves. Similarly, S-waves are also called shear, secondary, transverse (T), 
distortional, equivoluminal, or rotational waves. Both of these waves are 
bulk waves since they travel throughout the volume of a solid. A bulk  
P-wave is by far the most commonly used type of wave in NDE testing. If 
one places a plane wave solution of the form ( )/ pU f t c= − ⋅u n x n in 
Navier’s equation (see Fig. D.5), that equation will be satisfied if  
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( )
( )( )

12 .
1 1 2p

E
c

νλ µ
ρ ν ν ρ

−+
= =

+ −
 (D.19)

( / st c− ⋅x n

( )
.

2 1s
Ec µ

ρ ν ρ
= =

+
 (D.20)

 
The quantities ,p sc c  are just the wave speeds for plane bulk P-waves and 
S-waves, respectively. For a structural material such as steel, for example, 
the P-wave speed is approximately 5900 m/sec while the S-wave speed is 
about 3200 m/sec, both of which are considerably larger than the wave 
speed for water (see Table D.1 for wave speeds and other properties of 
some selected materials). From Eqs. (D.19) and (D.20) we can see that the 

( )
( )
2 1

,
1 2

p

s

c
c

ν
ν

−
=

−
 (D.21)

which for many structural materials gives a ratio of about two to one. 

Table D.1. Acoustic properties of some common materials. 

Material P-wave  
speed 
[m/s x 103] 

S-wave  
speed 
[m/sx103] 

Density 
[kgm/m3x103] 

Impedance 
(P-wave) 
[kgm/(m2-s) x 106] 

Air        0.33           --         0.0012        0.0004 
Aluminum        6.42                 3.04         2.70          17.33 
Brass        4.70          2.10         8.64      40.60 
Copper        5.01          2.27         8.93      44.60 
Glass        5.64          3.28         2.24      13.10 
Lucite        2.70          1.10         1.15        3.10 
Nickel        5.60          3.00         8.84      49.50 
Steel, mild        5.90          3.20         7.90      46.00 
Titanium        6.10          3.10         4.48      27.30 
Tungsten        5.20          2.90       19.40    101.00 
Water        1.48            --         1.00        1.48 

 

)
u d= ×UIf we instead assume a plane wave solution that has the form 

n g
 order to satisfy Navier’s equations we find 

Fig.  D.5(b)), in, w here d is an arbitrary unit vector (see 

ratio of these wave speeds is just a function of Poisson’s ratio, i.e. 
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Fig. D.6. The polarizations of (a) P-waves, and (b) vertically polarized (SV) shear 
waves and horizontally polarized (SH) waves. 

As shown in Fig. D.5 (a), the direction of the displacement in the 
P-wave is along the direction of propagation, n, while for an S-wave 
(Fig. D.5 (b)), the displacement lies in the plane of the wave front, i.e. 
perpendicular to n. Thus, P-waves are said to have longitudinal polari-
zations while S-wave are said to have transverse polarizations. Figure D.6 
shows the polarizations for P-waves and S-waves and also shows that if 
the polarization (direction of motion) of the plane shear wave lies in a 
vertical plane, it is called an SV-wave (vertically-polarized shear), while 
 if the polarization lies in a horizontal plane it is called an SH-wave 
(horizontally-polarized shear). In general, an S-wave may have both vertical 
and horizontal polarizations combined. 

To solve wave propagation problems in elastic solids, many 
authors represent the displacement in terms of potential functions in the 
form 

 

,φ= + ×u ψ∇ ∇  (D.22)

where φ  is a scalar potential and ( ) ( )1 2 3, , , ,x y zψ ψ ψ ψ ψ ψ= ≡ψ is a vector 
potential. The advantage of using such potentials is that in order to satisfy 
Navier’s equations the potentials must satisfy the ordinary wave equations: 
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2
2

2 2

2
2

2 2

1 0

1 0.

p

s

c t

c t

φφ ∂
∇ − =

∂

∂
∇ − =

∂
ψψ

 (D.23)

Equation (D.23) shows that the scalar potential, φ , represents P-waves 
while the vector potential, ψ , represents S-waves. In solving wave problems 
with potentials if the disturbance is two-dimensional where the displace-
ments ( ),x yu u  are the only non-zero displacements and they only depend 
on the x- and y-coordinates, only two potentials are needed: 

( )
( )
, ,

, , , 0z x y

x y t

x y t

φ φ

ψ ψ ψ ψ

=

= = =
 (D.24)

and the displacements are given by 

0.

x

y

z

u
x y

u
y x

u

φ ψ

φ ψ

∂ ∂
= +

∂ ∂
∂ ∂

= −
∂ ∂

=

 (D.25)

In this case the stresses are also given by 
2 2

2 2
2

2 2
2 2

2

2 2 2

2 2

2

2

2

, 0

xx

yy

xy

zz xx yy xz yz

x y y

x y x

x y y x

ψ φτ µ κ φ

ψ φτ µ κ φ

φ ψ ψτ µ

τ ν τ τ τ τ

⎡ ⎤⎛ ⎞∂ ∂
= ∇ + −⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞∂ ∂
= ∇ − +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

⎡ ⎤∂ ∂ ∂
= + −⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

⎡ ⎤= + = =⎣ ⎦

 (D.26)

where /p sc cκ = . 
 For a harmonic plane P-wave traveling in the positive x-direction, 

as shown in Fig. D.7 (a), we can express the wave either in terms of its 
potential,φ , displacement, xu , velocity, xv or stress, xxτ : 
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Fig. D.7. The displacement, velocity and stress (a) for a plane P-wave, and (b) for 
a plane S-wave, both traveling in the x-direction. 

( )
( )
( )
( )

exp

exp

exp

exp

p

x x p

x x p

xx xx p

ik x i t

u U ik x i t

v V ik x i t

T ik x i t

φ ω

ω

ω

τ ω

= Φ −

= −

= −

= −

 (D.27)

where /p pk cω=  is the wave number for P-waves and the amplitudes are 
all related: 

x p

x x

xx p x

U ik
V i U
T c V

ω
ρ

= Φ

= −
= −

  (D.28)

 
For a harmonic plane S-wave we can also use the potential, ψ , displace-
ment, su , velocity, sv , or stress, xsτ , to describe the wave and we have 
instead (Fig. D.7 (b)): 
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( )
( )
( )
( )
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exp
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s

s s

s s

xs xs s

ik x i t

U ik x i t

V ik x i t

T ik x i t

ω

ω

ω

τ ω

= Ψ −

= −

= −

= −

ψ t

u s

v s
 (D.29)

where t is an arbitrary unit vector, xe  is a unit vector in the x-direction, 
( ) /x x= × ×s e t e t  is a unit vector in the plane of the wave front, and 

/s sk cω= is the wave number for shear waves. In this case the amplitude 
relations are 

s s

s s

xs s s

U ik
V i U
T c V

ω
ρ

= Ψ
= −

= −
 (D.30)

To obtain these relations in the P-wave case we have used the fact that xu  
is the only non-zero displacement component in the wave and the only 
corresponding velocity component is /x xv u t= ∂ ∂ . In this case the 

( ) ( )
( )( )

2

1
2

1 1 2

.

x x
xx

x
p

Eu u
x x

uc
x

ν
τ λ µ

ν ν

ρ

−∂ ∂
= + =

∂ + − ∂

∂
=

∂

 (D.31)

Similarly, in the S-wave case we have used the fact that the only non-zero 
displacement component in the wave is su , the displacement in the  
s-direction,  and so the only corresponding velocity component is also 

/s sv u t= ∂ ∂ . In this case the constitutive equation gives 

2 .

s
xs

s
s

u
x

uc
x

τ µ

ρ

∂
=

∂
∂

=
∂

 (D.32)

constitutive equation for the solid (generalized Hooke’s law) gives 
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Fig. D.8. A plane P-wave incident on a planar interface between two solids. 

D.5 Reflection/Refraction of Plane Waves – Normal 
Incidence 

As a simple but important example of the use of these plane wave relations, 
consider the reflection and transmission of a plane harmonic P-wave that 
strikes a planar interface between two solids at normal incidence as shown 
in Fig. D.8. The density and compressional wave speed in solids one and 
two are ( )1 1, pcρ , and ( )2 2, pcρ , respectively. The displacements of the inci-
dent, reflected, and transmitted plane waves are given by 

( )
( )

( )

1

1

2

exp

exp

exp

x i

x r

x t

u U ik x i t

u U ik x i t

u U ik x i t

ω

ω

ω

= −

= − − −

= −

 (D.33)

where 1 1 2 2/ , /p pk c k cω ω= = . We have taken the reflected wave expression 
with a minus sign so that rU  represents the amplitude of a plane wave 
traveling in the –x-direction with polarization vector in the direction of 
propagation, i.e. the vector displacement of the reflected wave would be 
given by ( )1expr r rU ik i tω= ⋅ −u e e x  where r x= −e e , xx=x e . At the 
interface x = 0 the displacement xu and the stress 2 /xx p xc u xτ ρ= ∂ ∂  must 
be continuous so we find 
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Fig. D.9. The reflection coefficient (solid line) and transmission coefficient (dashed 
line) versus the impedance ratio 1 2/a az z . 

 

Continuity of displacement: i r tU U U− =   (D.34)

 

Continuity of stress: 1 1 1 1 2 2p i p r p tc U c U c Uρ ρ ρ+ =  (D.35)

Solving Eqs. (D.34) and (D.35) simultaneously we find 

1 1

1 1 2 2

2 2 1 1

1 1 2 2

2 pt
u

i p p

p pr
u

i p p

cUT
U c c

c cUR
U c c

ρ
ρ ρ

ρ ρ
ρ ρ

= =
+

−
= =

+

 (D.36)

where ( ),u uT R are the plane wave transmission and reflection coefficients 
(based on ratios of displacements). From Eq. (D.36) it follows that these 
reflection and transmission coefficients are dependent only on the specific 
acoustic impedances 1 1 1 2 2 2,a a

p pz c z cρ ρ= =
of these coefficients versus 1 2/a az z . 

. Figure D.9 plots the behavior 
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The limit 1 2/a az z → ∞  would correspond to the reflection from a 
free surface. In that case we see 1R → −  so that the total displacement 

i rU U−  at the interface in the first medium would be double that of the 
incident wave. The other limit where 1 2/ 0a az z →  would correspond to the 
wave incident on a very rigid boundary. In that case 1R →  so the total 
displacement at the interface in the first medium would be zero. For the 
special case where the acoustic impedances of the two solids are matched 
( 1 2/ 1a az z = ), we see that 0, 1R T= =  so that there is no reflected wave and 
the incident wave passes through the interface with its amplitude unchanged.  

 These same reflection and transmission coefficients could be used 
for the reflection of a plane S-wave at normal incidence to a solid-solid 
interface if we simply replace the compressional wave speeds by the 
corresponding shear wave speeds, i.e. 

1 1

1 1 2 2

2 2 1 1

1 1 2 2

2

.

t s
u

i s s

s sr
u

i s s

U cT
U c c

c cUR
U c c

ρ
ρ ρ
ρ ρ
ρ ρ

= =
+

−
= =

+

 (D.37)

The coefficients could also be used for a fluid-fluid or fluid-solid interface 
(as encountered in immersion testing) by appropriately replacing the 
densities and wave speeds in Eq. (D.36) or Eq. (D.37). However, note that 
these coefficients are based on displacement ratios and if we want to use 
the ratios of other quantities we may have to make appropriate adjustments. 
To use velocity ratios, for example, we do not need to make any changes 
since 

.

r r r
v u

i i i

t t t
v u

i i i

V i U UR R
V i U U
V i U UT T
V i U U

ω
ω
ω
ω

−
= = = =

−
−

= = = =
−

 (D.38)

Equations (D.31) and (D.32) show that 2 /c u xτ ρ= ∂ ∂  is valid for either 
plane P-waves or S-waves in a solid if we use the appropriate τ , c and u in 
this relationship. Similarly, for a fluid we have 2 /p c u xρ= − ∂ ∂ . As mentioned 
previously, we combined these relations with the relationship between 
displacement and velocity, /v u t= ∂ ∂  to obtain the various plane wave 
amplitude relationships given by Eqs. (D.28) and (D.29). For a plane wave  
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traveling in the + x-direction with a stress amplitude, T, and velocity 
amplitude, V, we found T cVρ= − . For a pressure amplitude, P,  we found 
P cVρ= . Obviously, we can use these relations for the incident and trans-
mitted waves since they are both traveling in the + x-direction. However, 
because we placed the minus sign on the reflected wave in Eq. (D.33), we 
can also use these same relations for the reflected wave as well. Thus, if 
we define, for example, reflection and transmission coefficients based on 
stress ratios we would find (also using Eq. (D.38)) 

1 1 2 2 1 1

1 1 1 1 2 2

2 2 2 2 2 2

1 1 1 1 1 1 2 2

2

p r p p
u

p i p p

p t p p
u

p i p p p

c V c c
R R

c V c c
c V c c

T T
c V c c c

τ

τ

ρ ρ ρ
ρ ρ ρ

ρ ρ ρ
ρ ρ ρ ρ

− −
= = =

− +

−
= = =

− +

 (D.39)

which are also valid for reflection and transmission coefficients based on 
pressure ratios since there are then changes of signs in the coefficients 
shown in Eq. (D.39) in both the numerator and denominator that cancel. In 
the SI system the units of specific acoustic impedance are kgm/(m2-sec). 
This set of units is also called a Rayl, i.e. 1 Rayl = 1 kgm/(m2-sec). 

For water we have 61.5 10a
wz = ×  kgm/(m2 –sec) = 1.5 MRayls and 

for steel 646.0 10a
sz = ×  kgm/(m2 –sec) = 46 MRayls, so that for a plane 

wave traveling in water at normal incidence to a water-steel interface  uR  
= –0.937, uT = 0.06. Because of this high impedance mismatch, we see that 
in immersion testing most of an ultrasonic beam will be reflected back into 
the water at normal incidence.  

D.6 Reflection/Refraction of Plane Waves – Oblique 
Incidence 

When plane waves are incident on a plane interface at oblique incidence, 
there are additional aspects of the interactions that one does not see with 
the normal incidence case. Consider, for example, the simple problem of a 
plane wave at oblique incidence to a plane interface between two fluids, as 
shown in Fig. D.10, where 1 1, pcρ  are the density and compressional wave 
speed of medium 1 and 2 2, pcρ  are the corresponding density and wave 
speed for medium 2. Although this problem does not correspond to one  
we would likely see in NDE  testing, most of the physics involved in  more  
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Fig. D.10. A plane wave incident on an interface between two fluids. 

complicated plane wave interactions at fluid-solid and solid-solid interfaces 
are the same as in this problem [Fundamentals]. Here, the total pressure, 

1p , due the incident and reflected waves in medium 1 and the total pressure, 
2p , due to the transmitted waves in medium 2 are given by 

( )
( )
( )

1 1

1

2 2

exp sin cos

exp sin cos

exp sin cos .

i p i i

r p r r

t p t t

p P ik x y i t
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θ θ ω

θ θ ω

⎡ ⎤= + −⎣ ⎦
⎡ ⎤+ − −⎣ ⎦
⎡ ⎤= + −⎣ ⎦

 (D.40)

From the equations of motion we have 

y
p i v
y

ωρ∂
− = −

∂
 (D.41)

 so that the total velocity, yv , in each medium is 
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 (D.42)

 At the interface (y = 0), the boundary conditions are 
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( ) ( )
1 2

1 2y y

p p

v v

=

=
 (D.43)

so that we find (dividing out all common terms) 
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 (D.44)

For these boundary conditions to be satisfied for all x along the boundary 
we must have the phase terms in Eq. (D.44) all match, which gives 

1 1 2sin sin sin .p i p r p tk k kθ θ θ= =  (D.45)

The first pair of these equations gives 

i rθ θ=  (D.46a)

while the second pair gives 

1 2

sin sin .i t

p pc c
θ θ

=  (D.46b)

Equation (D.46a) shows that the angle of incidence equals the angle of 
reflection while Eq. (D.46b) is a statement of Snell’s law for the 
transmitted angle in terms of the incident angle. Applying these phase 
matching conditions to Eq. (D.44), we obtain 

1 1 1 1 2 2

cos cos cos .

i r t

i i r i t t

p p p

P P P
P P P

c c c
θ θ θ

ρ ρ ρ

+ =

− =
 (D.47)

These equations can be solved for the transmission and reflection coeffi-
cient (in terms of pressure) given by: 
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2 2
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or, equivalently, in terms of velocity ratios (using P cVρ= ) 
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 (D.49)

These coefficients are functions of the acoustic impedances of the two 
media and the incident angle, iθ , since by Snell’s law 

2
22 2

2
1

cos 1 sin 1 sin .p
t t i

p

c
c

θ θ θ= − = −  (D.50)

At normal incidence we see that these results simply reduce to those found 
previously for that special case.  

 Equation (D.50) shows that when 1 2sin /i p pc cθ <  the cos tθ  term 
is real and both the reflection and transmission coefficients are merely real 
numbers. This condition is always true when the wave speed for the 
second medium is slower than that of the first medium since in that case 

1 2/ 1p pc c > . For the case when the second medium has a faster wave speed, 
however, the cosine term will only be real for a range of incident angles 
0 crθ θ≤ ≤ , where 

( )1
1 2sin /cr p pc cθ −=  (D.51)

is called the critical angle. For incident angles exceeding this critical 
angle, the reflection and transmission coefficients will become complex. In 
fact these coefficients will also become frequency dependent. To see this, 
consider Eq. (D.40). From that equation we see that the only exponential 
term affected by the critical angle is in the transmitted wave pressure term 
where cos tθ  appears. That term is 

( )2 2exp sin cos / .t t t pp P i x y c i tω θ θ ω⎡ ⎤= + −⎣ ⎦  (D.52)
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Fig. D.11. (a) The incident wave front, showing its propagation in a time ∆t, and 
its apparent wave speed 1 / sinp ic c θ=  along the interface ; (b) the corresponding 
reflected wave front and its apparent wave speed 1 / sinp rc c θ=  along the interface; 
(c) the transmitted wave front and its apparent wave speed 2 / sinp tc c θ=  along 

all three waves. 

Beyond the critical angle we can let 
2

22 2
2

1

cos sin 1 sin 1p
t t i

p

c
i i

c
θ θ θ= ± − = ± −  (D.53)

and Eq. (D.52) becomes 
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 (D.54)

where 
2

2 2
2

1

sin 1p
i

p

c
c

γ θ= −  is a real constant and 2 1/ sin / sinp t p ic c cθ θ= =  

is the apparent wave speed along the interface of  all the waves (incident, 
reflected, and transmitted) as shown in Fig. D.11. From Eq. (D.54) the 
transmitted pressure will be a wave traveling along the interface with wave 
speed c and an amplitude that varies exponentially in y. However, this 
amplitude physically must decay to zero as y becomes infinitely large for 
all  frequencies, ω , both  positive  and  negative,  so  we  must  choose  the 
 

the interface. By Snell’s law, the wave speed, c, along the interface is the same for 
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Fig. D.12. An inhomogeneous wave traveling along the interface. 

positive sign in Eq. (D.54) for 0ω >  and the negative sign in Eq. (D.54) 
for 0ω < , i.e. we must let 

2
22 2

2
1

cos sgn sin 1 sgn sin 1p
t t i
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i i

c
θ ω θ ω θ= − = −  (D.55)

where 

1 0
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1 0
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ω
ω
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 (D.56)

With this choice then the transmitted pressure is given by 
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 (D.57)

which represents an inhomogeneous wave traveling along the interface and 
decaying exponentially into the second medium as shown in Fig. D.12. 
Beyond the critical angle, both the transmission and reflection coefficients 
are complex and frequency dependent because the cos tθ  appearing in 
those coefficients is given by Eq. (D.55). When we consider an incident 
plane pulse and use these reflection and transmission coefficients and 
Fourier transforms to obtain the reflected and transmitted pulses at the 
interface, the frequency dependency in these coefficients will lead to 
reflected and transmitted waves that do not have the same shape as the 
incident waves, a phenomenon called pulse distortion. Note that below the 
critical  angle, a  reflected  or transmitted  wave  pulse  will  have  different 
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Fig. D.13. A plane wave in a fluid incident on a fluid-solid interface at oblique 
incidence. 

amplitudes from the incident wave but will have exactly the same shape 
waveform as that of the incident wave.  

