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Preface

This book deals with ultrasonic nondestructive evaluation (NDE) inspections
where high frequency waves are used to locate and characterize dangerous
flaws (such as cracks) in materials. Ultrasonic NDE flaw inspections
involve a very complex combination of electrical, electromechanical, and
acoustic/elastic components so that it is important to understand the
behavior of those components and their interactions in order to make
quantitative flaw measurements. It will be shown that through the use of
models and measurements it is now possible to characterize all the
elements of an ultrasonic NDE flaw inspection system. Those elements
include the pulser/receiver, the cabling, the transducers, and the wave
propagation and scattering processes present in an ultrasonic NDE flaw
measurement. It will also be demonstrated how to combine models and
measurements of those elements to form ultrasonic measurement models
which can simulate the flaw signals seen in ultrasonic NDE tests. This
comprehensive modeling and measurement capability is described for the
first time in this book.

There are important engineering applications of this new techno-
logy. For example, these ultrasonic models and measurements can be used
to design new ultrasonic inspections as well as optimize existing ones.
This technology can also help one to extract information on the nature of
the flaw present from the measured ultrasonic flaw signals that can then be
used to evaluate the safety and reliability of the material being inspected.

The topics covered in this book include Fourier analysis, linear
system theory, and wave propagation and scattering theory for fluids and
solids. A series of Appendices provide some background materials for all
these topics. Additional background information in these areas can be
found in Fundamentals of Ultrasonic Nondestructive Evaluation — A
Modeling Approach by L. W. Schmerr Jr. This book will also provide
many details of the fundamentals of the ultrasonic measurement process
but the primary purpose here is to show how the elements of an ultrasonic
measurement system combine to generate a measured signal received from
a flaw in a material and to give models and measurements that make it
practical to simulate those measured flaw signals. In addition to giving the
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VIII  Preface

equations and models that govern the behavior of an ultrasonic system we
also develop some simple but powerful MATLAB functions and scripts.
Those functions/scripts can be used by the reader to conduct simulated
inspections and to quickly learn how to implement this modeling
technology. The validity of the models discussed is also demonstrated by
comparing them to experiments.

There are two parts of this book that warrant special notice. First, a
recently developed pulse-echo method for measuring the sensitivity of an
ultrasonic transducer is given in Chapter 6. This method makes the
experimental characterization of transducers much easier than previous
methods. Since transducer characterization is an important part of the
series of measurements needed to characterize completely all the
components an ultrasonic measurement system, having this simple method
for calculating sensitivity also makes that entire chain of measurements
more practical. Second, in Chapter 9 we give a complete description of
Gaussian beam theory and its use for simulating the wave fields generated
by ultrasonic transducers in the form of a multi-Gaussian beam model.
Although there are other methods for calculating these wave fields, multi-
Gaussian beam models are generally the most effective ultrasonic beam
models available. Gaussian beams have been described in other application
areas such as Laser science and Geophysics, but the underlying theory as it
relates to NDE problems has not been previously given in a complete and
unified manner. Chapter 9, therefore, provides a detailed discussion of
Gaussian beams as used for modeling sound beams in fluids and isotropic,
homogeneous clastic solids. Because the general treatment in Chapter 9
necessarily leads to a lengthy and detailed description of Gaussian beam
theory, Appendix F describes the propagation and transmission/reflection
of circularly symmetric Gaussian beams along a single direction, a simple
case where the properties of these beams can be more clearly illustrated
and explained.

This book is an outgrowth of over thirty years of ultrasonic NDE
modeling research by the two authors, their colleagues from around the
world, and many students. It is designed to communicate that research in
an organized fashion and to serve as the foundation for solving many
important ultrasonic NDE problems. However, it is also our vision that this
modeling technology is not just for the “modelers”. We believe that
modeling can affect the NDE community at all levels. Thus, the book was
developed as part of a workshop series sponsored by the World Federation
of NDE Centers (www.wfndec.org). One purpose of that series is to “teach
the teacher”, that is to provide materials to those with a responsibility for
supervising and educating others in the NDE field so that they in turn
could communicate the materials and resulting knowledge to others. This
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Preface IX

book is written at an advanced undergraduate or graduate education level,
but by combining the concepts presented here with the simulation
capabilities that the MATLAB functions provide one can use or deliver
this material at a number of levels. We hope that the reader will enjoy
learning about how ultrasonic NDE systems work as much as we have and
will pass that learning on to others. We have placed exercises at the end of
some of the Chapters and Appendices (most of them MATLAB-based) to
help in that learning process.