 Although we have only considered a fluid problem here, the behavior 
of plane waves at solid interfaces is very similar. Consider, for example, 
the reflection and transmission of a plane wave in a fluid at a fluid-solid 
interface, as would be encountered in immersion testing (Fig. D.13).The 
main difference between this case and the fluid-fluid case just considered 
is that the plane P-wave in the fluid generates both plane P- and SV-waves 
in the solid. The generation of a wave type by a different wave type is 
called mode conversion. The angles of each of the waves are given here by 

the fluid equal to the incident P-wave angle, as shown in Fig. D.13, and we 
have 

1 2 2

1 2 2

sin sin sin ,p p s

p p sc c c
θ θ θ

= =  (D.58)

where 1pc  is the compressional wave speed of the fluid and 2 2,p sc c  are the 
compressional and shear wave speeds of the solid, respectively. Another 
difference from the fluid-fluid problem is that in this case there can be two 
critical angles. Above the first critical angle ( ) ( )1

1 1 21
sin /p cr p pc cθ θ −= =  

the transmitted P-wave becomes an inhomogeneous P-wave traveling 
along the interface and there is only a transmitted SV-wave, as shown in 
Fig. D.14 (a). Such a  critical angle will exist as long as the  compressional  
 

generalized Snell’s law so that we have the angle of the reflected P-wave in 
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Fig. D.14. (a) The case when the incident angle is greater than the first critical 
angle and (b) the case when the incident angle is greater than the second critical 
angle. 

wave speed of the solid is larger than the compressional wave speed of the 
fluid ( 2 1p pc c> ), which is satisfied for water and most structural materials. 
Above the second critical angle ( ) ( )1

1 1 22
sin /p cr p sc cθ θ −= = the SV-wave 

also becomes an inhomogeneous wave as shown in Fig. D.14 (b). This 
critical angle will exist if the shear wave speed in the solid is larger than 
the compressional wave speed of the fluid ( 2 1s pc c> ), which again is nor-
mally satisfied for water and most common structural materials. 

 The fluid-solid interface problem can be solved in manner similar to 
the fluid-fluid problem to obtain the plane wave reflection and transmission 
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Fig. D.15. The polarization directions chosen for the reflected and transmitted 
waves. 

coefficients. The transmission coefficients, for example, (based on velocity 
ratios) are given by: 
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 (D.59a)

with 
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 (D59.b)

Both transmission coefficients are given in the form ;
12T α β , which denotes a 

transmission from medium 1 to medium 2 of a plane wave of type α 
( ),P SVα = due to an incident plane wave of type β ( )Pβ = . The signs of 

 

these coefficients  depend on the specific choice  made for the  polarization 
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Fig. D.16. The magnitude of the plane wave transmission coefficients at a water-
steel interface. 

 
Fig. D.17. The magnitude of the plane wave transmission coefficients at a water-
steel interface for incident angles below the second critical angle. 
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Fig. D.18. The phase (in radians) versus incident angle of the transmission 
coefficients at a water-steel interface. 

directions of the transmitted P- and SV-waves. Here, the polarization 
directions are chosen as shown in Fig. D.15. When the shear wave speed 

2 0sc → , ;
12 0SV PT →  and ;

12
P PT  is the same transmission coefficient found 

previously for the fluid-fluid problem (see Eq. (D.49)). Figure D.16 shows 
a plot of the magnitude of these transmission coefficients versus the 
incident angle for a water-steel interface. Because of the relatively large 
values of these coefficients near the second critical angle, it is useful to 
consider only angles below that second critical angle, which is the range of 
most interest anyway since beyond the second critical angle there are no 
waves transmitted into the solid. Figure D.17 shows this expanded plot. 
The transmitted shear wave transmission coefficient is zero at normal 
incidence (incident angle = 0) where there is no mode conversion and 
increases almost linearly until near the first critical angle. The transmitted 
P-wave coefficient is small at normal incidence because of the large 
impedance mismatch between the water and steel and is almost constant 
until near the first critical angle. For angles near the first critical angle, 
both coefficients change rapidly in their magnitudes. Figure D.18 shows 
the corresponding behavior of the phase of the transmission coefficients 
for angles below the second critical angle. The phase of the transmitted P-
wave is zero below the first critical angle because the coefficient is real. 
There is a phase jump of π radians at an incident angle of about 
18.0 degrees (Fig. D.18) where the  transmission coefficient changes  sign. 
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Fig. D.19. An angle beam transducer setup. 

The phase of the transmitted SV-wave is π radians below the critical angle 
because the transmission coefficient is real but negative, i.e. the velocity of 
the transmitted wave is opposite to the assumed polarization direction 
shown in Fig. D.15.  

As discussed in Appendix E, in angle beam testing a P-wave 
transducer is placed on a solid wedge which in turn is in contact with a 
solid that is to be inspected (see Fig. D.19). In this case a thin fluid 
couplant layer exists between the wedge and the underlying solid to 
guarantee that there is a good acoustic coupling between the wedge and the 
solid. If we neglect the thickness of the couplant layer then we can model 
this setup as two elastic solids in “smooth” and direct contact with each 
other where the shear stress must vanish at the wedge-solid boundary. In 
this case the transmission coefficients are given by [Fundamentals] 

( )( )

( )

2 2
1 2 1;

12
1 2

2
2 1 2 1;

12
1 2

2cos 1 2sin 1 2sin

4sin cos cos 1 2sin

p s sP P

s p p sSV P

T

T

θ θ θ

θ θ θ θ

− −
=

∆ + ∆

− −
=

∆ + ∆

 (D.60)

where 
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Fig. D.20. The plane wave transmission coefficients for a Lucite-steel interface 
where 3

1 1.18 /gm cmρ = , 3
2 7.9 /gm cmρ = , 1 2670 / secpc m= , 1 1120 / secsc m= , 

2 5900 / secpc m= , 2 3200 / secsc m= . 

2 2
1 2 1 1

2
1

1 1 1 12
1

cos 1 4sin cos

4 sin cos sin cos

p s s

s
s s p p

p

c
c

θ θ θ

θ θ θ θ

⎡∆ = −⎣
⎤

+ ⎥
⎥⎦

 (D.61a)
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 (D.61b)

Again, these transmission coefficients are based on velocity ratios and the 
polarization directions are the same as shown in Fig. D.15. If we let the 
shear wave speed in the wedge ( 1sc ) go to zero in these expressions, then 
these transmission coefficients simply reduce to those for fluid-solid case. 
The magnitudes of these coefficients are plotted versus angle of incidence 
in Fig. D.20 for a  Lucite (plexiglass) wedge in smooth contact  with  steel. 
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Fig. D.21. Pulse-echo immersion testing showing the transmission and reception 
of sound from a flaw along a completely reversed path through an interface. 
 
Comparing Figs. D.17 and D.20 we see that the absolute magnitudes and 
critical angles are different in the two cases because of the wave speed 
differences but the overall behavior of the curves are very similar.    

 All the transmission and reflection coefficients discussed so far have 
been based on amplitude ratios. It is also possible to define similar coeffi-
cients that use energy intensity ratios instead. It can be shown that the wave 
intensity, I, which is defined as the average power flux (power/unit area) in 
a harmonic pressure wave in a fluid (where the average is carried out over 
one complete cycle of the wave) is given by [Fundamentals] 

22

,
2 2

p

p

c VPI
c

ρ
ρ

= =  (D.62)

where ρ is the density of the fluid, pc  is the compressional wave speed 
and P, V are the pressure and velocity amplitudes, respectively. Similarly, 
for harmonic plane waves in a solid we have for P-waves 

22

,
2 2

p nnn

p

c VTI
c

ρ
ρ

= =  (D.63)

where ,nn nT V  are the normal stress and velocity amplitudes, respectively, 
and pc  is the P-wave speed. For shear waves 
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Fig. D.22. (a) Transmission coefficients when going from a fluid to a solid, and 
(b) the corresponding transmission coefficients for a completely reversed path 
going from the solid to the fluid. 

2 2

,
2 2

ns s s

s

T c VI
c

ρ
ρ

= =  (D.64)

where ,ns sT V  are shear stress and velocity amplitudes, respectively, and sc  
is the shear wave speed.  

 In pulse-echo NDE immersion testing the same transducer is used 
as both a transmitter of sound and a receiver, as shown in Fig. D.21. In an 
ultrasonic flaw measurement, for example, if the waves transmitted to a 
flaw involve a transmission coefficient ;

12
PT α ( ),P SVα = going from 

medium 1 (the fluid)  to  medium 2  (the flawed solid), the received  waves 
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Fig. D.23. A spherical wave arising from a symmetrical point source in a fluid. 

from the flaw will involve a transmission coefficient ;
21
PT α going from 

medium 2 back to medium 1 along a completely reversed path, as shown. 
These transmission coefficients, however, are related to each other through 

1 1 2; ;
21 12
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D.7 Spherical Waves 

A spherical wave, like a plane wave, is a special wave type that is very 
useful for describing the scattering properties of flaws and for constructing 
more general waves, including the waves generated from ultrasonic 
transducers [Fundamentals]. First, examine a spherical wave in a fluid. If 
we consider harmonic waves where the pressure, p, and velocity v, are 
given by  

( ) ( ) ( )
( ) ( ) ( )

, , exp

, , exp

p t p i t

t v i t

ω ω

ω ω

= −

= −

x x

v x x
 (D.66)

then the equation of motion for the fluid (recall Eq. (D.3)) is 

( ) ( ), ,p iω ω ω=x v x∇  (D.67)

Stokes’ relations [Fundamentals], which are (see Fig. D.22): 
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and the wave equation for the pressure becomes the Helmholtz equation 

( ) ( )2 2, , 0,pp k pω ω∇ + =x x  (D.68)

where /p pk cω= .  
Consider a spherical wave in a fluid arising from a symmetrical point 

source as shown in Fig. D.23. Because of the symmetry, the equations of 
motion and the Helmholtz equation in spherical coordinates that describe 
this spherical wave are given by 

r
p i v
r

ωρ∂
=

∂
 (D.69)

and 
2 2

2 2

2 0,p p p
r r r c

ω∂ ∂
+ + =

∂ ∂
 (D.70)

where rv  is the radial  velocity. There are two solutions of Eq. (D.70) 
given by 

( ) ( )0 0
1 2exp exp ,p p

r rp P ik r P ik r
r r

= + −  (D.71)

where 1 2,P P  are pressure amplitudes and 0r  is a constant reference radius. 
The first of these solutions represents a wave moving outwards from the 

source while the second moves toward the source. Since the source only 
generates outward-going waves we must set 2P = 0. Letting 1P P=  we find 
the pressure and velocity (using Eq. (D.69)) are 

( )
( ) ( )

0

0 0

exp

exp11 exp .

p

p
r p

p p

rp P ik r
r

ik rPr rv V ik r
c ik r r rρ

=

⎡ ⎤
= − =⎢ ⎥

⎢ ⎥⎣ ⎦

 (D.72)

Unlike plane waves we see from Eq. (D.72) that the pressure amplitude, P, 
and velocity amplitude, V, of spherical waves are not just proportional to 
each other. However, at high frequencies (i.e. 1pk r >> ), we have approxi-
mately 
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Fig. D.24. Spherical P- and S-waves from a point source in an elastic solid. 
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 (D.73)

so that P and V do just satisfy the plane wave relation pP c Vρ= . In many 
ultrasonic NDE problems the frequencies and distances are large enough 
so that this high frequency approximation is valid.  

 In elastic solids one can also look for point source solutions to 

case because the sources of interest are usually not symmetric and there 
can be spherically spreading P-waves and S-waves that are coupled 
[Fundamentals]. However, at high frequencies, one can treat the waves 
from a source in a solid as separate traveling spherical waves, as shown  in 
 

Navier’s equations. The details are much more complicated than the fluid 
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Fig. D.25. Propagation of a plane wave in an attenuating medium. 

Fig. D.24 where the polarization of the P-wave, pd , is in the direction of 
propagation of the wave and the polarization, sd , of the shear wave is in a 
plane perpendicular to the propagation direction. 

 The displacement ( ) ( ) ( ), , expt i tω ω= −u x u x   in the solid is then given 
by 

( ) ( ) ( )
0 0

exp exp
, ,p s

p p s s

ik r ik r
U r U r

r r
ω = +u x d d  (D.74)

where in general ( )( ) ( )( ), , , , ,p p r s s rU U U Uθ φ ω θ φ ω= =e e , i.e. the 
amplitudes are angular dependent, where ,θ φ  are the spherical coordinates 
defining  a radial unit vector, re , pointing in the direction of propagation 
as shown in Fig. D.24. 

D.8 Ultrasonic Attenuation 

All of the wave propagation models discussed in this Appendix have been 
for ideal, lossless media. At ultrasonic frequencies, however, there are 
material dependent losses that cause waves to attenuate as they propagate. 
Generally, the sources of the attenuation can be very complex. In metals, 
for example, attenuation can be due to scattering of the wave from the 
grain structure of the solid. One can use models to describe in some detail 
those scattering processes, but in most cases one can characterize the 
attenuation losses in a simpler, ad hoc fashion [Fundamentals].  Consider, 
for example, a plane wave traveling through an attenuating medium as 
shown in Fig. D.25. The amplitude of this wave will change as it propagates 
 

www.iran-mavad.com 
ایران مواد



526      Wave Propagation Fundamentals 

 
Fig. D.26. A measurement setup for determining the attenuation of P-waves in the 
solid block. 

agates. We will model the effects of attenuation by an exponential factor 
that contains a frequency dependent attenuation coefficient, ( )fα , and 
express the amplitude changes in the form 

( )1

0

exp ,A f d
A

α= ⎡− ⎤⎣ ⎦  (D.75)

where d is the distance traveled in the medium. This attenuation coefficient 
is measured in Nepers/unit length (Np/l), where a Neper (Np) is a 
dimensionless quantity. It is also common to express the attenuation in 
terms of decibels/unit length (dB/l). To convert from Np/l to dB/l we have 
the relationship 

/ /8.686 .dB l Np lα α=  (D.76)

The attenuation of water as a function of temperature has been measured. 
At room temperature, the attenuation of water is [Fundamentals] 

( ) 3 225.3 10 / ,w f f Np mα −= ×  (D.77)

where f is the frequency in MHz. Equation (D.77) is convenient to use to 
characterize the attenuation in the water tank of immersion studies. 
However, for other materials, such as metals, the attenuation is highly 
dependent on the material processing the metal has undergone so that 
tabulated values are generally not available and the attenuation must be 
measured. A convenient setup for making attenuation measurements is one 
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of the calibration setups discussed in Chapter 5 and shown in Fig. D.26. A 
planar transducer is used in a pulse-echo immersion arrangement to 
measure the waves reflected at normal incidence from both the front 
surface and back surface of a solid block whose P-wave attenuation is to 
be determined. As shown in Chapter 7 the frequency components of the 
received voltage from the front surface, ( )fsV ω , and the frequency compo-
nents of the voltage received from the back surface, ( )bsV ω , can be expressed 
in the form 

( ) ( ) ( )
( ) ( ) ( )

fs
f s A

bs
b s A

V s t

V s t

ω ω ω

ω ω ω

=

=
 (D.78)

where ( )s ω  is the system function of the measurement system that accounts 
for all the electrical and electromechanical components (pulser/receiver, 
cabling, transducer) and ( ) ( ),fs bs

A At tω ω  are the acoustic/elastic transfer 
functions that account for all the wave processes, including attenuation, 
between the sending and receiving transducer. If both front and back 
surface measurements are done with the same components and at the same 
system settings, the system function is the same for both measurements, as 
indicated in Eq. (D.78).  

The front surface transfer function is given in Chapter 5. We write 
this transfer function as 

( ) ( ) ( ) 1exp 2 ,fs fs
A A wt t Dω ω α ω= ⎡− ⎤⎣ ⎦  (D.79)

where ( )wα ω  is the attenuation of the water and  ( )fs
At ω is the 

acoustic/elastic transfer function for the waves in the water without 
attenuation, given by (see Eq. (5.20)): 

( ) ( ) ( )2
1 1 12 1 1/ 2 exp 2 ,fs

A p p pt D k a D R ik Dω =  (D.80)

where 12R  is the plane wave reflection coefficient (Eq. (5.17)) for the fluid-
solid interface. The pD  coefficient is a diffraction correction (Eq. (5.20)) 
that accounts for the deviation of the waves in this setup from plane waves. 
In a similar manner, we can write the acoustic/elastic transfer function for 
the waves reflected from the back surface of the block as a transfer 
function for ideal materials, ( )bs

At ω , multiplied by an attenuation term to 
account for the attenuation of the waves in both the water and the solid 
[Fundamentals]:  
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( ) ( ) ( ) ( )1 2 2exp 2 2bs bs
A A w pt t D Dω ω α ω α ω⎡ ⎤= − −⎣ ⎦  (D.81)

with a loss free transfer function given by 

( ) ( ) ( )2
1 12 21 21 1 1 2 2/ 2 exp 2 2 ,bs

A p p p pt D k a D T R T ik D ik Dω = +  (D.82)

where ( )2pα ω is the attenuation coefficient for P-waves in the solid, 21R is 
the reflection coefficient from the back face (solid-fluid interface) of the 
block,  12T  is the plane wave transmission coefficient at normal incidence 
(based on a pressure ratio) in going from the fluid to the solid, and 21T  is 
the corresponding transmission coefficient in going from the solid to the 
fluid. The distance, D , is given by 

2
1 2

1

p

p

c
D D D

c
= +  (D.83)

and 1 2,p pc c  are the P-wave speeds of the fluid and the solid. It follows 
from Eqs. (D.78), (D.79) and (D.81) that 

( )
( )

( )
( ) ( )2 2exp 2

bs
bs A

pfs
f s A

V t
D

V t
ω ω

α ω
ω ω

⎡ ⎤= ⎣ ⎦  (D.84)

or, equivalently 

( ) ( )
( )

( )
( )2 2exp 2 .

fs
b s A

p bs
f s A

V t
D

V t
ω ω

α ω
ω ω

⎡ ⎤ =⎣ ⎦  (D.85)

By measuring the received voltages for the front and back surface 
reflections from the block and using the known acoustic/elastic transfer 
functions in Eq. (D.85), one can solve for the attenuation coefficient as a 
function of frequency. Notice that the attenuation of the water is not 
needed as the water attenuation term is the same for both the front and 
back surface responses. So it cancels out in Eq. (D.85). Similarly, one does 
not need the system function since it also cancels out. Normally, the 
attenuation coefficient is fitted to a simple polynomial function (in 
frequency) over the bandwidth of the measurement. If the attenuation is 
needed over a wider range of frequencies, measurements with other 
transducers are needed. The setup of Fig. D.26 is suitable for measuring 
the attenuation of P-waves in the solid. However, in order to determine the  
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Fig. D.27. A plane P-wave incident on a rough interface. 

attenuation of S-waves in the solid would require a different setup involving 
shear-wave transducers. 

Introducing attenuation in this ad-hoc manner works well in describ-
ing attenuation effects when the attenuation is not too severe. For highly 
attenuating materials, however, the wave speed as well as the amplitude of 
the waves is affected by the attenuation, leading to material dispersion effects 
where this simple method of characterizing the attenuation is inadequate.  
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D.10 Exercises 

1. Consider the case where a solid is split along a rough planar interface 
which lies in the plane x = 0 as shown in Fig. D.27. The two parts of the 
solid are in contact over some places on the interface and are not in contact 
at other places. Where the two sides touch the stress xxτ  is continuous, and 
where the sides do not touch 0xxτ = (on both sides) so again the stress is 
continuous. Where the sides touch the displacement xu  is continuous but 
where  the  sides  do  not  touch  there  can  be a  displacement of  one  side 
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Fig. D.28. A measurement setup for ultrasonically examining a partially closed 
crack. Note that the crack extends across the entire width of the block. 

relative to another. It is reasonable to expect that the amount of this 
relative displacement is proportional to the stress at the interface. Thus, 
under these conditions, we could expect that we might specify boundary 
conditions on the interface as: 

 
continuity of stress: 

( ) ( )0 , 0 ,xx xxx t x tτ τ− += = =  

stress proportional to the relative displacement: 

( ) ( ) ( )0, 0 , 0 , .xx s x xx t u x t u x tτ κ + −⎡ ⎤= = = − =⎣ ⎦  

The constant sκ determines the relative “springiness” of the interface. The 
case sκ = 0 corresponds to a stress free interface (no transmission) while 

sκ → ∞ means that the displacement is also continuous so that we have 
perfect contact and complete transmission (no reflection).  

 
(a) Determine the reflection and transmission coefficients (based 

on stress ratios) for a P-wave at normal incidence to this rough interface 
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and plot the magnitude and phase of these coefficients versus frequency 
from 0-20 MHz for steel with 150sκ =  MPa/µm. 

 
(b) The magnitude of transmission coefficient, T, you obtain in 

part (a) should be of the form , ( ) 2 21/ 1T f C f= + , where f is the 
frequency and the constant C is related to sκ   and pcρ . We could use this 
transmission coefficient to try to estimate the effects of crack closure of a 
rough crack as follows. Figure D.28 shows a compact tension specimen 
which is used to grow a through-thickness crack from a starter notch. If the 
compact tension specimen is then loaded, the sides of this rough crack will 
touch at some points and not at others, so the crack surface will look like 
two rough surfaces in partial contact, the same problem as shown in 
Fig. D.27. Suppose we now examine this crack with a through-
transmission immersion ultrasonic experiment, as shown in Fig. D.28, and 
also do a reference experiment where we move the transducers laterally so 
that they are not over the crack. Let ( )cV f  be the frequency components 
of the measured voltage for the case when we are over the crack, and let 

( )rV f  be the frequency components of the measured voltage for the 
reference experiment, Since the only difference between two setups is the 
transmission coefficient at the crack, we expect that the voltages to satisfy 

( ) ( ) ( )c rV f T f V f= . The MATLAB function rough_crack gives the 

 
>> [ vc, vr, t] =rough_crack 

 
Using this function, obtain the measured transmission coefficient, 

( )T f , versus frequency [ Note: if you want to use a Wiener filter here, the 
numerical round off “noise” is extremely small so choose a small constant 
value such as 0.001ε =  or smaller]. Using this transmission coefficient, 
determine a best fit value of C, and the corresponding value of sκ  (in 
MPa/µm), which is a measure of how closed the crack is. Assume the 
compact tension specimen is made of steel whose specific plane wave 
impedance is az = 46x106  kg/(m2-sec). 

 
2. A 6 mm thick aluminum plate is immersed in water and an immersion 
transducer  is  placed  in  the water  at  normal incidence  to this  plate. The 
 

sampled received voltage versus time, vc, for the case when the transducers
are placed over the crack, the sampled voltage versus time, vr, for the refer-
ence setup, and the sampled time values, t. The function call is: 
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Fig. D.29. A transducer sending multiple pulses through an aluminum plate. 

pulse generated from the transducer will pass through the plate and also be 
multiply reflected within the plate many times, causing a series of 
transmitted pulses to appear on the other side of the plate (see Fig. D.29). 
If we assume that the transducer beam incident on the plate acts as if it 
were a plane wave of pressure amplitude A, what would be the pressure 
amplitudes of the first three transmitted pulses (in terms of A) and what 
would be the time separation between them? For the water take 1 1ρ =  
gm/cm3 , 1pc = 1480 m/sec and for the aluminum take 2ρ = 2.7 gm/cm3, 

2pc = 6420 m/sec. 
 
3. The stress-strain (constitutive) relations for an isotropic elastic solid can 
be written as: 

( )( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( )

1
1 1 2

1
1 1 2

1
1 1 2

xx xx yy zz

yy yy xx zz

zz zz xx yy

xy xy

xz xz

yz yz

E e e e

E e e e

E e e e

τ ν ν
ν ν

τ ν ν
ν ν

τ ν ν
ν ν

τ µγ

τ µγ
τ µγ

⎡ ⎤= − + +⎣ ⎦+ −

⎡ ⎤= − + +⎣ ⎦+ −

⎡ ⎤= − + +⎣ ⎦+ −

=

=

=

 

where ( )/ 2 1Eµ ν= +  and the strains are given by 
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Fig. D.30. A compressional wave traveling in (a) a rod and (b) a plate. 

, ,

, , .

yx z
xx yy zz
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xy xz yz
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u uu u u u
y x z x z y

γ γ γ
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= = =

∂ ∂ ∂
∂ ∂∂ ∂ ∂ ∂

= + = + = +
∂ ∂ ∂ ∂ ∂ ∂

 

(a) If we consider a compressional wave propagating along a long 
slender rod as shown in Fig. D.30 (a), it is reasonable to assume that 

( ),x xu u x t=

0yzτ= = ). The equations of motion in this case become simply 

2

2 .xx xu
x t

τ
ρ

∂ ∂
=

∂ ∂
 

Use the stress-strain relations and the conditions 0yy zzτ τ= =  to determine 
the relationship between xxτ  and /xx xe u x= ∂ ∂  for this case.  What is the 
wave speed for compressional waves in the rod? 

 

xxτ ( yy zz xy xzτ τ τ τ= = = and that the only non-zero stress is 
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(b) Now consider a compressional wave traveling in a plate as 
shown in Fig. D.30 (b). In this case it is reasonable to assume 

0zz xy xz yzτ τ τ τ= = = =  and 0yye = . If again we assume ( ),x xu u x t=  the 
equation of motion for the plate is the same as for part (a). Use the stress-
strain relations and the conditions 0zz yyeτ = = to again determine the 
relationship between xxτ  and /xx xe u x= ∂ ∂  for this case. What is the wave 
speed for compressional waves in the plate? For steel (take E = 210 GPa, 
ν = 0.3, ρ = 7.9x103 kgm/m3 ) how does the compressional rod wave 
speed and plate wave speed compare to the wave speed for bulk 
compressional waves? 

 
4. A plane wave travels 100 mm in a material to a point where its 
amplitude is 1P . After the wave travels through an additional 100 mm of 
material its amplitude is reduced to 2 10.45P P= . What is the average 
attenuation of this material in dB/m? 
 
5. A transducer beam spreads as it propagates. In the far-field of the 
transducer this spreading is just like that of a spherical wave, i.e. the 
amplitude varies as 1/r where r is the distance from the transducer. At a 
distance of 100 mm from the transducer the amplitude of the pressure is 1P . 
After the beam has propagated another 100 mm the amplitude is reduced 
to 2 10.45P P= . What is the average attenuation of the material in dB/m, 
assuming that at both of these distances we are in the transducer far-field? 
 
6. Consider a harmonic plane P-wave traveling in water at room 
temperature. Determine an expression for the distance (as a function of the 
frequency, f ) that this wave must travel (in meters) to reduce its amplitude 
by 10% due to attenuation. Plot this function from f = 1 MHz to 
f = 20 MHz. 
 
7. The reflection and transmission coefficients (based on stress ratios) for a 
plane P-wave wave at normal incidence to a plane interface between two 
elastic solids were given by Eq. (D.39). Determine the corresponding 
transmission and reflection coefficients based on ratios of the energy 
intensities (see Eq. (D.63)). Plot these intensity-based coefficients versus 
the impedance ratio of the two solids, as done in Fig. D.9.What is the sum 
of these intensity-based reflection and transmission coefficients? 
 

www.iran-mavad.com 
ایران مواد



E Waves Used in Nondestructive Evaluation 

Bulk P-waves and S- waves are the types of waves most frequently used in 
NDE testing. Thus, the wave propagation models developed in Appendix D 
and in Chapters 8-12 are all bulk wave models. In this Appendix we discuss 
some of the issues associated with the generation of bulk S-waves in solids 
and briefly describe surface (Rayleigh) and plate waves since these wave 
types also have important NDE applications. 

E.1 Shear Waves 

Many ultrasonic nondestructive evaluation inspections are performed with 
P-wave transducers operating either in a contact mode or in immersion 
testing. It is also possible to have a piezoelectric crystal generate a 
shearing motion when it is excited by a voltage pulse and use that shearing 
motion to launch a shear wave into a solid component in a contact setup as 
shown in Fig. E.1. In order to couple the motion of the crystal to the solid, 
however, the shear wave transducer must be attached to the solid in a 
permanent or semi-permanent fashion. Highly viscous shear wave 
couplants or glues can be used for this purpose, but the transducer is then 
not able to be scanned along the surface which greatly limits the usefulness 
of such a shear wave setup. As a consequence, most shear waves are 
instead generated through the process of mode conversion from a P-wave 
to an SV-wave at oblique incidence to an interface. This is the basic 
mechanism used in an angle beam shear wave transducer, as shown in 
Fig. E.2. An ordinary P-wave type of crystal and backing is placed on a 
plastic wedge. The P-wave this crystal generates strikes the interface 
between the wedge and the solid to be inspected at oblique incidence. If 
the incident angle in the wedge is chosen so that the first critical angle in 
the solid is exceeded, then only a transmitted SV-wave propagates into the 
solid as shown in Fig. E.2. The angle of propagation of the shear wave in 
the solid is determined by generalized Snell’s law so that 

1
2 2 1 1sin sin /s s p pc cθ θ− ⎡ ⎤= ⎣ ⎦  (E.1)
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536      Waves Used in Nondestructive Evaluation 

Fig. E.1. A contact shear wave transducer on the free surface of a solid showing 
the shear motion of the piezoelectric and the corresponding shear wave that is 
generated. 

Fig. E.2. An angle beam shear wave transducer on the free surface of an elastic 
solid. 

where 1pc  is the P-wave speed in the wedge, 2sc  is the shear wave speed in 
the solid, and 1pθ  is the angle that the P-wave in the wedge makes with the 
normal to the surface. Some refracted shear wave angles that are commonly 
used in practice are: 2 45 ,60 ,70sθ = . The angle beam shear wave trans-
ducer, like an ordinary P-wave contact transducer, can be coupled to  
the solid by a thin fluid layer so that it can be scanned along the surface. 
Angle beam shear wave transducers are often used for weld inspection 
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Fig. E.3. An angle beam shear wave inspection of a welded plate geometry using 
a directly generated SV-wave as shown on the right side of the weld or a SV-wave 
reflected from a back surface as shown on the left side. 

 
Fig. E.4. A Rayleigh wave transducer on the free surface of an elastic solid. 

problems as shown in Fig. E.3, where the entire weld zone can be probed 
by scanning the transducer along the surface and using either the SV-wave 
directly or a wave reflected from a back surface. Models of angle beam 
shear wave inspections are discussed in Chapter 13. 

E.2 Rayleigh Waves 

A transducer arrangement very similar to the angle beam shear wave case 
can also be used to generate Rayleigh surface waves, as shown in Fig. E.4 
[E.1]. In this case the angle of the incident P-waves in the wedge must be 
slightly larger than the second critical angle. Specifically, 
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538      Waves Used in Nondestructive Evaluation 

1
1 1 2sin / ,p p rc cθ − ⎡ ⎤= ⎣ ⎦  (E.2)

where 2rc is the wave speed for Rayleigh waves in the solid. Typically the 
Rayleigh wave speed is about 90 per cent the shear wave speed. At this 
angle, there are only inhomogeneous P- and SV-waves generated in the 

wave travels along the stress free surface of the solid and decays in depth 
from the surface. Lord Rayleigh first discovered these waves by choosing 
P- and SV-wave potentials given by  [Fundamentals] 

[ ] ( )
[ ] ( )

exp exp

exp exp

A y ik x ct

B y ik x ct

φ α

ψ β

= − ⎡ − ⎤⎣ ⎦
= − ⎡ − ⎤⎣ ⎦

 (E.3)

which represent inhomogeneous waves propagating along the surface with 
the common wave speed , c. These waves must satisfy the wave equations 

2
2

2 2
2

2
2

2 2
2

1 0

1 0,

p

s

c t

c t

φφ

ψψ

∂
∇ − =

∂

∂
∇ − =

∂

 (E.4)

where 2pc  and 2sc  are the wave speeds for compressional and shear waves 
in the solid, respectively.  Also, these waves must satisfy the free surface 
(zero stress) boundary conditions which are 0yy xyτ τ= =  on y = 0. 
Rayleigh showed that potentials of the form given in Eq. (E.3) could be 
found that satisfy both the wave equations and the boundary conditions if 
 

2 2
2

2 2
2

/ 1 /

/ 1 /

p

s

c c c

c c c

α ω

β ω

= −

= −
 (E.5)

and the wave speed , c, is a root of the equation 

( )22 2 2 2 2 2
2 2 22 / 4 1 / 1 / 0.s p sc c c c c c− − − − =  (E.6)

Equation (E.6) is called the Rayleigh equation. It can be shown [E.3] that 
for an isotropic elastic solid there is always one real root of Eq. (E.5) 

2rc c= , where 2 2r sc c< , called the Rayleigh wave speed. Eq. (E.5) then 
shows  that  α  and β   are both real so that the  Rayleigh  wave  potentials 
 

solid which combine to form the Rayleigh wave mode. The Rayleigh 
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E.3 Plate (Lamb) Waves      539 

Fig. E.5. An angle beam transducer on a thin plate generating a series of reflected 
and mode-converted waves that combine to form a dispersive (frequency dependent) 
plate wave traveling with the wave speed ( )c c ω= . 

have an exponential decay in distance from the surface. A simple 
approximate expression for the Rayleigh wave speed is given by 

2 2
0.862 1.14 ,

1r sc cν
ν
+

≅
+

 (E.7)

where ν  is Poisson’s ratio.  
If one examines the displacements and stresses in the Rayleigh 

wave, one finds that like the potentials they also decay in depth from the 
interface but the decay is not a simple exponential behavior as given in 
Eq. (E.3). However, at high frequencies, these quantities are all confined 
near the surface while at lower frequencies they have deeper penetration. 
Thus, in an inspection with Rayleigh waves one can adjust the depth of the 
region one is interrogating by adjusting the frequency. Since they are 
confined to the surface Rayleigh waves are very useful for inspecting for 
surface flaws or near-surface flaws. Also, since Rayleigh waves travel and 
spread out in two-dimensions on the surface whereas bulk waves spread 
out in three-dimensions as they propagate through the volume of a material 
the amplitudes of Rayleigh waves do not decay as fast as bulk waves and 
they can travel long distances. 

E.3 Plate (Lamb) Waves 

If an angle beam shear wave transducer is placed on a thin plate, as shown 
in Fig. E.5, a series of reflected and mode converted waves are generated 
in the plate and these combine to form a new wave mode traveling with a 
wave speed, c ,  in  the  x-direction  called a  plate  (or  Lamb)  wave [E.2]. 
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540      Waves Used in Nondestructive Evaluation 

 
Fig. E.6. (a) An extensional plate wave traveling in the x-direction in a thin plate 
and (b) a flexural plate wave traveling in the x-direction. The type of deformation 
present in each of these wave types is shown. 

Unlike bulk waves or Rayleigh waves whose wave speeds are just a function 
of material constants, ( )c c ω=  i.e. the wave speed of a plate wave is 
generally frequency dependent, a phenomenon called geometric dispersion. 
Actually as we will see there are many different plate waves that can be 
generated, each with a different frequency dependency.  

Plate waves are solutions of the wave equations for the potentials 
where we assume 

( ) ( )
( ) ( )

exp

exp .

f y ik x ct

g y ik x ct

φ

ψ

= ⎡ − ⎤⎣ ⎦
= ⎡ − ⎤⎣ ⎦

 (E.8)

In this case, we find that  

( )
( )

cosh

sinh

f A y

g B y

α

β

=

=
 (E.9)

or 

( )
( )

sinh

cosh ,

f A y

g B y

α

β

′=

′=
 (E.10)

where α  and β  are again given by Eq. (E.5). Solutions of the form given 
by Eq. (E.9) are extensional plate waves, while  those  given  by Eq. (E.10) 
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Fig. E.7. The phase velocity versus non-dimensional frequency (dispersion) 
curves. Extensional wave modes are labeled An and flexural modes are labeled Sn 
(n = 0, 1, 2…). 

are flexural plate waves. In general, we may have both types of waves 
generated. The extensional plate waves are waves with the symmetric 
thickness variations shown in Fig. E.6 (a) while the flexural plate waves 
generate a bending deformation of the plate as they propagate, as shown in 
Fig. E.6 (b). 

Both types of these plate waves must satisfy the boundary 
conditions 0yy xyτ τ= =  on y h= ±  which yields the Rayleigh-Lamb 
equations 

( )
( ) ( )

1
2

22 2 2 2

tanh 4 ,
tanh /

h
h c c

β ω αβ
α ω β

±
⎡ ⎤
⎢ ⎥=
⎢ ⎥+⎣ ⎦

 (E.11)

where the plus sign is for extensional waves and the negative sign for 
flexural waves. Solutions of Eq. (E.11) for the frequency dependent wave 
speed ( )c c ω= are rather complex and generally must be determined numeri-
cally. Plots of the wave speed versus frequency are shown in Fig. E.7 for a 
number of extensional and flexural wave modes.  

We can obtain some information on the behavior of these waves 
by noting that for sufficiently high frequencies we have ( )tanh 1hα = , 
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542      Waves Used in Nondestructive Evaluation 

( )tanh 1hβ =  and the Rayleigh-Lamb equations for both extensional and 
flexural waves reduce to just our equation  for Rayleigh waves, Eq. (E.6). 
This is a reasonable result since at very high frequencies the two sides of 
the plate appear very far away from each other and the waves can propa-
gate independently on each side (as Rayleigh waves) as if the other side 
did not exist. Thus, all the curves in Fig. E.7 asymptote to the Rayleigh 
wave speed at sufficiently high frequencies. 

At low frequencies, one can also extract some explicit results from 
the Rayleigh-Lamb equation. For the lowest order extensional wave mode 
(see Fig. E.7), one finds [Fundamentals] 

( )21
Ec

ρ ν
≅

−
 (E.12)

which is the non-dispersive wave speed for extensional plate waves found 
from elementary plate theory. In contrast, the lowest order flexural mode at 
low frequencies produces a wave speed [Fundamentals] 

,
2

pD
c

h
ω

ρ
⎛ ⎞

≅ ⎜ ⎟
⎝ ⎠

 (E.13)

where ( )
( )

38
3 2p

h
D

µ λ µ
λ µ
+

=
+

 is the flexural rigidity of the plate. In this case 

we see the flexural waves remain dispersive even at low frequencies. 
Plate waves are good candidates for inspecting thin plates and pipes 

and are frequently used in those applications [E.2]. The inherent dispersive 
nature of plate waves and the fact that one often simultaneously generates 
many different modes often makes inspections with these waves challenging 
from a data interpretation standpoint. 
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F Gaussian Beam Fundamentals 

A Gaussian beam is a very important type of propagating wave since it is 
an elementary wave that can be used as an efficient building block for 
constructing the more complex wave fields present in NDE inspections. 
Chapter 9 develops in detail the propagation and transmission/reflection 
laws for Gaussian beams in fluid and solid media. That Chapter also 
describes how a multi-Gaussian beam model of circular and rectangular 
piston NDE transducers can be constructed by superimposing only 10-15 
Gaussian beams. The Gaussian beam discussions and derivations given in 
Chapter 9, however, are inherently rather complex since they involve the 
types of Gaussian beams and beam interactions that are needed to model 
general NDE testing situations. In this Appendix we will discuss Gaussian 
beams in a much more restricted context in order to illustrate some of the 
important properties of this type of wave in as simple a manner as 
possible. Specifically, we will examine the propagation of a circularly 
symmetrical Gaussian beam in a fluid medium along a single coordinate 
direction and describe the interactions of that beam with spherical or 
planar interfaces that are normal to the propagation direction. Special cases 
of this type are commonly encountered when using Gaussian beams to 
represent the fields present in lasers, so we will also use a notation that is 
consistent with many references found in the laser science literature.  

F.1 Gaussian Beams and the Paraxial Wave Equation 

 
Let the pressure, p, of a propagating harmonic wave (of ( )exp i tω−  time 
dependency) be written in cylindrical coordinates ( ), zρ  in the form of a 
quasi-plane wave propagating in the z-direction, i.e. 