We would especially like to thank Prof. Alexander Sedov and Drs.
Hak-Joon Kim, Ana Lopez-Sanchez, Ruiju Huang, and Changjiu Dang for
both their contributions to the research that has helped make this book
possible and for their assistance in its preparation.

L.W. Schmerr
S.J. Song
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1 Introduction

1.1 Prologue

In the following Chapters we will describe in detail models that can be
used to characterize all the elements of an ultrasonic nondestructive
evaluation (NDE) flaw measurement system. We will also discuss the
measurements needed to obtain the system parameters that appear in the
models. These models can be used to optimize existing inspections, design
new inspections, and analyze inspection results. This technology can also
be a major cost-saving tool for industry if the models are used to replace
expensive tests and sample fabrications. For this to occur, it must be clear
that the models are accurate and reliable. We hope to provide sufficient
information on current ultrasonic NDE modeling efforts so that the reader
can better judge for himself/herself the maturity of this field.

Many aspects of modeling ultrasonic NDE systems require a back-
ground in linear system theory and wave propagation and scattering theory.
We will provide some of that background in the Appendices and later
Chapters but in many cases we will state results without proof and point
the reader to other sources. One source in particular that will be referred to
frequently is the book Fundamentals of Ultrasonic Nondestructive Evaluation
— A Modeling Approach by L.W. Schmerr Jr. which is listed as a reference
at the end of this Chapter. In subsequent discussions that source will be
referred to as the reference [Fundamentals].

In this Chapter we will provide an overview of the models and
methods that will be discussed in later Chapters, using the flaw measurement
setup of Fig. 1.1 as an example. We will highlight the major results that
allow us to model all the components of Fig.1.1 and ultimately obtain an
explicit model of the entire measurement system. Although most of our
discussions will refer to the immersion system of Fig. 1.1, the models are
also applicable to other NDE setups that involve angle beam and contact
transducers. Some angle beam inspection applications of the models, for
example, are described in Chapter 13.
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2 Introduction

oscilloscope display
(A-scan)

pulser/

receiver

cabling

cabling receiving transducer

transmitting flaw
transducer

Fig. 1.1. The components of an ultrasonic flaw measurement system.

Throughout this book we will only model inspection systems that
use bulk waves. Appendix E gives a brief introduction to the properties of
other types of waves such as surface (Rayleigh) waves and guided waves
but models of inspections with those wave types require transducer models
and wave propagation and scattering models that are not treated here.

1.2 Ultrasonic System Modeling — An Overview

An ultrasonic measurement system involves the generation, propagation,
and reception of short transient signals. In the electrical elements of the
system shown in Fig. 1.1 such as the pulser/receiver and cabling, these signals
are electrical pulses. In the acoustic/elastic parts of the system, the signals
are short time duration acoustical pulses traveling in either fluids or solids.
The ultrasonic transducers are “mixed” devices that transform electri-
cal pulses into acoustic pulses, and vice-versa. In modeling ultrasonic
systems it is convenient not to deal with these transient signals directly
but to work instead with their spectral (frequency domain) components.
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Fig. 1.2. (a) A voltage versus time trace and (b) the magnitude of its frequency
domain spectrum (for positive frequencies).

Thus, Fourier analysis becomes an essential part of any discussion of
ultrasonic system modeling. Figure 1.2, for example, shows a simulated
transient voltage versus time signal that might be measured in an ultrasonic
NDE system and its corresponding spectral amplitude. It can be seen that
the pulse in Fig. 1.2 is very short (typically on a microsecond scale) and
the corresponding frequencies in the pulse spectrum are in the 10° Hz
(MHz) range. These values are similar to the pulses and spectra one
often finds in NDE tests. Appendix A gives a brief introduction to Fourier
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4  Introduction

pulser

I/

V(o)

Fig. 1.3. An ultrasonic pulser and an equivalent circuit model as a voltage source
and electrical impedance.

transforms, Fast Fourier transforms and related concepts that form some of
the fundamental foundations for transforming time signals into frequency
domain signals and vice-versa.