( ) ( ), , exp .p P z ikz i tρ ω ω= −  (F.1)
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544      Gaussian Beam Fundamentals 

This is called a quasi-plane wave because the amplitude, P, has variations 
in ( ), zρ while in a true plane wave P would be constant. Placing Eq. (F.1) 
into the wave equation (see Eq. (D.8)) then shows that P must satisfy  

2

2

1 2 0,p
P P Pik

z z
ρ

ρ ρ ρ
⎛ ⎞∂ ∂ ∂ ∂

+ + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (F.2)

where /p pk cω=  is the wave number. Note that this is an axially symme-
trical wave since there are no angular variations in the plane perpendicular 
to the z-axis. As discussed in Chapter 9 if Eq. (F.1) represents a wave 
disturbance propagating primarily in the z-direction we can assume that 
the 2 2/P z∂ ∂  term in Eq. (F.2) will be smaller than the other terms in that 
equation, leading to the paraxial wave equation for P given by [F.1], [F.2] 

1 2 0.p
P Pik

z
ρ

ρ ρ ρ
⎛ ⎞∂ ∂ ∂

+ =⎜ ⎟∂ ∂ ∂⎝ ⎠
 (F.3)

The paraxial wave equation assumes that 
2

2

12 , ,p
P P Pik

z z
ρ

ρ ρ ρ
⎛ ⎞∂ ∂ ∂ ∂

<< ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (F.4)

but since the magnitudes of both terms on the right side of Eq. (F.4) are 
always equal by virtue of the paraxial wave equation, it is sufficient to 
require only that 

2

2 2 .p
P Pik

z z
∂ ∂

<<
∂ ∂

 (F.5)

 
We will discuss the consequences of this inequality shortly. Now consider 
a Gaussian beam solution of Eq. (F.3) in the form  

( )2exp / 2 ,pP P ik qρ=  (F.6)

where ( )P P z=  and ( )q q z=  can both be complex-valued functions. 
Placing Eq. (F.6) into Eq. (F.3) gives 

2 2

22 1 0.p
p

k PP dP dqik
q dz q dz

ρ⎛ ⎞ ⎛ ⎞+ + − =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 (F.7)
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Since we must satisfy Eq. (F.7) for all ρ  we have 

1dq
dz

=   (F.8a)

and 

0.dP P
dz q

+ =  (F.8b)

The solution of Eq. (F.8a) is just the propagation law 

( ) 0q z z q= +  (F.9)

where 0q  is a complex constant (that can also depend on the frequency, 
ω ). Placing this solution into Eq. (F.8b) then also gives 

( ) ( )
0 0

0

.P PP z
z q q z

= =
+

 (F.10)

Thus, we see that a propagating Gaussian beam is given by  

( ) ( )

( )

2
0

2
0

0 0

exp exp
2

exp exp
2

p
p

p
p

ikPp ik z
q z q z

ikP ik z
z q z q

ρ

ρ

⎡ ⎤
⎡ ⎤= ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤
⎡ ⎤= ⎢ ⎥⎣ ⎦+ +⎢ ⎥⎣ ⎦

 (F.11)

(where we have omitted writing explicitly the ( )exp i tω−  term, a convention 
we will follow throughout the remainder of this Appendix). To put this beam 
expression in a more understandable form, let the constant 0q  be represented 
in the form 

2
0

0 0 ,
p

i wq z π
λ

⎛ ⎞
= − +⎜ ⎟⎜ ⎟

⎝ ⎠
 (F.12)

where ( )0 0,z w have the dimensions of a length and 2 /p pkλ π=  is the 
wavelength. The distance 2

0 /c pz wπ λ=  is called the confocal distance (or 
confocal parameter). In terms of these parameters, therefore, the Gaussian 
beam is given by 
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546      Gaussian Beam Fundamentals 

Fig. F.1. A Gaussian beam of circular cross-section propagating in the z-direction, 
showing the wave front curvature and the beam width. The beam waist is located 
at 0z z=  where the beam width is 0w . The half angle divergence of the beam at a 
large distance from the beam waist is defined by the angle 1/ eθ . 

( )
( )

( ) ( )
( )

( ) ( )
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0

22 2
0 0
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− + − +⎢ ⎥⎣ ⎦

 (F.13)

Now, define a beam width parameter, ( )w z , and a beam wave front 
curvature parameter, ( )R z , as 

( )
( )

( ) ( )

( )
( )

( ) ( )

2
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2 2 2
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−
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 (F.14)

Then the Gaussian beam becomes 

( ) ( ) ( )( )

2 2
0

2
0

exp exp .
2

p
p

c

ikPp ik z
z z iz R z w z

ρ ρ⎡ ⎤
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 (F.15)
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F.1 Gaussian Beams and the Paraxial Wave Equation      547 

 
Fig. F.2. A plot of the normalized beam width, 0/w w , and the normalized radius 
of curvature, / cR z , versus the normalized distance, ( )0 / cz z z− . 

Figure F.1 shows a side view of the Gaussian beam represented by 
Eq. (F.15) and Fig. F.2 shows a plot of both the normalized beam width 
and normalized curvature parameters. We see that the beam wave front 
curvature, ( )R z , is infinite at the location 0z z= . Therefore at that 
location the wave front of the Gaussian beam is planar. For 0z z>  the 
curvature is positive and the Gaussian beam is a diverging beam while for 

0z z<  the beam is a converging beam. From Eq. (F.15) we see that the 
amplitude of the Gaussian beam in the ρ -direction is a Gaussian function 
whose width is ( )w z , where the width is defined as the radial distance to 
which the beam amplitude drops by a factor 1e−  from its on-axis value. 
Figures F.1 and F.2 show that the minimum beam width also occurs at 

0z z=  which is called the location of the beam waist. At the beam waist 
from Eq. (F.14) it follows that ( )0 0w z w= .  

Physically, the confocal parameter 2
0 /c pz wπ λ=  is the axial 

distance from the beam waist to where the Gaussian beam remains 
reasonably well collimated (i.e. where the beam width is approximately a 
constant) [F.2]. This can be seen from Eq. (F.14) where at 0 cz z z− =  we 
find 01.414w w=  so that the beam width is only 40% larger than at the 
waist. However, at larger distances  from the  beam waist  the  beam  width 
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548      Gaussian Beam Fundamentals 

 
Fig. F.3. The normalized beam width versus normalized distance, ( )0 / cz z z−  and 
the corresponding asymptotic beam growth angle. 

grows considerably wider as the beam diverges. If we compute the half 
angle to the 1e−  width point in the beam, 1/ eθ , (see Figs. F.1 and F.3) 
where 

( )
( )

1 1 1
1/

0 0

lim tan tan tanp p
e z

c

w z
z z w z

λ λ
θ

π π
− − −

→∞

⎛ ⎞⎧ ⎫⎡ ⎤ ⎛ ⎞⎪ ⎪= = = ⎜ ⎟⎨ ⎢ ⎥⎬ ⎜ ⎟ ⎜ ⎟−⎢ ⎥ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭ ⎝ ⎠
 (F.16)

we see that if the wavelength, λ , is much smaller than the beam width, 0w , 
then the asymptotic beam growth angle, 1/ eθ , is very small. For example, if 
we consider a Gaussian beam with a waist size 0 3w =  mm radiating into 
water at 5 MHz, then the wavelength 0.3pλ =  mm and 1/ 1.8eθ =  degrees. 
This shows that a Gaussian beam of roughly the same size as an ultrasonic 
NDE transducer that propagates at MHz frequencies will be highly 
collimated. A typical NDE transducer beam at these frequencies also is 
highly collimated (see, for example, Fig. 8.3). It is this fact that makes it 
possible to take a relatively few Gaussian beams of different widths and 
waist locations and accurately synthesize the wave field of an NDE 
transducer, as shown in Chapter 9. In contrast, it takes a superposition of 
many more spherical waves or plane waves to model a transducer wave 
field since neither of those wave types are collimated beams like the 
Gaussian beam. 
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It is interesting to compare Eq. (F.15) with the paraxial approxi-
mation for the propagation of a spherical wave in the neighborhood of the 
z-axis. This case is examined in Chapter 9 as part of the discussion of the 
paraxial approximation. For such a spherical wave we have (see Eq. (9.6)) 

2

exp exp .
2
p

p

ikAp ik z
z z

ρ⎛ ⎞
⎡ ⎤= ⎜ ⎟⎣ ⎦ ⎜ ⎟

⎝ ⎠
 (F.17)

Both Eq. (F.15) and (F.17) have a varying “amplitude” term, a plane wave 
propagation term, ( )exp pik z , and a phase term that is quadratic in the radial 
distance, ρ , from the propagation axis. In fact, we can view the Gaussian 
beam as representing a spherical wave propagating from a complex source 
point in the paraxial approximation [F.3]. Such complex point sources can 
be used as a means of forming wave solutions that do not rely on the 
paraxial approximation, but we will not discuss those solutions here. Note 
that if we let 0 0q =  in the Gaussian beam it reduces exactly to the spheri-
cal wave of Eq. (F.17).  

Whereas the amplitude of a spherical wave becomes infinite at the 
source location z = 0 (see Eq. (F.17), the Gaussian beam (see Eq. (F.15)) 
remains well behaved everywhere. In fact, as shown in Chapter 9, a Gaussian 
beam is never singular, even after propagation and reflection/refraction in 
multiple media. The same is not true for spherical or plane waves which at 
high frequencies can become singular at focal points or caustics after either 
of those wave types interact with curved interfaces. This non-singular 
behavior of Gaussian beams is also a feature of this wave type that makes 
it a better building block than spherical or plane waves to generate more 
complex wave fields.  

F.2 Quasi-Plane Wave Conditions and the Paraxial 
Approximation 

If the pressure is given by Eq. (F.11) then the velocity, zv , in the direction 
of the propagating Gaussian beam is given by 
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2

2

1

1 ,
2

z

p
p

pv
i z

ikq qik p
i q q

ωρ

ρ
ωρ

∂
=

∂
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 (F.18)

where / 1q dq dz′ = = . We will now consider the conditions under which 
the magnitude of the first term on the right side of Eq. (F.18) is much 
larger than the other two terms. First consider the condition 

.p
q k
q
′
<<  (F.19)

This condition is equivalent to requiring that 

( )0 1.p p ck q k z z iz= − − >>  (F.20)

Because cq z≥ Eq. (F.20) will certainly be satisfied if we require the 
stronger condition 1p ck z >>  which gives 

2

2 02 1.
p

w
π

λ
⎛ ⎞

>>⎜ ⎟⎜ ⎟
⎝ ⎠

 (F.21)

Now consider the second condition 
2

2 .
2

p
p

k q k
q

ρ ′
<<  (F.22)

Since most of the energy in a Gaussian beam is contained within a beam 
width, w, Eq. (F.22) will be satisfied for all ρ  within that distance if we 
set wρ =  in Eq. (F.22) and require 

2

2

1 1.
2

w
q

<<  (F.23)

But since 0w w≥  Eq. (F.23) implies 

2
0

2

1 1
2

w
q

<<       or, equivalently, 
2

2
0

2
1.

q
w

>>  
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Again, since cq z≥  the above inequality will certainly be satisfied if we 
require the stronger condition 

22
2 0

0

2 2 1c

p

z w
w

π
λ

⎛ ⎞⎛ ⎞
= >>⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (F.24)

This is just the same result as obtained in Eq. (F.21). Thus, we see that as 
long as the beam waist size is much larger than a wavelength, the 
velocity, zv , in the Gaussian beam given by Eq. (F.18) reduces to 

,z
p

pv
cρ

=  (F.25)

which is a relationship also true for plane waves (see Appendix D). Thus, 
in terms of the pressure-velocity relationship we can view a Gaussian 
beam as behaving like a quasi-plane wave. 

These results are also useful for examining the requirement given 
by Eq. (F.5) for the paraxial approximation to be valid for a Gaussian 
beam. Since we have  

20 exp / 2p
PP ik q
q

ρ⎡ ⎤= ⎣ ⎦  (F.26)

it follows that 
2

2 .
2

dP q ik q P
dz q q

ρ′ ′⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
 (F.27)

But the terms appearing in the brackets in Eq. (F.27) are the same terms 
we have just analyzed, so under the same condition given by either 
Eq. (F.21) or Eq. (F.24) we have 

2 .p
dP k P
dz

<<  (F.28)

Using Eq. (F.28) we see that Eq. (F.5) can also be written as 
2

2
2 4 .p
P k P

z
∂

<<
∂

 (F.29)

If we differentiate Eq. (F.27) once more and assume that again Eq. (F.19) 
and (F.22) are satisfied for the terms of those forms that appear in the 
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2 2

remaining term we have 
22 4

2
2 4 .

4
p

p

k q P k P
q

ρ ′⎛ ⎞
<<⎜ ⎟

⎝ ⎠
 (F.30)

[The details are not given here as they are very similar to those just 
presented for proving Eq. (F.25)]. Thus, the paraxial condition of 
Eq. (F.29) becomes 

22

2 4
2

q
q

ρ ′⎛ ⎞
<<⎜ ⎟

⎝ ⎠
 (F.31)

which is certainly satisfied if we require 
22

2 1.
2

q
q

ρ⎛ ⎞′
<<⎜ ⎟

⎝ ⎠
 (F.32)

But if we take the square root of both sides of Eq. (F.32) we obtain 
Eq. (F.22) again so that the condition for the paraxial approximation to be 
valid for a Gaussian beam is once more either Eq . (F.21) or Eq. (F.24). 

We can also view the conditions of Eqs. (F.21), (F.24) in terms of 
the asymptotic beam growth angle. Placing this paraxial approximation 
condition into Eq. (F.16) gives 

( )1 1
1/

0

tan tan 2p
e w

λ
θ

π
− −⎛ ⎞

= <<⎜ ⎟
⎝ ⎠

 

which is satisfied if o
1/ 54.7eθ << . If we keep the beam growth angle to 

about half this angle ( o
1/ 30eθ ≅ ) we might expect the propagating Gaussian 

beam will not violate significantly the paraxial condition. Angular values 
of this size are consistent with the angular limits on the paraxial approxi-
mation discussed in Chapter 9 using plane waves and spherical waves.  

F.3 Transmission/Reflection of a Gaussian Beam 

As shown previously a circularly symmetrical Gaussian beam is completely 
determined by the amplitude, ( ) ( )0 /P z P q z= , and the phase parameter, 
 

expression for d P / dz , then Eq. (F.29) will be satisfied if for the one 
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Fig. F.4. Transmission and reflection of a circular cross-section compressional 
wave Gaussian beam at a spherically curved interface between two media. 

q(z). The propagation law of Eq. (F.9) describes how both these amplitude 
and phase terms change as this Gaussian beam propagates. Here we want 
to define the corresponding transmission and reflection laws when the 
symmetric Gaussian beam strikes a spherically curved interface of radius, 

0R , at normal incidence, as shown in Fig. F.4. In this case, both axially 
symmetric transmitted and reflected Gaussian beams are generated. The 
incident, transmitted, and reflected Gaussian beams can all be written in 
general as  

( ) ( )

( ) ( )

( ) ( )

2
1

1 0

2
1

2 1 2 0
2

2
2

2 0

exp exp
2

exp exp
2

exp exp ,
2

p
i i p

i

p
r r p

r

p
t t p

t

ik
p P z ik z i t

q z

ik
p P z ik z i t

q z

ik
p P z ik z i t

q z

ρ
ω

ρ
ω

ρ
ω

⎡ ⎤
⎡ ⎤= + ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤
⎡ ⎤= + ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤
⎡ ⎤= + ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 (F.33)

where ( ), ,i r tp p p  are the incident, reflected and transmitted wave pressures 
and /pm pmk cω=  (m = 1,2) are the wave numbers for the first and second 
media, respectively, as shown in Fig. F.4.The z-coordinate here is taken 
with its origin at the interface (see Fig. F.4). Both the incident and 
transmitted waves are propagating in the + z direction, but the reflected 
wave is propagating in the 2z z= − direction. Typically, the incident 
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Gaussian beam will have started out from some fixed position at time  t = 0 
located at a distance, D, from the interface in medium one so that the term, 

0 1/ pt D c= , which appears in all the beams of Eq. (F.33) simply represents 
the common time delay for all these waves. 

At the curved interface, Σ , the boundary conditions require that 
pressure, p, and the normal velocity, zv , must be continuous so that we 
have 

( ) ( ) ( )
( ) ( ) ( ).

i r t

iz rz tz

p p p

v v v

Σ + Σ = Σ

Σ + Σ = Σ
 (F.34)

 
Because we showed in the paraxial approximation the pressure and 
velocity in the Gaussian beams must satisfy Eq. (F.25), the boundary 
conditions of Eq. (F.34) can be re-written as 

( ) ( ) ( )
( ) ( ) ( )

1 1 1 1 2 2

,

i r t

i r t

p p p

p p p

p p p
c c cρ ρ ρ

Σ + Σ = Σ

Σ Σ Σ
− =

 (F.35)

where the minus sign arises in Eq. (F.35) since 
21 1 1 1r p z p zp c v c vρ ρ= = − . 

We will not attempt to satisfy the boundary conditions of Eq. (F.35) 
exactly, but consistent with the paraxial approximation where all these 
Gaussian beams are considered as quasi-plane waves confined to a region 
near the z-axis, we will match the amplitude ( P ) terms in Eq. (F.34) only 
at the point z = 0 and the phase terms to second order in the distance, ρ , 
from the z-axis. Thus, the boundary conditions of Eq. (F.35) for the 
amplitude terms become 

( ) ( ) ( )
( ) ( ) ( )

1 1 1 1 2 2

0 0 0

0 0 0
i r t

i r t

p p p

P P P

P P P
c c cρ ρ ρ

+ =

− =
 (F.36)

(where we can cancel all the phase terms in Eq. (F.36) since they will all 
be made common in the following discussion). Solving these equations we 
find 
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Fig. F.5. The geometry of the spherical interface. 

( ) ( ) ( )

( ) ( ) ( )

2 2 1 1

1 1 2 2

2 2

1 1 2 2

0 0 0

2
0 0 0 ,

p p
r i p i

p p

p
t i p i

p p

c c
P P R P

c c
c

P P T P
c c

ρ ρ
ρ ρ

ρ
ρ ρ

−
= =

+

= =
+

 (F.37)

where ( ),p pR T  are the plane wave reflection and transmission coefficients 
(based on pressure ratios – see Appendix D). 

Now consider the matching of the phase terms of Eq. (F.35). On 
the interface,Σ , from Fig. F.5 we see that   

2 2
0 0

2

0 0 2
0

2

0

1 ...
2

2

z R R

R R
R

R

ρ

ρ

ρ

Σ = − −

⎡ ⎤
≅ − − +⎢ ⎥

⎣ ⎦

=

 
(F.38)

so matching the incident and transmitted Gaussian beam phase terms to 
second order we  have from Eq. (F.33) 

( ) ( )

2 2 2 2
1 1 2 2

0 0
0 0

,
2 2 0 2 2 0

p p p p

i t

ik ik ik ik
i t i t

R q R q
ρ ρ ρ ρ

ω ω+ + = + +  (F.39)
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which gives the transmission law 

( ) ( )
2 2

1 0 1

1 1 11 .
0 0

p p

t p p i

c c
q c R c q

⎛ ⎞
= − +⎜ ⎟⎜ ⎟
⎝ ⎠

 (F.40)

 
Similarly, matching the incident and reflected Gaussian beam phase terms 
in Eq. (F.33) we find 

( ) ( )

2 2 2 2
1 1 1 1

0 0
0 02 2 0 2 2 0

p p p p

i r

ik ik ik ik
i t i t

R q R q
ρ ρ ρ ρ

ω ω+ + = − + +  (F.41)

to obtain the reflection law 

( ) ( )0

1 2 1 .
0 0r iq R q

= +  (F.42)

If we let ( ) ( )( )0 , 0i iR w  be the wave front curvature and beam width of the 
incident Gaussian beam at the interface, respectively and similarly define 

( ) ( )( )0 , 0t tR w  and ( ) ( )( )0 , 0r rR w  for the transmitted and reflected 
beams, since 

                            
( ) ( ) ( ) 2

1 1
0 0 0

m

m m m

i
q R w

λ

π
= +

⎡ ⎤⎣ ⎦
 ( ), ,m i t r=  (F.43)

taking the real and imaginary parts of the transmission and reflection laws 
show that  

( ) ( ) ( )0 0 0t r iw w w= =  (F.44)

i.e. the widths of all the beams at the interface are the same and also 

( ) ( )

( ) ( )

2 2

1 0 1

0

1 1 11
0 0

1 2 1
0 0

p p

t p p i

r i

c c
R c R c R

R R R

⎛ ⎞
= − +⎜ ⎟⎜ ⎟
⎝ ⎠

= +

 (F.45)

showing how the wave front curvatures of the incident and transmitted/ 
reflected Gaussian beams are related at the interface. For a planar interface, 
these relations simply reduce to 
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Fig. F.6. A Gaussian beam incident on a curved interface where the waist of the 
incident beam is located at the interface and the corresponding transmitted 
Gaussian beam and its wave front curvature is shown for (a) 2 1p pc c>  and 

0 0R > , (b) 2 1p pc c>  and 0 0R < . 

( ) ( )

( ) ( )

2

1

1 1
0 0

1 1 .
0 0

p

t p i

r i

c
R c R

R R

=

=
 (F.46)

From Eq. (F.45) we can gain some understanding of the effects of the 
curvature of the interface (and the wave speeds) on the transmitted wave if 
we consider the case where the waist of the incident beam occurs at the 
interface so that ( )1/ 0 0iR = . Then if we have 2 1p pc c>  and 0 0R >  we see 
from Eq. (F.45) that ( )0 0tR > . In this case the transmitted Gaussian beam 
is a diverging beam as shown in Fig. F.6 (a). This type of interface is 
therefore a defocusing interface for the transmitted wave. If instead we 
have 2 1p pc c>  and 0 0R <  we find ( )0 0tR <  and the transmitted Gaussian 
beam is a converging beam as shown in Fig. F.6 (b). In this case the 
interface  acts  as a  focusing interface  for  the  transmitted  wave. But  for  
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Fig. F.7. The transmission of a circularly symmetric Gaussian beam across 
multiple spherically curved interfaces. 

2 1p pc c<  the interfaces shown in Fig. F.6 (a), (b) are instead focusing and 
defocusing interfaces, respectively, for the transmitted wave. These same 
focusing or defocusing characteristics of curved interfaces were also 
discussed in Chapter 8, section 8.12. If we again let ( )1/ 0 0iR =  and 
examine the reflected wave, Eq. (F.45) shows that regardless of the wave 
speeds we have ( )0 0rR > if 0 0R >  and ( )0 0rR <  if 0 0R < , which 
results in a diverging (defocused) and converging (focused) reflected 
Gaussian beam, respectively. 

F.4 Gaussian Beams at Multiple Interfaces and ABCD 
Matrices 

In the last section we developed the transmission/reflection laws for a 
symmetrical Gaussian beam at normal incidence to a spherically curved 
interface. We also have previously obtained the propagation law for a 
Gaussian beam (Eq. (F.9)). If an axially symmetrical Gaussian beam 
interacts with multiple spherically curved interfaces at normal incidence 
we can use those laws and the plane wave transmission/reflection 
coefficients to obtain the final form of the Gaussian beam (see Fig. F.7, 
where the beam is shown in undergoing multiple transmissions only, but 
we will also consider here multiple reflections as well). For example, if a 
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Gaussian beam starts at  z = 0 with a pressure amplitude ( )0P  and phase 
parameter ( )1 0q , then after propagation through a distance 1z  we have: 

( ) ( )
( ) ( ) ( )

2
11

1 1
1 1 1 1

0
0 exp exp .

2
p

p

ikq
p P ik z

q z q z
ρ⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (F.47)

If this beam then is transmitted across an interface at a point 1Q  (see 
Fig. F.7) where 1z z=  and propagates from 1Q  a distance 2z  in a second 
medium we have 

( ) ( ) ( )
( )

( )
( )

( ) ( )

2 1 1
2 12

2 2 1 1

2
2

1 1 2 2
2 2

0
, 0

exp exp ,
2
p

p p

q Q q
p z P T

q z q Q

ik
ik z ik z

q z

ω

ρ

=

⎡ ⎤
⋅ + ⎢ ⎥

⎢ ⎥⎣ ⎦

 (F.48)

where ( )mq z  is the q-parameter for the mth media and we will take the  
z-coordinate for each medium to have as its origin the starting point for the 
Gaussian beam in that medium. Since point 1Q  is both the ending point for 
the beam in medium one and the starting point for the beam in medium 
two we have ( ) ( )1 1 1q Q q z= , ( ) ( )2 1 2 0q Q q=  so we can also write 
Eq. (F.48) as 

( ) ( ) ( )
( )

( )
( )

( ) ( )

2 1
2 12

2 2 1 1

2
2

1 1 2 2
2 2

0 0
, 0

exp exp .
2
p

p p

q q
p z P T

q z q z

ik
ik z ik z

q z

ω

ρ

=

⎡ ⎤
⋅ + ⎢ ⎥

⎢ ⎥⎣ ⎦

 (F.49)

 
Obviously this same process can be continued for additional transmissions 
(or reflections). After the interaction with M interfaces, for example, we 
could write the beam in medium M+1 as 

( ) ( ) ( )
( )

( )
( )

( )

1
1 1

11 1

21
1

1 1 1

0 0
, 0

exp exp ,
2

M
M m

M m m
mM M m m
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q q
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q z q z

ik
i k z
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ω

ρ

+
+ +

=+ +

+
+

= + +

=

⎡ ⎤⎡ ⎤
⋅ ⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦

∏

∑
 (F.50)
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where 1m mT +  is either a transmission or reflection coefficient depending on 
whether we are considering a transmitted or reflected wave at the mth 
interface between medium m and m+1. The propagation and transmission/ 
reflection laws developed previously then can be written for all M +1 
media as 

 
Propagation laws: (for M +1 media) 

                              ( ) ( )0m m m mq z q z= +  ( )1, 1m M= +  (F.51)

Transmission laws: (for M interfaces) 

            ( ) ( )
( )

( )

1
1 1

0

1

m m
m m

p m p mm m

p m p mm

q Q
q Q

c cq Q
c R c

+
+ +

=
⎛ ⎞

− +⎜ ⎟⎜ ⎟
⎝ ⎠

 
( )1,m M=  (F.52)

Reflection laws: (for M interfaces) 

( ) ( )

( ) ( )
1 2 1

m m
m m

m m
o m

q Q
q Q

q Q
R

+ =
+

 ( )1,m M=  (F.53)

If we let a final value of q after propagation/transmission/reflection be fq  
and an initial value before propagation/transmission/reflection be iq , then 

i
f

i

Aq Bq
Cq D

+
=

+
 (F.54)

or, equivalently, 

( )
( )
1/1 ,
1/

i

f i

D q C
q B q A

+
=

+
 (F.55)

and the ABCD parameters can be placed in an ABCD matrix that defines 
each law: 
 
Propagation laws:       

1
0 1

d d
m

d d

zA B
C D
⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

 (F.56)

all these laws can be written in the form [F.1], [F.2] 
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Transmission laws: 

( )
( )
1 1

0

1 0

/ 1
t t

p m p m p mt t

p mm

A B c c c
C D

R c
+ +

⎡ ⎤
⎡ ⎤ ⎢ ⎥

−=⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥

⎣ ⎦

 (F.57)

Reflection laws: 

( )0

1 0
2 1

r r

r r

m

A B
C D R

⎡ ⎤
⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

  (F.58)

A remarkable feature of writing the laws in this fashion is that even after 
multiple propagations and transmissions/reflections the final and starting 
q-values can still be related in the forms of Eq. (F.54) and Eq. (F.55) as 

G G
i

f G G
i

A q Bq
C q D

+
=

+
 (F.59)

and 

( )
( )
1/1 ,
1/

G G
i

G G
f i

D q C
q B q A

+
=

+
 (F.60)

where the “global” ABCD matrix components appearing in Eq. (F.59) and 
Eq. (F.60) can be obtained from a matrix multiplication of all the 
individual propagation, transmission,  and reflection ABCD matrices that 
define a particular set of beam propagations or interface interactions. One 
can easily prove this fact by merely placing Eq. (F.54) for one ABCD 

the resulting equation again is in the same form of Eq. (F.54) but with 
ABCD elements corresponding to the matrix multiplication of the original 
two matrices. For example, after propagation of a beam in medium one 
followed by a transmission across an interface we would have 

G G t t d d

G G t t d d

A B A B A B
C D C D C D
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (F.61)

matrix into Eq. (F.54) involving a second ABCD matrix and showing that 
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Fig. F.8. Propagation of a Gaussian beam across a plane interface. 

and this same process can be continued for any number of interactions 
[Note: the order of the matrix multiplications is important. In the above 
example propagation occurs first, followed by transmission, but in 
multiplying the ABCD matrices this order is reversed]. Using ABCD 
matrices in this fashion makes it very easy to follow a Gaussian beam 
through multiple  interfaces and similar ABCD matrices are commonly 
used in the laser science field to describe the interaction a Gaussian laser 
beam with multiple optical elements such as lenses, mirrors, etc. As a 
simple example, consider the propagation of a Gaussian beam through a 
distance 1z  in medium one followed by transmission across a plane 
interface, and then propagation through a distance 2z  in medium two (see 
Fig. F.8). In this case we have 

( )
( )

2 1

2 1

1 2 1 2

2 1

1 01 1
0 /0 1 0 1

1 /

0 /

G G

G G
p p

p p

p p

z zA B
c cC D

z c c z

c c

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤+
⎢ ⎥=
⎢ ⎥⎣ ⎦

 (F.62)

so that Eq. (F.59) yields 

( ) ( )1 2
2 2 1 1 2

2 1

0 .p p

p p

c c
q z q z z

c c
⎡ ⎤

= + +⎢ ⎥
⎢ ⎥⎣ ⎦

 (F.63)

This shows that the phase terms of the incident beam propagating, which is 
given by: 
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( )
2

1

1 12 0
pik

q z
ρ
+

 (F.64)

becomes for the transmitted beam 

( ) ( )( )
2

1

1 1 2 1 2

,
2 0 /

p

p p

ik

q z c c z
ρ

+ +
 (F.65)

which looks exactly like the incident beam term with the replacement 
( )1 1 2 1 2/p pz z c c z→ + . This same behavior is discussed in Chapter 8, section 

8.5 when examining the on-axis pressure for a circular piston transducer in 
the paraxial approximation.  

In a single medium problem the phase term in the Gaussian beam 
can be written as 

( ) ( )
( )

2 2
1 1

1 1 1 1 1

1 1 1

,
2 2 0

0

p p
d d

d d

ik ik
q z A q B

C q D

ρ ρ
=

⎡ ⎤+
⎢ ⎥+⎣ ⎦

 
(F.66)

where the propagation ABCD matrix components for medium one are 
1 1 1 1 11, , 0d d d dA D B z C= = = = . By using the global ABCD matrix formed 

from the individual ABCD matrices for a multiple medium problem, the 
phase term in Eq. (F.50) can also be written in the same form where 

( ) ( )
( )

2 2
1 1

1 1 1

1

.
2 2 0

0

p M p M
G G

M M
G G

ik ik
q z A q B

C q D

ρ ρ+ +

+ +

=
⎡ ⎤+
⎢ ⎥+⎣ ⎦

 
(F.67)

In a single medium case the amplitude coefficient of the Gaussian beam 
contains the term 

( )
( )

( )
( )

1 1

1 1 1 1 1

0 0
.

0d d

q q
q z A q B

=
⎡ ⎤+⎣ ⎦

 (F.68)

The similar part of the amplitude coefficient in Eq. (F.50) for a multiple 
medium problem contains a series of products of the same form given on 
the left side of Eq. (F.68). Consider, for example, the first two products 
given by: 
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( )
( )

( )
( )

2 1

2 2 1 1

0 0q q
q z q z

 (F.69)

and the global ABCD matrix corresponding to propagation in medium one, 
transmission across the first interface, and propagation in medium two: 

2 2 1 1 1 1

2 2 1 1 1 1

,
d d t t d dG G

d d t t d dG G

A B A B A BA B
C D C D C DC D
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤

= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (F.70)

where ( ), , ,d d d d
m m m mA B C D  are the ABCD matrix components for propagation 

in medium m, and ( ), , ,t t t t
m m m mA B C D  are the ABCD components for 

transmission across the mth interface. We have 

( ) ( )

( ) ( )
( )

2 2 2 2 2

1 1
2

1 1 1 1

1 1
0

0

d d

t t

q z A q B

q z
q

C q z D

=
+

=
+

 (F.71)

so combining these two relations we find 

( )
( )
( )

( ) ( )
( )

1 1 21 1 1 1

2 2 1 1 1 1

/ 01 ,
t t q z qC q z D

q z A q z B A q z B
⎡ ⎤+ ⎣ ⎦= =

′ ′ ′ ′+ +
 (F.72)

where 

2 2 1 1

2 2 1 1

2 2

1 12 2

1 0
.

d d t t

d d t t

d d

t td d

A B A B A B
C D C D C D

A B
C DC D

′ ′ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⎢ ⎥ ⎢ ⎥⎢ ⎥′ ′⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

= ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

 (F.73)

We then can substitute ( ) ( )1 1 1 1 10d dq z A q B= + into ( )1 1A q z B′ ′+ to obtain 

( ) ( )1 1 1 0G GA q z B A q B′ ′+ = +  (F.74)

in terms of the global matrix elements 1 1,G d G dA A A B A A B′ ′ ′= = + . This 
also follows by writing Eq. (F.70) as 
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1 1

1 1

1 1 .
0 1

d dG G

d dG G

d d

A B A BA B
C D C DC D

A B A B
C D

′ ′ ⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥′ ′⎣ ⎦⎣ ⎦ ⎣ ⎦

′ ′ ⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥′ ′⎣ ⎦ ⎣ ⎦

 (F.75)

Thus, from Eqs. (F.72) and (F.74) we can write 

( )
( )

( )
( )

( )
( )

2 1 1

2 2 1 1 1

0 0 0
,

0G G

q q q
q z q z A q B

=
+

 (F.76)

which has exactly the same form as for the single medium case (Eq. (F.68)). 
We can continue this process and consider all the other pairs of amplitude 
terms in Eq. (F.50) in exactly the same manner and so obtain 

( )
( )

( )
( )

( )
( )

1 1

11 1 1

0 0 0
,

0

M
M m

G G
mM M m m

q q q
q z q z A q B

+

=+ +

=
+∏  (F.77)

where now ( ),G GA B are elements of the global ABCD matrix for all the 
media and interfaces involved in going from medium one to medium M+1. 

We can also define a global transmission/reflection coefficient, 

1
1

M

m m
m

T +
=

=∏T  and a propagation delay term 
1

0
1

/
M

m pm
m

t z c
+

=

= ∑ and write 

Eq. (F.50) as 

( ) ( ) ( )
( )

[ ] ( )
( )

1
1

1

2
1

0
1

1

0
, 0

0

exp exp ,
02
0

M G G

p M
G G

G G

q
p z P

A q B

ik
i t

A q B
C q D

ω

ρω

+

+

=
+

⎡ ⎤
⎢ ⎥
⎢ ⎥⋅ ⎢ ⎥+
⎢ ⎥

+⎢ ⎥⎣ ⎦

T

 (F.78)

which is in exactly the same form as for the propagation of a Gaussian 
beam in a single medium where using the same notation we have: 
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Fig. F.9. (a) A paraxial geometrical ray before and after a general ray interaction, 
and (b) the special case of propagation of the ray over a distance, z. The central 
ray is the dashed line and the paraxial ray is assumed to have a small distance 
from the central ray and a small slope relative to the central ray. 

( ) ( ) ( )
( )

( )
( )

1
1

1 1 1

2
1

1 1
1 1 1

1 1 1

0
, 0

0

exp exp .
02
0

d d

p
p d d

d d

q
p z P

A q B

ik
ik z

A q B
C q D

ω

ρ

=
+

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤⋅ ⎣ ⎦ ⎢ ⎥+
⎢ ⎥

+⎢ ⎥⎣ ⎦

 (F.79)

 
In Chapter 9 it is shown that even in more general Gaussian beam problems 
one can use ABCD matrices, but for those cases the scalar ( ), , ,A B C D  
components are replaced by 2x2 matrices ( ), , ,A B C D .  

The ABCD matrices used here for our Gaussian beam problems 
are closely related to the same ABCD matrices used in geometrical optics 
to facilitate the tracing of paraxial rays through optical elements [F.1], 
[F.2]. Consider, for example a central ray before and after a given 
interaction (such as propagation through a lens or reflection from a mirror, 
etc.) as shown in Fig. F.9 (a) and a nearby (paraxial) ray. Let ( )1 1,r r′  be the 
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displacement and slope of the paraxial ray from the central ray before an 
interaction and let ( )2 2,r r′ be the same quantities for the paraxial ray after 
an interaction (see Fig. F.9 (a)). For a paraxial ray that is close to the 
central ray and at a small slope to that ray it is reasonable to assume that 
these quantities are linearly related to one another, i.e. 

2 1

2 1

.
r rA B
r rC D
⎛ ⎞ ⎛ ⎞⎡ ⎤

=⎜ ⎟ ⎜ ⎟⎢ ⎥′ ′⎣ ⎦⎝ ⎠ ⎝ ⎠
 (F.80)

However, if we define curvatures 1 1 1 2 2 2/ , /R r r R r r′ ′= =  we find 

1
2

1

,AR BR
CR D

+
=

+
 (F.81)

which is of the same form as Eq. (F.59) for the q- parameter in a Gaussian 
beam. This is perhaps not surprising since the wave front curvature of the 
Gaussian beam, ( )R z , is related to ( )q z  through 

( ) ( )
1 1Re

q z R z
⎛ ⎞

=⎜ ⎟⎜ ⎟
⎝ ⎠

 (F.82)

(where Re denotes “real part of”) so that we can view the use of the ABCD 
matrices for Gaussian beam problems as the extension of the geometrical 
optics relations for real ray curvatures to corresponding complex q-values 
that define the Gaussian beam. To demonstrate in a simple case that the 
geometrical optics ABCD matrices are indeed the same as our Gaussian 
beam matrices, consider the ABCD matrix for propagation of a ray through 
a distance, z, as shown in Fig. F.9 (b).Then since 2 1r r′ ′=   and 2 1 1r r r z′= +  
(for small slopes) we have 

2 1

2 1

1
,

0 1
r rz
r r
⎛ ⎞ ⎛ ⎞⎡ ⎤

=⎜ ⎟ ⎜ ⎟⎢ ⎥′ ′⎣ ⎦⎝ ⎠ ⎝ ⎠
 (F.83)

which is identical to the propagation ABCD matrix of Eq. (F.56). In 
Chapter 9, this same example is discussed in a more general context (see 
section 9.4). 
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F.5 Multi-Gaussian Beam Modeling 

In 1988 Wen and Breazeale [F.4] showed that by the superposition of only 
10 Gaussian beams, one could generate an accurate model of the radiated 
wave field of a circular planar piston transducer. Since commercial 
ultrasonic NDE transducers can often be modeled as piston transducers, 
this multi-Gaussian beam model is a very effective tool for simulating the 
sound beams generated in NDE tests. Here we will briefly outline Wen and 
Breazeale's multi-Gaussian beam model and relate it to our previous 
Gaussian beam discussions. Chapter 9 also gives many more details of 
multi-Gaussian beam models. 