Chapter 2 discusses the modeling of the pulser section of a
pulser/receiver and the basic characteristics of the signals generated by the
pulser. The pulser is an active electrical network, i.e. it contains a driving
energy source as well as complex circuits that shape the output electrical
pulse. If the pulser acts as a linear device, then it can be replaced by a very
simple equivalent model (in the frequency domain) consisting of a voltage
source,V, (@), and impedance, Z; (@), both of which are complex functions
of the circular frequency,w, as shown in Fig. 1.3. This representation is
possible because of a fundamental theorem of electrical circuits called
Thévenin’s Theorem. Appendix B gives a brief proof of Thévenin’s
theorem and discusses the concept of impedance. It is demonstrated in
Chapter 2 that one can experimentally determine the voltage source and
impedance terms shown in Fig. 1.3 by performing a set of electrical
voltage measurements on the pulser under different loading conditions.
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1.2 Ultrasonic System Modeling — An Overview 5

IJ\
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| —
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Fig. 1.4 A cable and its model as a two port system characterized by a 2x2 transfer
matrix, [T].

Note that these measurements are done for a particular set of pulser settings
(such as energy and damping). When the pulser settings are changed, the
equivalent source and impedance also change.

The cabling in a measurement system is discussed in Chapter 3.
The cable is modeled as a two port system of the type shown in Fig. 1.4,
where an input voltage and current at one end of the cable is transformed
into an output voltage and current at the other end. The relationship between
these inputs and outputs can be expressed in terms of a 2x2 transfer

{ 1} { ! 1 }{ } ( )
1 21 22 2

Two port systems and related concepts such as linear time-shift
invariant (LTI) systems are also important fundamental foundations for
analyzing linear systems. These concepts are discussed in Appendix C. It
is shown in Chapter 3 that the transfer matrix components of the cabling
can also be obtained by performing a set of electrical measurements at the
ends of the cable under different driving/termination conditions. From
those measurements it can be seen that at the MHz frequencies found in
ultrasonic systems unless the cabling is very short (typically much less
than a meter in length) the cables do not act as pure “pass-through” devices
that simply transfer the signal unchanged from one end of the cable to the
other. Thus, cabling has an effect on the measured signals and this part of
the ultrasonic system needs to be characterized as part of any system
modeling effort.
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6  Introduction

(a)

Im v

[TA] F

in

(b)

Fig. 1.5. (a) A transmitting ultrasonic transducer A as a transformer of voltage,
V. ,and current, /, , atits electrical port into a compressive force, F, and average

velocity, v, at its acoustic port, and (b) a model of the transducer characterized by
a 2x2 transfer matrix, [TA] .

Chapter 4 discusses a transducer when it is used as a generator of
sound in an ultrasonic system. Like the cabling, the sending transducer can
be modeled as a two port system where the voltage and current at the input
electrical port are converted into a compressive force and average velocity
on the output side (Fig. 1.5). To characterize the transducer’s transfer
matrix in the same manner as done for the cabling, one would have to
perform a series of both electrical and acoustic measurements at the
input/output ports under different driving/termination conditions. This is
possible in principle but in general it is not practical since it is difficult
(and expensive) to make the precise acoustic measurements this type of
characterization would require. It is shown in Chapter 4, however, that it is
not necessary to know all the elements of the transducer transfer matrix
directly since when the transducer A of Fig. 1.5 is used in practice it is
always radiating waves into a known medium. For radiation into a fluid or
a linear elastic solid the output compressive force, F, (a)) , and the average
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1.2 Ultrasonic System Modeling — An Overview 7
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Fig. 1.6. (a) A transmitting transducer radiating into a medium characterized by a
terminated two-port system, and (b) a simpler equivalent model of the transducer

as an electrical impedance, Z;, (@), and a sensitivity, S}, (@).