At  z = 0 for a single Gaussian beam the pressure is given by (see 
Eq. (F.11)) 

2
0

0 0

exp .
2

pikPp
q q

ρ⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
 (F.84)

Wen and Breazeale wrote Eq. (F.81) instead as 

2 2

0

exp /
p

p A B a
c v

ρ
ρ

⎡ ⎤= −⎣ ⎦  (F.85)

and used a non-linear least squares optimization procedure to determine a 
set of 10 complex A and B coefficients that produced  a constant velocity, 

0v , on the face of a circular piston transducer of radius a located at z = 0, 
as discussed in more detail in Chapter 9. The wave field generated by the 
superposition of 10 Gaussian beams with the starting forms of Eq. (F.81) is 
shown in Chapter 9 to match well the exact wave field of the piston 
transducer except close to the transducer face. Note that these A, B 
coefficients represent Gaussian beams of different waist locations, widths 
and amplitudes since 

( )

0 0

0

2

0

/

2

p

c

p

c

P c v
A

z iz
ik a

B
z iz

ρ−
=

+

=
+

 (F.86)

from which it follows that 
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2

0 0

2
0

0

/ 2

/ 2
.

p
c

p

p

ik a
q z iz

B
ik aP A

c v Bρ

− = + =

= −
 (F.87)

A multi-Gaussian beam model of a transducer uses the A, B coefficients 
directly to synthesize the transducer wave field so there is no advantage in 
expressing the wave field in terms of Gaussian waist locations and width 
parameters, as is commonly done in the laser science literature. Instead, 
using Eq. (F.87) we can write the propagating Gaussian beam in a single 
medium (see Eq. (F.11)) in terms of A and B directly: 

( )
( )

2
0 /

exp exp ,
1 / 2 1 /

p p R
p

R R

c v A ik iB D
p ik z

iBz D iBz D
ρ ρ⎡ ⎤

⎡ ⎤= ⎢ ⎥⎣ ⎦+ +⎢ ⎥⎣ ⎦
 (F.88)

where 2 / 2R pD k a=  is called the Rayleigh distance for the piston transducer, 
a quantity that is analogous to the confocal parameter for a Gaussian beam. 
Using the ten A, B coefficients of Wen and Breazeale then yields a multi-
Gaussian transducer beam model for a single medium given by 

( )
( )

210
0

1

/
exp exp ,

1 / 2 1 /
p n p n R

p
n n R n R

c v A ik iB D
p ik z

iB z D iB z D
ρ ρ

=

⎡ ⎤
⎡ ⎤= ⎢ ⎥⎣ ⎦+ +⎢ ⎥⎣ ⎦

∑  (F.89)

which is the form used in Chapter 9 (see Eq. (9.134)). If we define starting 
values for each of the Gaussian beams in Eq. (F.89) as 

( )

( )

2

1

0

/ 2
0

0

p

n
n

n p n

ik a
q

B

P c v Aρ

−
⎡ ⎤ =⎣ ⎦

=

 (F.90)

then using Eq. (F.78) we have a very simple model for the field of a piston 
transducer after multiple transmissions or reflections: 
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( ) ( )
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 (F.91)

 
In Chapter 9, use is made of the Wen and Breazeale coefficients and the 
corresponding ( ), , ,A B C D matrices in this same manner to obtain transducer 
wave fields much more complex multiple media problems. 
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F.7 Exercises 

1. Consider the propagation of a central ray and a paraxial ray at oblique 
incidence across a plane interface where the paraxial ray lies in the x-z 
plane (see Fig. F.10). Relate the distances ( )1 2,x x  to each other to first 
order in terms of the angles ( )1 2,θ θ  directly from the geometry. Also, 
using Snell's law, which must be satisfied for both the central ray and the 
paraxial ray, relate the slopes ( )1 2,x x′ ′  to each other to first order in terms 
of ( )1 2,θ θ  and ( )1 2,p pc c . Combining these results, obtain the ABCD 
matrix for this case, where 

paraxial asymptotics. J. Opt. Soc. Am. 18: 1588-1611  
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Fig. F.10. A central ray (dashed line) and a nearby paraxial ray (arrows) being 
transmitted at oblique incidence across a planar interface. 

2 1

2 1

x x

x x

A Bx x
C Dx x
⎡ ⎤⎧ ⎫ ⎧ ⎫

=⎨ ⎬ ⎨ ⎬⎢ ⎥′ ′⎩ ⎭ ⎩ ⎭⎣ ⎦
 

Since there is no change in direction for the central ray in the y-direction, 
the values ( )2 2,y y′  and ( )1 1,y y′  for the paraxial ray are related by a 
corresponding ABCD matrix valid near normal incidence. From your 
previous results let 1 2, 0θ θ →  to show that in this case  

2 1 1

2 12 1 1

1 0
0 /

y y

y y p p

A By y y
C D c cy y y
⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎧ ⎫

= =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥′ ′ ′⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦
 

Because there are different ABCD matrices in the x- and y-directions, an 
incident Gaussian beam of circular cross-section, where the phase term is 
given at the interface by 

( )2 22
1 1exp exp

2 2
p p

i i

x yik ik
q q
ρ ⎡ ⎤+⎡ ⎤

⎢ ⎥=⎢ ⎥
⎢ ⎥⎣ ⎦ ⎣ ⎦

 

will be changed, upon transmission through the interface into a Gaussian  
beam of elliptical cross section, where the phase term is: 

www.iran-mavad.com 
ایران مواد



572      Gaussian Beam Fundamentals 

2 2
2

1

2

exp
2
p

x i x p i

x i x p

ik x y
A q B c q
C q D c

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟+⎢ ⎥⎜ ⎟+
⎢ ⎥⎜ ⎟⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦

 

Thus, for oblique incidence problems we can no longer consider only 
circular cross-section Gaussian beam solutions of the paraxial wave 
equation but must treat more general solutions for elliptical cross-section 
Gaussian beams. For oblique incidence on curved interfaces the 
transmitted Gaussian beam can also be rotated, resulting in Gaussian 
beams with phase terms containing both quadratic and mixed products of 
the coordinates, i.e. ( )2 2, ,x xy y . Chapter 9 treats these more general cases 
by seeking Gaussian beam solutions to the paraxial wave equation given 
by 

( )1( )exp exp ( )
2

T
p p

ip P z ik z zω⎛ ⎞= ⎜ ⎟
⎝ ⎠

X M X  

where [ , ]Tx y=X and pM  is a 2x2 symmetrical matrix. For a circular 
cross-section Gaussian beam then we have 

( )
( )

( )

1

1

1 0

10

p
p

p

c q z
z

c q z

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M  

 
2. Wen and Breazeale also defined 15 Gaussian beam coefficients ( ),n nA B  
that improve on the modeling of a circular planar piston transducer in 
comparison to their original 10 coefficients [F.5]. Use the MATLAB 
function gauss_c15 that returns those 15 coefficients and write a 
MATLAB script that obtains the normalized pressure field, 1 1 0/ pp c vρ , for 
a 6.35 mm radius piston transducer radiating through spherically curved 
water-steel interface ( 0 76R = mm) at a frequency of 5 MHz (see Fig. 
F.11) and plots the magnitude of the on-axis normalized pressure versus 
the distance 2z in the steel from 2z = 0 to 2z = 50 mm. Modify the script 
and consider the same case but where 0 76R = − mm. 
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Fig. F.11. A circular planar piston transducer radiating a sound beam through a 
spherically curved fluid-solid interface. 

 
Fig. F.12. Radiation of an immersion transducer through an aluminum plate. 

 

3. Rewrite the scripts of problem 2 so that they display a 2-D image of the 
magnitude of the normalized pressure (i.e. normalized pressure versus 
( )2, zρ ) in the steel for both the defocusing and focusing interfaces 
considered there. 
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4. Use the ABCD matrices and the 15 coefficients of Wen and Breazeale 
contained in the MATLAB function gauss_c15 to write a MATLAB script 
that obtains the normalized pressure, 1 1 0/ pp c vρ , in a sound beam that is 
directly transmitted (with no reflections) from a 10 MHz, 6.35 mm radius 
planar piston transducer  through the aluminum plate shown in Fig. F.12. 
The script should plot the magnitude of the normalized pressure versus ρ  
at 3z = 50 mm. 
 
5. Modify the script of problem 4 so that the normalized pressure 
transmitted through the plate is evaluated at many frequencies for  

0ρ = , 3z = 50 mm and is multiplied at each frequency  by the MATLAB 
function spectrum1 written for exercise 1 in Appendix A, where the center 
frequency fc = 10 MHz and the bandwidth bw = 4 MHz. Evaluate this 
product at 1024 positive frequencies ranging from zero to 100 MHz and 
use the Fourier transform IFourierT defined in Appendix A to obtain a 
time-domain pulse. Plot that pulse versus time. In evaluating the 
normalized pressure, ignore the 1 1 2 2 3 3exp p p pik z ik z ik z⎡ ⎤+ +⎣ ⎦  propagation 
term which simply produces a time delay. 
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A number of MATLAB functions and scripts are described in the text. The 

experimental comparisons. In this Appendix we will summarize the 
MATLAB functions and scripts discussed in the text and give code listings 
for those functions which are not explicitly defined elsewhere. Note that a 
number of the MATLAB functions used in the exercises are not given 
here, but they can be found on the web site. In some cases those MATLAB 
functions are given in p-code form instead of ordinary open text m-files so 

exercise problems given at the end of the Chapters. Those p-code functions 
were generated in MATLAB release 7.0 so that they will not work with 
earlier versions of MATLAB. If this poses a problem, there are alternate  
p-code versions of the same functions on the web that were generated in 

G.1 Fourier Analysis Functions 

Vf = FourierT(vt , dt); 
vt = IFourierT(Vf , dt); 
y = s_space(a, b, M); 
y = c_shift(vt, N); 
y = t_shift(t, N); 
y = Wiener_filter(O, I, e); 
Vf =lp_filter(f, fstart, fend); 
y = system_f (f, amp, fc, bw); 

 
The functions Fourier_T(vt, dt) and IFourierT(Vf, dt)  perform the Fast 
Fourier transform and its inverse on a set of sampled values in the time and 
frequency domains, respectively. Besides those sampled values the 
sampling interval in the time domain, dt, is the only other input parameter 

MATLAB code listings for all these functions/scripts are available on 

the MAT-files that contain the experimental data used in various model/ 
the web at www.springer.com/978-0-387-49061-8. The web site also has 

that they can be used by students as unknown “black boxes” in some of the 

release 6.5 and are identified by having a “65” in their function name. 
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to these functions. These discrete Fourier transforms implement the Fourier 
transform and its inverse as defined in Appendix A. Code listings of both 
these functions can be found in Appendix A. 

 The function s_space(a, b, M) is a utility function that produces a 
set of M evenly spaced sampled values from a to (b − dx), where 
dx = (b − a)/M is the sample spacing. These are precisely the sampled 
values that are used in Fourier analysis so that this function is used 
primarily to generate the time and frequency axes to use in conjunction 
with FourierT and IFourierT. This function is discussed in Chapter 12 and 
the code listing for the function can be found in section G.8.  

 The function c_shift(vt, N) moves the last N components of the 
vector vt into the first N component places and shifts the remaining 
components of vt to follow those N components. This type of shift is 
called a circular shift. This shift is sometimes needed since IFourierT 
always generates a set of sampled time domain values over the time 
interval [0, T), where T = 1/df is the length of the total time window and df 
is the sample interval in the frequency domain. However, if the sampled 
time domain function values are non-zero before time t = 0, these sampled 
values at negative times will appear in the upper half of the window and 
the function will appear to be “split”. This splitting can be removed by 
applying c_shift to the sampled values with a large enough value for N. 
For example, consider the following eight function values: 
 
>> f= [ 1 1 0 0 0 0 2 2]; 
 
If we apply c_shift to this function with N  = 2 we obtain 
 
>> fs =c_shift(f,2) 
 
fs = 
 
     2     2     1     1     0     0     0     0 

 
The use of c_shift on a sampled time-domain signal will also mean 

that the corresponding sampling times will be incorrect. In some cases this 
is not significant, but if one wants to also change the time axis appropria-
tely to preserve the original time values then the function t_shift(t, N) can 
also be used in conjunction with c_shift. As a simple example of the action 
of t_shift, consider the following eight time domain values: 
 
>> t = [ 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7]; 
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Now, apply t_shift to this sampled time axis with N = 2: 
 
>> t_shift(t, 2) 
 
ans = 
 
   -0.2000   -0.1000      0    0.1000    0.2000    0.3000    0.4000    
0.5000 
 

In most cases t_shift is used in conjunction with c_shift in plotting 
a sampled function. For example, the MATLAB command plot(t_shift(t, N), 
c_shift(V, N)) will do a circular shift of the last N sampled values contained 
in the vector V and also modify the sampled values of the time axis contained 
in the vector t appropriately so that the original time origin is changed 
appropriately in the resulting plot. The code listings for both c_shift and  
t_shift are given in section G.8. 

 The function Wiener_filter(O, I, e) is described in Appendix C 
where its code listing is also given. This function takes the sampled frequency 
domain values contained in vectors O and I and performs a deconvolution. 
A direct deconvolution would simply be an element by element division, 
i.e. in MATLAB we would compute  
 
>> G = O./ I ; 
 

The Wiener filter function modifies this division process and 
desensitizes it to noise, as discussed in Appendix C. The constant, e, which 
is the other input to this function, is used in the Wiener filter to represent 
the noise level present. Generally, small values such as e = 0.01 to 0.05 
work well in many ultrasonic NDE problems. 

 The function lp_filter(f, fstart, fend) generates a low-pass filter that 
is unity below a frequency value, fstart, and smoothly goes to zero at the 
value, fend. Above fend the function is zero. Multiplying a model-based 
function (that is defined in the frequency domain) by this low-pass filter 
will remove the high frequency content and allow one to perform an 
inverse FFT on the product as long as fend is chosen below the Nyquist 
frequency. The code listing for this function is given in section G.8. 

 The function system_f (f, amp, fc, bw) models the behavior of a 
system function in the frequency domain with a Gaussian that is defined 
by its amplitude, center frequency, and bandwidth. The code listing for this 
function is given in section G.8. 
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G.2 Setup Functions 

setup = setup_maker; 
display_setup; 
 
The function setup_maker provides a way of storing all the input parameters 
needed to generate the ultrasonic measurement models described in 
Chapter 12. The function places a default set of values for all these para-
meters in a MATLAB structure called setup which then can be modified 
by the user to produce any set of parameters needed to describe a particular 
ultrasonic system configuration. When modifying the setup structure, it is 
convenient to be able to examine its contents to check that the proper para-
meters are present. This can be easily done with the function display_setup 
which lists all the current setup parameters. There are no input arguments 
for either of these functions. The code listings for both setup_maker and 
display_setup are given in Chapter 12. 

G.3 Ultrasonic Beam Modeling Functions 

[A, B] = gauss_c15; 
T = fluid_solid(setup); 
T =smooth_solid(setup); 
V = init_z(setup); 
[Vf, setup] = MGbeam(setup); 
[Vi, setup] = I_MGbeam(setup); 
 
The multi-Gaussian beam model described in Chapter 9 and implemented 
in software in Chapter 12 uses a set  15 complex-valued amplitude and 
phase coefficients (A,B) to model the sound beam generated by an 
ultrasonic transducer. Those 15 coefficients are returned by the function 
gauss_c15. There are no input arguments for gauss_c15. The code listing 
for gauss_c15 is given in Chapter 12. 

 When a sound beam passes through an interface, changes in the 
amplitude of the beam are controlled by the plane wave transmission 
coefficient as discussed in Chapter 9. The expressions for the plane wave 
transmission coefficients for a fluid-solid interface are obtained in Appendix 
D and those expressions are coded in the MATLAB function fluid_solid, 
whose code listing is given in Chapter 12. The only input argument of the 
function fluid_solid is the setup structure. This function extracts the 
necessary material and geometry parameters needed from that structure 

www.iran-mavad.com 
ایران مواد



G.3 Ultrasonic Beam Modeling Functions      579 

and returns the appropriate plane wave transmission coefficient for the 
incident and transmitted wave types specified in setup. 

 In pulse-echo angle beam testing a P-wave transducer is placed on 
a solid wedge instead of being in a fluid. This wedge is then placed in 
“smooth” contact with the surface of the component being tested, as described 
in Appendix D. The expressions for the transmission coefficients for such 
a setup are given in Appendix D. The function smooth_solid, whose code 
listing is given in section G.8, performs identically to the fluid_solid function 
but returns instead the appropriate transmission coefficient for the angle 
beam testing setup.  

 In performing ultrasonic beam modeling studies, one may want to 
perform beam calculations at a single frequency for multiple locations in 
the beam field or synthesize a pulse by performing beam field calculations 
at many frequencies for a single location or multiple locations. Thus, the 
setup parameters setup.f, setup.geom.z1, setup.geom.z2, setup.geom.x2, 
and setup.geom.y2 may be scalars, vectors, or matrices depending on the 
type of study one wants to perform. The function init_z(setup) decides 
what the largest size of matrix is present for these parameters and simply 
outputs an empty array of values of that size. That empty array is then 
filled with beam field (velocity) values when the actual beam model 
calculations are performed by a beam model function. This pre-allocation 
of an empty array is done for efficiency. The code listing for the init_z 
function is given in Chapter 12.  

 The function MGbeam(setup) uses the multi-Gaussian beam 
theory described in Chapter 9 and the specific implementation described in 
Chapter12 to return the complex-valued velocity amplitude of the trans-
ducer sound field generated in a pulse-echo immersion test with input 
parameters as specified in the setup structure. In performing these 
calculations MG_beam also uses the functions gauss_c15, fluid_solid, and 
init_z described previously. The only input argument to the MGbeam 
function is the setup structure. The outputs of MGBeam are the beam 
velocity amplitude and a new setup structure that contains updated values 
for setup.wave.c1, setup.wave.c2, and setup.wave.T12 parameters (see 

 The function I_MGbeam(setup) uses all the same inputs and 
functions as MGbeam but instead of the velocity amplitude returned by 
MGbeam, this function returns a spatial integral of the square of the 
velocity amplitude, as required by the measurement model for long 
cylindrical reflectors such as a side-drilled hole (see Chapter 12). Like 
MGbeam, I_MGbeam also returns a new setup structure that contains 
updated values for setup.wave.c1, setup.wave.c2, and setup.wave.T12 
parameters. The code listing for I_MGbeam is given in Chapter12. 

Chapter 12). The code listing for MGbeam is given in Chapter 12. 
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G.4 Flaw Scattering Functions 

A = A_void(setup); 
A = A_crack(setup); 
A = A_SDH(setup); 
A = A_void_Psep(setup); 
A = A_void_Ssep(setup); 
A = A_SDH_Psep(setup); 
A = A_SDH_Ssep(setup); 
A = A_unity(setup); 
 
As discussed in Chapters 10, 11 and 12 a component of the vector far-field 
scattering amplitude of a flaw is a quantity that can be used to characterize 
the flaw response. This quantity appears explicitly as part of an ultrasonic 
measurement model when the beam variations over the flaw surface are 
negligible. The functions A_void(setup), A_crack(setup), and A_SDH(setup) 
return the pulse-echo far-field scattering amplitude component for a void, 
crack, and a side-drilled hole, respectively, using the Kirchhoff approxi-
mation. The incident waves can either be P-waves or S-waves. Code listings 
for all three of these functions are given in Chapter 12.  

 Spherical and cylindrical shaped flaws are the only two geometries 
where one can obtain exact separation of variables solutions for the far- field 
scattering amplitude of a flaw in a solid. The functions A_void_Psep(setup) 
and A_void_Ssep(setup) return the pulse-echo scattering amplitudes for a 
spherical void for incident P-waves or SV-waves, respectively, using the 
method of separation of variables. The functions A_SDH_Psep(setup) and 
A_SDH_Ssep(setup) return the pulse-echo scattering amplitudes for a 
cylindrical void (side-drilled hole) for P-waves and SV-waves, respec-
tively, when the incident wave direction is perpendicular to the axis of the 
hole. These two functions use a 2-D separation of variables solution for the 
hole and convert it to a 3-D scattering amplitude normalized by the length 
of the hole using the relationship described in Chapter 10. The code 
listings for all four functions that implement these separation of variables 
solutions are given in section G.8. 

 When determining the far-field scattering amplitude of a flaw 
experimentally, one needs to deconvolve a measured flaw response with 
all those terms in the measurement model except the far-field scattering 
amplitude term, as discussed in Chapter 13. Those terms can be generated 
by measurement model function with the far-field scattering amplitude  
 
 

www.iran-mavad.com 
ایران مواد



G.5 Ultrasonic Measurement Modeling Functions      581 

response set equal to one at all frequencies. The function A_unity(setup) 
simply returns these needed values of unity. The code listing for this function 
is given in Chapter 13. 