(b)

output velocity, v, (a)), are proportional to each other through the relation-
ship F, =Z*v,, where Z'“(w) is the acoustic radiation impedance of
transducer A as shown in Fig. 1.6 (a). This relationship results in the two
port transfer matrix model of the transducer being terminated at its
acoustic port with the acoustic impedance Z'“(w). Under these
conditions it is shown in Chapter 4 that one can replace the terminated
transducer transfer matrix by an equivalent reduced transducer model
consisting only of an electrical impedance, Z*¢, and a transducer
sensitivity, S, as shown in Fig. 1.6 (b), where the sensitivity is modeled
as an ideal “converter” that transforms input current to output velocity or
force. The transducer impedance, Z*, is by definition the input voltage

divided by the input current, while the sensitivity, S , is defined as the

vl >
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Vr(w) = pulser O Ill ‘_F,(a))

output
(compressive) force

(a)

10

O 7]

(b)

V(o) wapl 1, (@) — (@)

(c)

Fig. 1.7. (a) The sound generation process consisting of the pulser, cabling, and
sending transducer. (b) The detailed models of each of those components. (¢) A
single input-output LTI system model characterized by the sound generation

transfer function, 7, (@) .

average output velocity divided by the input current. The advantage of
using this reduced model is that both the transducer impedance and
sensitivity can be obtained by purely electrical measurements, making it
possible to readily characterize a transducer in terms of these parameters.
Chapter 6 outlines a new pulse-echo method for determining transducer
electrical impedance and sensitivity that makes it easy to obtain these
quantities in a simple calibration setup. Chapter 6 also describes the
measurement of “effective” transducer parameters such as effective radius
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1.2 Ultrasonic System Modeling — An Overview 9

and focal length. Those effective values are needed to accurately model the
wave field of a transducer.

In Chapter 4 it is demonstrated that at high frequencies the
acoustic radiation impedance is a known constant if the transmitting
transducer acts as a piston source (i.e. if the velocity distribution is
uniform over the transducer surface at the acoustic port). For an immersion
piston transducer, for example, Z,"“ = p,c,S, , where p, is the density of
the fluid, ¢, is the compressional wave speed of the fluid, and S, is the area
of the transducer face at the acoustic port. Thus, with measurements of
Z%¢, 8% and the transducer effective parameters and with Z*“ easily

found, it is possible to completely characterize the transmitting transducer’s
role in the ultrasonic measurement system.

Since the model parameters of the pulser, cabling and transducer
shown in Figs. 1.3-1.6 can all be obtained with a series of measurements, it
is also possible to combine these models together into a single linear time-
shift invariant (LTI) system that characterizes the entire sound generation
process, as shown in Fig. 1.7. From the concepts discussed in Appendix C,
the LTI system for the sound generation process can be represented in
terms of a transfer function, 7, (@), that relates the voltage source, V, (), of
the pulser to the output force, F, (a)) , of the transducer. In Chapter 4, this
sound generation transfer function is given explicitly in terms of the
pulser, cabling, and transducer parameters as:

F (o) VA

A ) G ) T T (12)

Since the pulser voltage source, V; (a)) , and all the quantities appearing in

this sound generation transfer function can be measured the output force
on the transducer can be found as

£ (0)= 1, (@) (o). (13

In Chapter 5 LTI system concepts are used again to relate the
output force on the transmitting transducer, F; (a)), to the blocked force,
F, (a)) acting on the receiving transducer through an acoustic/elastic transfer
function, ¢, (a)) , that describes all the three-dimensional wave propagation

and scattering processes occurring between the sending and receiving
transducers. This relationship is given by:
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(a)
incident and ]
scattered waves
—
Z (@
V(@) () y
=Sy (@) F,(e)
O
(b)

Fig. 1.8. (a) A receiving transducer transforming the incident and scattered waves
at the transducer face into output voltage, V, and current, /, and (b) a model of the
receiving transducer and acoustic sources as a voltage source and electrical
impedance.

Fy(0)=t,(0)F, (o). (1.4)

The blocked force is defined in Chapter 5 as the compressive force
exerted on the receiving transducer by the incident waves when its face is
held rigidly fixed. As shown in Chapter 5, it is this particular force that
arises naturally in the reception process and it is also shown that a
receiving transducer B and the acoustic sources that drive it can be
modeled as a voltage source V, = F,S” in series with an electrical impe-

s
Bie

dance, Z), where S’ and Z)° are the sensitivity and impedance of

transducer B (see Fig. 1.8). This result shows that the same transducer
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receiver

V

R

Fig. 1.9. The receiver modeled as an electrical impedance, Z; (a)), and a gain
factor, K () .