G.5 Ultrasonic Measurement Modeling Functions 

y = attenuate(setup); 
s = systf(setup); 
s = exp_systf(setup); 
[Vf, setup] = TG_PE_MM(setup); 
[Vi, setup] = SDH_PE_MM(setup); 
 
An ultrasonic measurement model requires an ultrasonic beam model and 
flaw scattering model to account for the beam propagation and scattering 
effects present in an ultrasonic measurement. Since the beam model 
functions MGbeam and I_MGbeam predict the beam amplitudes in ideal 
(lossless) media, material attenuation effects must be included separately. 
The function attenuate(setup) returns a frequency dependent attenuation 
factor that allows us to include these losses based on measured attenuation 
coefficients placed in the setup structure. The code listing for this function 
is given in Chapter 12.  

 An ultrasonic measurement model also requires a specification of 
the system function that characterizes all the electrical and electromecha-
nical components present in the measurement system. For simulation 
studies, one can use a model-based system function that mimics the 
behavior of a real (measured) system function. The function systf(setup) is 
such a function that returns a purely model-based system function deter-
mined by specified amplitude, center frequency, and bandwidth parameters 
in the setup structure. In contrast, the function exp_systf (setup) uses the 
measured voltage in a reference experiment to determine the system 
function experimentally. This sampled voltage and the corresponding sam-
pled time axis must be contained in a MAT-file whose name is contained 
in the setup structure. The function exp_systf then uses these measured 
values in combination with other parameters of the reference setup contained 
in the setup structure to return the system function. Code listings for systf 
and exp_systf are given in Chapter 12. 

 The function TG_PE_MM(setup) generates the pulse-echo response 
of a flaw in an immersion setup, as described in Chapter 12, using the 
Thompson-Gray measurement model. This measurement model is suitable 
for modeling the response of a flaw when the beam variations over the 
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flaw surface are negligible, as discussed in Chapter 11. This function 
returns the output voltage (in the frequency domain) and a new setup 
structure that contains updated values for setup.wave.c1, setup.wave.c2, 
and setup.wave.T12 parameters. The code listing for this function is given 
in Chapter 12.  

 The function SDH_PE_MM(setup) similarly returns the pulse-
echo output voltage (in the frequency domain) for a side-drilled hole in a 
an immersion setup, as discussed in Chapter 12. This measurement model 
assumes the beam variations are negligible over the cross-sectional area of 
the side-drilled hole but accounts for the beam variations over the entire 
length of the hole. This function also returns a new setup structure that 
contains updated values for setup.wave.c1, setup.wave.c2, and setup.wave. 
T12 parameters. The code listing for this function is given in Chapter 12. 

G.6 Miscellaneous Functions 

y= pulserVT(V0, t0, a1, a2, t) ; 
y =fresnel_int(x) ; 
 
The function pulserVT implements Eq. (2.3) of Chapter 2 which uses the 
four parameters (V0, t0, a1, a2) to model the open-circuit output voltage of 
a spike pulser or square wave pulser versus time. The code listing for this 
function is given in section G.8.The function fresnel_int computes the 
Fresnel integral, where the argument, x, is the upper limit of that integral. 
As shown in Chapter 8, this integral appears in modeling rectangular 
transducers. The code listing for this function is given in section G.8. 

G.7 MATLAB Script Examples 

TG_sphere_example1 
TG_sphere_example2 
TG_sphere_example3 
FBH_example1 
SDH_example1 
SDH_deconvolve1 
 
In Chapters 12 and 13 scripts that implement a number of measurement 
model examples are given. The script TG_sphere_example1, for example,  
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uses the Thompson-Gray measurement model to calculate the time domain 
pulse-echo P-wave response of an on-axis spherical pore interrogated by a 
12.7 mm diameter, 5 MHz planar probe through a fluid-solid interface at 
normal incidence. The code for this script is given in Code Listing 12.11. 
In this case, a model-based system function is used in the calculations. The 
script TG_sphere_example2 models the same spherical pore considered in 
TG_sphere_example1 but uses an experimentally determined system 
function instead to synthesize the time-domain signal. The code for this 
script is given in Code Listing 12.13. The script TG_sphere_example3 also 
calculates the time domain response of the same pore contained in the 
previous two scripts but replaces the planar probe with a 12.46 mm 
diameter, 172.9 mm focal length focused probe (both of which values are 
measured effective parameters)  and uses an experimentally determined 
system function for this probe. The modeled response is then compared to 
a measured signal. The code for this script is given in Code Listing 12.14.  

 FBH_example1 is a script that illustrates an example of a 
measurement model calculation where the beam variations over the face of 
the flaw must be accounted for. In this case the script calculates the time 
domain pulse-echo P-wave response of an on-axis #8 flat-bottom hole 
interrogated by a 12.7 mm diameter, 5 MHz planar probe through a fluid-
solid interface at normal incidence and compares the modeled response to 
an experimentally measured signal. The code for this script is given in 
Code Listing 12.15.  

 The script SDH_example1 calculates the pulse-echo P-wave time 
domain response of an on-axis 1 mm diameter side-drilled hole interrogated 
by a 12.7 mm diameter, 5 MHz planar probe through a fluid-solid interface 
at normal incidence. The script uses an experimentally determined system 
function and compares the modeled response to an experimentally 
measured signal. The code for the script is given in Code Listing 12.19. 

 In Chapter 13, the script SDH_deconvolve1 demonstrates how a 
model-based approach can be used to extract the scattering amplitude of a 
side-drilled hole from a measured signal. This script uses the side-drilled 
hole measurement model and the measured pulse-echo P-wave time-domain 
response of an on-axis 1 mm diameter side-drilled hole interrogated by a 
12.7 mm diameter, 5 MHz planar probe through a fluid-solid interface at 
normal incidence to obtain an experimental far field scattering amplitude 
for the hole by deconvolution.  

This experimental result is plotted versus frequency and compared 
to the theoretical scattering amplitude calculated by the method of 
separation of variables. The code for this script is given in Code Listing 
13.2. 
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G.8 Code Listings of Some Supporting Functions 

Many of the MATLAB functions that implement the examples discussed 
in this book are given in the Chapters and Appendices. The previous 
sections describe where those functions can be found. This section gives 
MATLAB code listings for functions that are not given elsewhere in the 
text. All of the MATLAB functions, scripts, and experimental data files 
are on the web at www.springer.com/978-0-387-49061-8.  

 
 

Code Listing G.1. The MATLAB function s_space for generating sampled values 
for use in Fourier analysis. 
 
 
function  y = s_space(xstart, xend, num) 
% S_SPACE(XSTART,XEND, NUM) generates num evenly spaced sampled 
% values from xstart to (xend - dx), where dx is the sample  
% spacing. This is useful in FFT analysis where we generate 
% sampled periodic functions. Example: generate 1000 
% sampled frequencies from 0 to 100MHz via f =s_space(0,100,1000); 
% In this case the last value of f will be 99.9 MHz and the  
% sampling interval will be 100/1000 =0.1 MHz. 
% 
ye =linspace(xstart, xend, num+1); 
y=ye(1:num); 
 
 
 
Code Listing G.2. A circular shift function to use with FFT operations 
 
 
function y = c_shift(x, n) 
% C_SHIFT moves the last n components of the vector x  
% into the first n component places and shifts the  
% remaining components of x to follow those n components,  
% i.e. this is a circular shift.  Note: x must be row or column vector 
% 
[nr,nc]= size(x); 
if nr == 1 
    len = nc; 
    y = [x(len-n+1 : end), x(1:len -n)]; 
elseif nc == 1 
    len = nr; 
    y = [x(len-n+1 : end); x(1:len -n)]; 
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else 
    error(' c_shift only works with vectors') 
end 
 
 
 
Code Listing G.3. A time shift function to be used with c_shift to preserve the 
appropriate time axis values. 
 
 
function  y = t_shift(x, n) 
% T-SHIFT is used with the C_SHIFT function to change the time axis 
% values appropriately so that the time axis is shifted along with the 
% function. 
% Example use:  plot(t_shift(t, 100), c_shift(fun, 100)) 
[nr,nc]= size(x); 
dx = x(2) -x(1); 
if nr = = 1 
    len = nc; 
    y = [x(len-n+1 : end)-x(end)-dx+x(1), x(1:len -n)]; 
elseif nc = = 1 
    len = nr; 
    y = [x(len-n+1 : end)-x(end)-dx+x(1); x(1:len -n)]; 
else 
    error(' t_shift only works with vectors') 
end 
 
 
 
Code Listing G.4.  A low-pass filter for use in Fourier analysis where we have to 
remove the frequencies above a certain value. 
 
 
function  Vf =lp_filter(f, fstart, fend) 
% LP_FILTER(f, fstart, fend) generates a low-pass filter 
% which has a value of 1.0 below the frequency value  
% fstart and tapers to zero at frequencies above the  
% value fend with a cosine function.  
% The calling sequence is: 
% Vf = lp_filter(f, fstart, fend) 
 
if fend > f(end) 
    error( 'fend exceeds max frequency') 
end 
if fend < fstart 
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    error(' fend must be greater than fstart') 
end 
const = ones(size(f)).*(f < fstart); 
taper = cos(pi.*(f-fstart)./(2*(fend-fstart))).*(f >= fstart & f <= fend); 
Vf = const + taper; 
 
 
Code Listing G.5.  A function that simulates the band-limited behavior of a 
system function, i.e. where the frequency response is maximum at a particular 
frequency and has an extent in the frequency domain defined by a bandwidth 
parameter. 
 
 
function y = system_f (f, amp, fc, bw) 
% SYSTEM_F(f, amp, fc, bw) returns the system function as modeled by a  
% Gaussian window function of amplitude amp 
% centered at frequency fc and with a bandwidth bw defined to   
% be the spread in frequency at the half amplitude point in the Gaussian.  
% The Gaussian is tapered to zero at frequencies below fc with a  
% sine function to guarantee the dc value is always zero. 
% For small fc and large bw, this tapering will distort the Gaussian 
% The calling sequence for this function is: y =system_f(f, amp, fc, bw); 
 
% compute the 'a' parameter and define system function above and below the 
% center frequency 
a = sqrt(log(2))/(pi*bw); 
s1 = exp(-(2*a*pi*(f - fc)).^2).*(f > fc); 
s2 = exp(-(2*a*pi*(f - fc)).^2).*sin(pi*f/(2*fc)).*(f <= fc); 
% combine terms to obtain total system function 
y = amp*(s1 + s2); 
 
 
 
Code Listing G.6.  A function for calculating the transmission coefficient for 
refracted P-waves or S-waves at the interface between two solids in smooth (shear 
stress free) contact. The incident wave must be a P-wave. 
 
 
function T12 = smooth_solid(setup) 
% SMOOTH_SOLID(SETUP) computes the P-P (tpp) 
% and P-S (tps) transmission coefficients based on velocity ratios 
% for two solids in smooth contact. It obtains the necessary input 
% parameters from the setup structure and then returns the  
% appropriate transmission coefficient 
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% get setup parameters 
type1 =setup.type1; 
type2 =setup.type2; 
inc= setup.geom.i_ang; 
d1 = setup.matl.d1; 
d2 =setup.matl.d2; 
cp1 = setup.matl.cp1; 
cs1 =setup.matl.cs1; 
cp2 =setup.matl.cp2; 
cs2 =setup.matl.cs2; 
 
% consistency check (if incident wave in medium 1 is an S-wave 
% then can't use this fluid-solid trans. coefficient) 
 
if strcmp(type1, 's')  
    error('wrong wave type for medium 1') 
end 
iang = (inc.*pi)./180;  %change degrees to radians 
 
%calculate sines and cosines of all incident and refracted angles 
sinp1 = sin(iang); 
cosp1 = sqrt(1-sinp1.^2); 
sins1 = (cs1/cp1)*sin(iang); 
coss1= sqrt(1-sins1.^2); 
sinp2 = (cp2/cp1)*sin(iang); 
sins2 =(cs2/cp1)*sin(iang); 
    % take into account cosines of refracted angles may be imaginary beyond 
    % critical angles 
cosp2= (i*sqrt(sinp2.^2 - 1)).*(sinp2 >= 1) + ... 
    (sqrt(1 - sinp2.^2)).*(sinp2 < 1); 
coss2 = (i*sqrt(sins2.^2 - 1)).*(sins2 >= 1) + ... 
    (sqrt(1 - sins2.^2)).*(sins2 < 1); 
 
%calculate transmission coefficients 
denom1 = (cp1/cp2).*(cosp2./cosp1).*... 
    (4.*((cs1/cp1)^2).*(sins1.*coss1.*sinp1.*cosp1) + ... 
    1 - 4.*(sins1.^2).*(coss1.^2)); 
denom2 = (d2/d1).*(4.*((cs2/cp2)^2).*(sins2.*coss2.*sinp2.*cosp2) ... 
  + 1 - 4.*(sins2.^2).*(coss2.^2)); 
    denom = denom1 + denom2; 
    
tpp = ((2*cp1/cp2).*(1-2*sins1.^2).*(1-2*sins2.^2))./denom; 
tps = -((4*cp1*cs2/(cp2^2)).*sinp2.*cosp2.*(1-2*sins1.^2))./denom; 
%select appropriate coefficient 

% Note: If setup.matl.cs1 = 0 the values returned are for a fluid-solid interface. 
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    T12 = tpp; 
elseif strcmp(type2, 's') 
    T12 = tps; 
else 
    error('wrong wave type specification') 
end 
 
 
 
Code Listing G.7. A function that uses the separation of variables method to 
calculate the far field pulse-echo P-wave scattering of a spherical void. 
 
 
function Aout = A_void_Psep(setup)  
% A_VOID_PSEP  computes the far field P-wave scattering amplitude, Aout , 
% for a spherical void of radius b in an elastic solid (pulse echo)  
% using the method of separation of variables. the only input parameter is 
% the setup structure. The complex scattering amplitude, Aout, 
% is returned (in mm).  
% The calling sequence is:  
% Aout = A_void_Psep(setup) 
 
% get input parameters 
f=setup.f; 
b =setup.flaw.b; 
cp = setup.matl.cp2; 
cs =setup.matl.cs2; 
 
cr = cp/cs;                 % ratio of P- and S- wave speeds 
kp = 2000*pi*b*f./cp;      % non-dimensional wave number, P-waves 
kp = kp + .0001*(kp == 0);  
 
% break P-wave wave number into two regions: kp < 2 and kp >= 2 
indc = find(kp < 2.);       
kpd =kp(indc); 
ind2 =find(kp >= 2.); 
kpu = kp(ind2); 
% S-wave wave numbers over same ranges 
ksd =cr*kpd; 
ksu =cr*kpu; 
 
% use relatively small, fixed number of terms for kp <2 
num = 10; 
% compute scattering amplitude over kp <2 for sphere of radius b 

if strcmp(type2, 'p') 
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% use much larger number of terms for kp >= 2 
num2= 10 + round(kpu(end)); 
% compute scattering amplitude over kp >= 2 for sphere of radius b 
A2 = sca(kpu,ksu, num2, b); 
 
% combine two ranges 
Aout= [A1  A2]; 
% force zero frequency scattering amplitude to zero exactly 
Aout(1) =0; 
 
% subfunction for calculating scattering amplitude with a given number 
% of terms in the series. Generally, ten terms should be adequate 
% for kp < 2 and a number of terms that is proportional to the max  
% kp-value should be adequate for large kp values. However, if the 
% max kp-value is very large, the number of terms used here based on this 
% value may be too large for the values just above kp =2, resulting in the 
% round-offs that cause the function to return NaNs at those lower 
% frequencies. This function has been tested up to kp = 90 without problems 
% of this sort. 
 
function A = sca(xp,xs, numb, b) 
An = zeros(size(xp));       % initialize array of zeros 
 
% First compute the normalized scattering amplitude A/b. 
 
% xp = P- wave number, xs = S- wave number, k is an integer. 
% Uses spherical Bessel functions and spherical Hankel functions 
% of order k defined by sphJ(k,x), sphH(k, x) 
 
for k = 0:numb  
e3 = (2.*k+1).*((k.^2 - k - xs.^2./2).*sphJ(k, xp) +2.*xp.*sphJ(k+1,xp)); 
e4 = (2.*k+1).*((k-1).*sphJ(k, xp) - xp.*sphJ(k+1, xp)); 
e32 = -k.*(k+1).*((k-1).*sphH(k, xs) - xs.*sphH(k+1, xs)); 
e31 = (k.^2 - k - xs.^2./2).*sphH(k, xp) + 2.*xp.*sphH(k+1, xp); 
e41 = (k - 1).*sphH(k, xp) -xp.*sphH(k+1, xp); 
e42 = -(k.^2 -1 - xs.^2./2).*sphH(k, xs) - xs.*sphH(k+1, xs); 
if k == 0 
    c = e3./e31; 
else 
c = (e3.*e42 - e4.*e32)./(e31.*e42 - e41.*e32); 
end 
An = An + ((-1.)^k)*c;  
end  
% Now, put the b factor back, insert i/kp term which multiplies entire result 

A1 =sca(kpd, ksd, num, b); 
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Code Listing G.8. A function that uses the separation of variables method to 
calculate the far field pulse-echo S-wave scattering of a spherical void. 
 
 
function Aout = A_void_Ssep(setup)  
% A_VOID_SSEP  computes the far field SV-wave scattering amplitude, Aout , 
% for a spherical void of radius b in an elastic solid (pulse echo)  
% using the method of separation of variables. the only input parameter is 
% the setup structure. The complex scattering amplitude, Aout, 
% is returned (in mm).  
% The calling sequence is:  
% Aout = A_void_Ssep(setup) 
 
% get input parameters 
f=setup.f; 
b =setup.flaw.b; 
cp = setup.matl.cp2; 
cs =setup.matl.cs2; 
 
cr = cp/cs;                        % ratio of P- and S- wave speeds 
ks = 2000*pi*b*f./cs;      % non-dimensional wave number, S-waves 
ks = ks + .001*(ks == 0);  
 
% break S-wave wave number into two regions: ks < 5 and ks >= 5 
indc = find(ks < 5);       
ksd =ks(indc); 
ind2 =find(ks >= 5); 
ksu = ks(ind2); 
% P-wave wave numbers over same ranges 
kpd =ksd./cr; 
kpu =ksu./cr; 
 
% use relatively small, fixed number of terms for ks <5 
num = 10; 
% compute scattering amplitude over ks < 5 for sphere of radius b 
A1 =sca(kpd, ksd, num, b); 
 
% use much larger number of terms for ks >= 5 
num2= 10 + round(ksu(end)); 
% compute scattering amplitude over ks >= 5 for sphere of radius b 
A2 = sca(kpu,ksu, num2, b); 

A = i*b*An./xp; 
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Aout= [A1  A2]; 
% force zero frequency scattering amplitude to zero exactly 
Aout(1) =0; 
 
% subfunction for calculating scattering amplitude with a given number 
% of terms in the series. Generally, ten terms should be adequate 
% for ks < 5 and a number of terms that is proportional to the max  
% ks-value should be adequate for large ks values. However, if the 
% max ks-value is very large, the number of terms used here based on this 
% value may be too large for the values just above ks=5, resulting in the 
% round-offs that cause the function to return NaNs at those lower 
% frequencies. this function has been tested up to ks = 50 without problems 
% of this sort. 
 
function A = sca(xp,xs, numb, b) 
An = zeros(size(xp));       % initialize array of zeros 
 
% First compute the normalized scattering amplitude A/b. 
 
% xp = P- wave number, xs = S- wave number, k is an integer. 
% Uses spherical Bessel functions and spherical Hankel functions 
% of order k defined by sphJ(k,x), sphH(k, x) 
 
for k = 1:numb  
j12 = k.*(k+1).*((k-1).*sphJ(k, xs)-xs.*sphJ(k+1,xs)); 
h12 = k.*(k+1).*((k-1).*sphH(k, xs) -xs.*sphH(k+1,xs)); 
h13 =((k.^2-k-xs.^2./2).*sphH(k,xp) +2.*xp.*sphH(k+1, xp)); 
j41 =((k-1).*sphJ(k, xs) -xs.*sphJ(k+1, xs))./2; 
h41 = ((k-1).*sphH(k, xs) -xs.*sphH(k+1, xs))./2; 
j42 = (k.^2 -1 -xs.^2./2).*sphJ(k, xs) + xs.*sphJ(k+1, xs); 
h42 =((k.^2 -1 -xs.^2./2).*sphH(k, xs) + xs.*sphH(k+1, xs)); 
h43 = ((k-1).*sphH(k, xp) - xp.*sphH(k+1, xp)); 
 
c = (h13.*j42 -j12.*h43 )./(h13.*h42 -h12.*h43) -j41./h41; 
 
An = An + (-1)^k.*((2.*k+1)./2).*c./(-i.*xs);  
end  
 
% Now, put the b factor back 
A = b*An; 

% combine two ranges 
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Code Listing G.9. A function that uses the separation of variables method to 
calculate the normalized 3-D far field pulse-echo P-wave scattering amplitude of a 
cylindrical void, ( )3 ; /p p

D i iA L−e e . 
 
 
function Ascatt = A_SDH_Psep(setup) 
% A_SDH_PSEP computes the separation of variables solution 
% for the 3-D non-dimensional pulse-echo P-wave  
% scattering amplitude, Ascatt, for a side-drilled hole  
% of radius b (in mm). 
% The function returns the scattering amplitude, A, divided 
% by the length, L, i.e. Ascatt = A/L so that a value for L 
% does not need to be specified. The only input to the function 
% is the setup structure. The calling sequence is: 
% Ascatt =A_SDH_Psep(setup); 
 
% get setup parameters 
f =setup.f; 
b = setup.flaw.b; 
cp =setup.matl.cp2; 
cs = setup.matl.cs2; 
% 
cr = cp/cs;                 % ratio of P- and S- wave speeds 
kp = 2000*pi*b*f./cp;      % non-dimensional wave number, P-waves 
kp = kp + .0001*(kp == 0);  
 
% break P-wave wave number into two regions: kp < 2 and kp >= 2 
indc = find(kp < 2.);       
kpd =kp(indc); 
ind2 =find(kp >= 2.); 
kpu = kp(ind2); 
% S-wave wave numbers over same ranges 
ksd =cr*kpd; 
ksu =cr*kpu; 
 
% use relatively small, fixed number of terms for kp <2 
num = 10; 
% compute normalized scattering amplitude over kp <2 for sphere of radius b 
A1 =sca(kpd, ksd, num); 
 
% use much larger number of terms for kp >= 2 
num2= 10 + round(kpu(end)); 
% compute normalized scattering amplitude over kp >= 2 for sphere of radius b 
A2 = sca(kpu,ksu, num2); 
% combine two ranges 
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Ascatt= [A1  A2]; 
% force zero frequency normalized scattering amplitude to zero exactly 
Ascatt(1) =0; 
 
% subfunction for calculating normalized scattering amplitude for a  
% side- drilled hole with a given number of terms in the series.  
% Generally, ten terms should be adequate 
% for kp < 2 and a number of terms that is proportional to the max  
% kp-value should be adequate for large kp values. However, if the 
% max kp-value is very large, the number of terms used here based on this 
% value may be too large for the values just above kp =2, resulting in the 
% round-offs that cause the function to return NaNs at those lower 
% frequencies. This function has been tested up to kp = 90 without problems 
% of this sort. 
% This function uses Hankel functions of type m, order n given by the MATLAB  
% function besselh(n, m, x) 
 
function A = sca(kp,ks, numb) 
% initialize arrays 
An = zeros(size(kp));       
Ckp1 =zeros(size(kp)); 
Ckp2 =zeros(size(kp)); 
Cks1 =zeros(size(kp)); 
Dkp1 =zeros(size(kp)); 
Dkp2 =zeros(size(kp)); 
Dks1 =zeros(size(kp)); 
c =zeros(size(kp)); 
 
%calculate the series 
for n = 0:numb  
 
Ckp1 =(n^2 +n -(ks.^2/2)).*besselh(n, 1,kp) -((2*n).*besselh(n,1,kp)... 
 -kp.*besselh(n+1,1,kp)); 
Ckp2 =(n^2 +n -(ks.^2/2)).*besselh(n, 2,kp) -((2*n).*besselh(n,2,kp)... 
 -kp.*besselh(n+1,2,kp)); 
Cks1 =(n^2 +n -(ks.^2/2)).*besselh(n, 1,ks) -((2*n).*besselh(n,1,ks)... 
 -ks.*besselh(n+1,1,ks)); 
Dkp1 = (n^2 +n).*besselh(n,1,kp) -n*((2*n).*besselh(n,1,kp)... 
 -kp.*besselh(n+1,1,kp)); 
Dkp2 = (n^2 +n).*besselh(n,2,kp) -n*((2*n).*besselh(n,2,kp)... 
 -kp.*besselh(n+1,2,kp)); 
Dks1 = (n^2 +n).*besselh(n,1,ks) -n*((2*n).*besselh(n,1,ks).... 
 -ks.*besselh(n+1,1,ks)); 
 
if n == 0 
    c = 1+ Ckp2./Ckp1; 
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else 
c = 2*(1+(Ckp2.*Cks1 -Dkp2.*Dks1)./(Ckp1.*Cks1 - Dkp1.*Dks1)); 
end 
An = An + ((-1.)^n)*c;  
end  
% Now, put the external factor in 
A = (i/(2*pi))*An; 
 
 
 

calculate the normalized 3-D far field pulse-echo SV-wave scattering amplitude of 
a cylindrical void, ( )3 ; /s s

D i iA L−e e . 
 
 
function Ascatt = A_SDH_Ssep(setup) 
% A_SDH_SSEP computes the separation of variables solution 
% for the 3-D non-dimensional pulse-echo SV-wave  
% scattering amplitude, Ascatt, for a side-drilled hole  
% of radius b (in mm). 
% The function returns the scattering amplitude, A, divided 
% by the length, L, i.e. Ascatt = A/L so that a value for L 
% does not need to be specified.The only input to the function 
% is the setup structure. The calling sequence is: 
% Ascatt =A_SDH_Ssep(setup); 
%  
 
% get input parameters 
f=setup.f; 
b =setup.flaw.b; 
cp = setup.matl.cp2; 
cs =setup.matl.cs2; 
 
cr = cp/cs;                 % ratio of P- and S- wave speeds 
ks = 2000*pi*b*f./cs;      % non-dimensional wave number, S-waves 
ks = ks + .001*(ks == 0);  
 
% break S-wave wave number into two regions: ks < 5 and ks >= 5 
indc = find(ks < 5);       
ksd =ks(indc); 
ind2 =find(ks >= 5); 
ksu = ks(ind2); 
% P-wave wave numbers over same ranges 
kpd =ksd./cr; 
kpu =ksu./cr; 

Code Listing G.10. A function that uses the separation of variables method to 
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% use relatively small, fixed number of terms for ks <5 
num = 10; 
% compute scattering amplitude over ks < 5 for sphere of radius b 
A1 =sca(kpd, ksd, num); 
 
% use much larger number of terms for ks >= 5 
num2= 10 + round(ksu(end)); 
% compute scattering amplitude over ks >= 5 for sphere of radius b 
A2 = sca(kpu,ksu, num2); 
 
% combine two ranges 
Ascatt= [A1  A2]; 
% force zero frequency scattering amplitude to zero exactly 
Ascatt(1) =0; 
 
% subfunction for calculating normalized scattering amplitude for a  
% side-drilled hole with a given number of terms in the series.  
% Generally, ten terms should be adequate 
% for ks < 5 and a number of terms that is proportional to the max  
% ks-value should be adequate for large ks values. However, if the 
% max ks-value is very large, the number of terms used here based on this 
% value may be too large for the values just above ks = 5, resulting in the 
% round-offs that cause the function to return NaNs at those lower 
% frequencies. This function has been tested up to ks = 50 without 
% problems of this sort. 
% This function uses Hankel functions of type m, order n defined by the 
% MATLAB function besselh(n, m, x) 
 
 
function A = sca(kp, ks, numb) 
 
% initialize arrays 
An = zeros(size(kp));       
Cnp1 =zeros(size(kp)); 
Cns1 =zeros(size(kp)); 
Cns2 =zeros(size(kp)); 
Dnp1 =zeros(size(kp)); 
Dnp2 =zeros(size(kp)); 
Dns1 =zeros(size(kp)); 
c =zeros(size(kp)); 
 
% Calculate series 
for n = 0:numb  
 
Cnp1 =(n^2 +n -(ks.^2/2)).*besselh(n, 1,kp) -((2*n).*besselh(n,1,kp)... 
 -kp.*besselh(n+1,1,kp)); 
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Cns2 =(n^2 +n -(ks.^2/2)).*besselh(n, 2,ks) -((2*n).*besselh(n,2,ks)... 
 -ks.*besselh(n+1,2,ks)); 
Cns1 =(n^2 +n -(ks.^2/2)).*besselh(n, 1,ks) -((2*n).*besselh(n,1,ks)... 
 -ks.*besselh(n+1,1,ks)); 
Dnp1 = (n^2 +n).*besselh(n,1,kp) -n*((2*n).*besselh(n,1,kp)... 
 -kp.*besselh(n+1,1,kp)); 
Dns2 = (n^2 +n).*besselh(n,2,ks) -n*((2*n).*besselh(n,2,ks)... 
 -ks.*besselh(n+1,2,ks)); 
Dns1 = (n^2 +n).*besselh(n,1,ks) -n*((2*n).*besselh(n,1,ks)... 
 -ks.*besselh(n+1,1,ks)); 
 
if n == 0 
    c = 1+ Cns2./Cns1; 
else 
c = 2*(1+(Cns2.*Cnp1 -Dns2.*Dnp1)./(Cnp1.*Cns1 - Dnp1.*Dns1)); 
end 
An = An + ((-1.)^n)*c;  
end  
% Now, put the external factor in 
A = (i/(2*pi))*An; 
 
 
 
Code Listing G.11. A function that models the open-circuit voltage output versus 
time of a pulser. 
 
 
function V = pulserVT(V0, t0, a1, a2, t) 
% PULSERVT(V0, t0, a1, a2, t) models the open-circuit voltage of 
% a spike or square wave pulser using the four parameters V0, t0, 
% a1, and a2. The parameter V0 controls the amplitude and the other 
% parameters control the rise and fall characteristics of the pulse. 
% The input parameter t is a set of sampled times. 
t = t + eps*( t ==0); 
Vinf = V0/(1-exp(-a1*t0)); 
V = -Vinf*(1- exp(-a1*t)).*(t <= t0) -V0*exp(-a2*(t -t0)).*(t > t0); 
 
 
 
Code Listing G.12. A function that computes the Fresnel integral. 
 
 
function y=fresnel_int(x) 
%FRESNEL_INT(X) computes the Fresnel integral defined as the integral 
%from t = 0 to t = x of the function exp(i*pi*t^2/2). Uses the approximate 
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%expressions given by Abramowitz and Stegun, Handbook of Mathematical  
%Functions, Dover Publications, 1965, pp. 301-302. 
%The calling sequence is: y = fresnel_int(x) 
 
%separate arguments into positive and negative values, change sign  
%of the negative values 
xn =-x(x<0);       
xp=x(x >=0); 
 
%compute cosine and sine integrals of the negative values, using the 
%oddness property of the cosine and sign integrals 
[cn,sn] =cs_int(xn); 
cn= -cn; 
sn = -sn; 
 
%compute cosine and sine integrals of the positive values 
 
[cp, sp]=cs_int(xp); 
 
%combine cosine and sine integrals for positive and negative 
%values and return the complex Fresnel integral 
ct =[cn cp]; 
st =[sn sp]; 
y=ct+i*st; 
 
%CS_INT(XI) calculates approximations of the cosine and sine integrals 
%for positive values of xi only(see Abramowitz and Segun reference above)  
function [c, s]=cs_int(xi) 
f =(1+0.926.*xi)./(2+1.792.*xi +3.104.*xi.^2);      % f function (see ref.) 
g=1./(2+4.142.*xi+3.492.*xi.^2+6.67.*xi.^3);        % g function (see ref.) 
c=0.5 +f.*sin(pi.*xi.^2./2) -g.*cos(pi.*xi.^2./2);  % cosine integral approx. 
s = 0.5 -f.*cos(pi.*xi.^2./2)-g.*sin(pi.*xi.^2./2); % sine integral approx. 
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A 

ABCD scalar matrices, 561 
ABCD vector matrices, 214 
acoustic impedance, 463 
acoustic properties table, 499 
acoustic/elastic transfer function, 67, 

165, 172, 410 
aliasing, 449 
amplification factor. See receiver-

gain 
amplitude-area factor, 437 
angle beam shear wave modeling, 

159, 404-425 
angle beam shear wave transducer, 

535 
angular plane wave spectrum model, 

130 
asymptotic beam growth angle, 548 
attenuation, 348, 525-529 

B 

bandwidth (-6 dB), 351, 444 
beam waist (Gaussian), 547 
beam wave front curvature 

(Gaussian), 546 
beam width (Gaussian), 191, 211, 

546 
beam width (focal plane), 153  
blocked force, 69 
Born approximation, 277-286 
boundary element method, 297 
bulk modulus, 492 
bulk wave, 2, 498, 535 

C 

center frequency, 350, 443 
circ function, 222 
circular frequency, 4, 440 
confocal distance. See confocal 

parameter 
confocal parameter, 191, 545 
contact P-wave transducer, 155 
contact S-wave transducer, 535 
convolution integral, 482 
corner trap signal, 418 
counter bore, 414 
couplant, 406, 535 
crack flashpoint response, 257 
creeping wave, 245 
critical angle, 511 
current probe, 96 

D 

DAC curve. See distance-amplitude-
correction curve 

DAC transfer curve, 394 
damping setting. See pulser-

damping 
DDBA. See doubly distorted Born 

approximation 
decibel (dB), 444  
deconvolution, 390, 483 
defocusing interface, 557 
delta function, 453 
diffraction coefficient, 140 
direct wave, 138 
directivity function, 157 
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discrete Fourier transform, 447 
displacement discontinuity, 240 
distance-amplitude-correction curve, 

394 
doubly distorted Born 

approximation, 284 

E 

edge wave, 138 
effective transducer focal length, 

109 
effective transducer radius, 109 
EFIT. See elastodynamic integration 

technique  
Einstein summation notation, 19 
elastic constants tensor, 238 
elastodynamic finite integration 

technique, 298 
electrical impedance, 460 
energy setting. See pulser-energy  
equations of motion 
 -fluid, 492 
 -solid, 497 
equivalent impedance (defined), 469 
equivalent flaw radius, 249, 255 
equivalent source (defined), 469 
extensional plate wave, 541 

F 

far-field scattering amplitude 
 -in a fluid, 235-236 
 -in a solid (crack), 240-241 
 -in a solid (volumetric flaw),  

237-238 
 -in the Born approximation,  

277-278 
fast Fourier transform (FFT), 451 
finite element method, 297 
flashpoint response. See crack flash-
point response 
flexural plate wave, 541 
focusing interface, 558 
Fourier transform, 439 
Fraunhoffer approximation, 143 

G 

Gaussian beam theory, 179-221, 
543-568 

generalized normal incidence, 255 
generalized Snell's law, 513 
geometric dispersion, 540 

H 

Helmholtz equation, 130, 523 
Hilbert transform, 452 

I 

impedance matrix, 474 
impulse response function, 481 
indicial notation. See Einstein sum-
mation notation 
inhomogeneous wave, 131, 512 

K 

Kirchhoff approximation 
-for crack, 251-258 
-for side-drilled hole, 268-277  
-for volumetric flaw, 241-251 
-validity of, 258-268 

KLM transducer model, 51 

L 

leading edge response, 245, 247 
linear time-shift invariant system, 

481 
LTI system. See linear time-shift 

invariant system  

M 

Mason transducer model, 51 
material dispersion, 530 
MATLAB functions and scripts, 

575-598 
MBA. See modified Born 

approximation 

generalized Hooke’s law, 497 

Lame’ constant, 497 
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measurement model 
 -reciprocity-based, 310, 324,  

373-378 
 -Thompson-Gray, 315, 325,  

357-373 
 -for cylindrical reflector, 318, 

378-386 
mechanical impedance, 462 
method of finite differences, 296 
method of optimal truncation, 264, 

296 
mode conversion, 513 
modified Born approximation, 286 
MOOT. See method of optimal 

truncation  
multi-Gaussian beam model,  

221-230, 327-331, 337-348,  
568-570 

N 

near field distance, 139 
Nyquist criterion, 450 

O 

O’Neil focused transducer model, 
148 

open-circuit output voltage model 
(pulser), 31 

P 

paraxial approximation 
 -defined, 180, 544 
 -for plane wave, 184-185 
 -for spherical wave, 181-183 
 -limitations, 230 
paraxial wave equation, 181, 544 
piston transducer, 48, 129, 473 
plane of incidence, 199  
plane wave solutions, 495 
plate wave, 540 
Poisson’s ratio, 497 
polarization, 500 
potential functions, 500 

propagation law, 188 
propagator matrix, 219 
pulse distortion, 513 
pulser 

-equivalent impedance, 24 
-equivalent voltage source, 24 
-energy, 21 
-damping, 21 
-pulse amplitude, 22 
-pulse width, 22 
-rep rate, 22 

P-waves, 498 

Q 

quasi-plane wave, 543 

R 

radiation impedance. See transducer- 
radiation impedance 

Rayleigh distance, 222, 569 
Rayleigh equation, 538 
Rayleigh wave, 537-539 
Rayleigh wave speed, 538 
Rayleigh-Lamb equation, 541 
Rayleigh-Sommerfeld integral, 135 
receiver  
 -impedance, 85 
 -gain, 85 
receiving transducer sensitivity, 82 
reciprocal theorem 

-for a cable, 35-37 
-for a flaw measurement system, 
 301-314 
-for a transducer, 47-49 

reflection/transmission coefficients. 
See transmission/reflection 
coefficients 

rep rate. See pulser-rep rate 
Ricatti equation, 187 

S 

SAC. See size-amplitude-curve 
scattering amplitude. See far-field 

scattering amplitude  

 Index 

Navier’s equations, 497 
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self-reciprocity method, 108 
separation of variables, 286-293 
setup structure, 334-336 
Sittig model, 49 
size-amplitude-curve, 437 
Snell’s law, 509 
sound generation transfer function, 

63 
sound reception transfer function, 68 
specific acoustic impedance, 463 
spherical wave, 523 
spike pulser, 21 
square wave pulser, 21 
stationary phase method, 247  
step function. See unit step function 
stress tensor, 242, 302, 501  

S-waves, 498 
surface wave. See Rayleigh wave 
system efficiency factor, 118 
system function, 115, 350 

T 

Technique for Identification of Flaw 
signals using Deconvolution, 427 

TEM mode, 35 

Thompson-Gray measurement 
model. See measurement model-
Thompson-Gray  

three transducer method for 
measuring transducer sensitivity, 
107 

TIFD. See Technique for 
Identification of Flaw signals 
using Deconvolution  

T-matrix method, 295 
traction vector, 15, 302 
transducer 
 -electrical impedance, 58, 95-98 
 -far-field, 139 
 -F-number, 154 
 -near field, 139 
 -radiation impedance, 5 

 -receiving sensitivity, 104-108 
 -reciprocity, 83 
 - transmitting sensitivity, 59,  

98-103 
transfer function, 482 
transfer matrix 
 -defined, 474 
 -of a cable, 38 
 -of an acoustic layer, 54  
 -of a transducer, 50  
transmission/reflection coefficients 
 -fluid-fluid interface, 507-513 
 -fluid-solid interface, 513-518 
 -normal incidence, 505-507 
 -solid-solid smooth interface, 

518-519 
transmission line model, 38 
transmission/reflection laws 

(Gaussian beam), 196 
transport equation, 187 
two port system, 37, 473 

U 

ultrasonic measurement model. See 
measurement model 

unit step function, 454 

V 

vector far-field scattering amplitude, 
237 

W 

wave equation, 493, 538 
wave front curvature, 211 
wave intensity, 521 
wave number, 446 
wavelength, 446 
Wen and Breazeale coefficients, 337 
Wiener filter, 484 

Y 

 
Young’s modulus, 497

Stokes’ relations, 523 

Thévenin’s theorem, 466 
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