impedance and sensitivity that are used to characterize a transmitting
transducer are also the terms needed to model the transducer when it is
acting as a receiver. The receiving transducer is also connected to the
receiver through cabling that can again be modeled as a 2x2 transfer
matrix. The components of this matrix can be found by the same electrical
measurements discussed in Chapter 3. The receiver, like the pulser, is an
electrical network that needs to be characterized. In many ultrasonic
pulser/receivers the receiver section performs both amplification and
filtering functions. We will not model the filters present in ultrasonic
receivers because in quantitative NDE measurements where one wants as
wide a frequency response as possible these filtering functions are
typically disabled. However, filtering can always be easily added to our
receiver model when necessary. Thus, in Chapter 5 the receiver is modeled

only as an electrical impedance, Z; (@), and a gain factor, K (@), (see Fig. 1.9)
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receiver o (EU)

oufput
voltage
(a)
Z-H €
S:j Fn [ R] Vu Z lfl
Ve =KV,
(b)

Fy(@) muppl (@) i Vi (0)

(c)

Fig. 1.10. (a) The sound reception process consisting of the receiving transducer,
cabling, and receiver and (b) the detailed models of each of those components,
which can be combined into (¢) a single input-output LTI system model
characterized by the sound reception transfer function, ¢, (a)) .

both of which can also be found by a series of electrical measurements.
Thus, the entire sound reception process can also be described by a
reception transfer function,z, (a)), that relates the frequency components
of the output voltage of the receiver, V; (@), to the blocked force, F, (®),
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1.2 Ultrasonic System Modeling — An Overview 13

Fig. 1.11. An ultrasonic measurement system modeled as a series of LTI systems,
each characterized by their transfer functions.

(see Fig. 1.10). This transfer function is given by

= = 0 v
F (a)) (Zig;eRll +R12)+(Zi,,;eR21 +R22)Z§ ’ (1.5)

1 ()= Ve (@) KZS?

where the R, (i, j= 1,2)terms are the components of the transfer matrix of
the receiving cable shown in Fig. 1.10 (b). Since all the terms appearing in
Eq. (1.5) can also be measured, this receiving transfer function can be
obtained explicitly and we can write the output voltage, V, (a)) , as

Ve(@)=t (@)t (o), (o), (o). (1.6)

Equation (1.6) gives a model of the entire measurement process as
simply a product of transfer functions multiplied by the pulser source
voltage, Vl(a)) (see Fig. 1.11). Equations (1.2) and (1.5) show that the
generation and reception transfer functions can be determined by making
electrical measurements of all the electrical and electromechanical
components that make up those functions. Similarly, the pulser source vol-
tage, V; (@) can be measured. Thus, the only remaining unknown in Eq. (1.6)
is the acoustic/elastic transfer function, 7, (a)) , where, from Eq. (1.4)

ty(w)= I;?((Z)) (1.7)

t

(see Fig. 1.12). It is not possible to directly measure this transfer function,
since it is determined by inaccessible quantities such as the displacements
in the sound beam generated in the solid surrounding a flaw and the
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() Vi (o)

= | pulser c:- 6—0 receiver (mpp-
% A
w)! (
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acoustic/elastic

(a) processes
- Zie
‘\
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|
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Fig. 1.12. (a) The components of an ultrasonic measurement system, showing the
sound generation process that transforms the voltage source, Vl.(a)), into the
transmitted (compressive) force, F, (a)) , and the sound reception process which
transforms the blocked force, F; (a)), into the frequency components of the
measured output voltage, V, (@) . The acoustic/elastic transfer function, ¢, (@),
describes all the wave propagation and scattering processes that occur between the
transmitting and receiving transducers. (b) The corresponding model of all the
components of the measurement system showing the system elements and
the corresponding transfer functions that define the system.

resulting displacements of the waves scattered from the flaw. However, it
is possible to model those quantities if one has sufficiently general
ultrasonic beam and flaw scattering models. Appendix D and Chapter 8
both provide some basic background into wave propagation theory and the
properties of sound beams in fluids and solids that is needed for beam
models and flaw scattering models. In Chapter 9 an ultrasonic beam model
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pulser receiver
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%ﬁ S{/Omw "
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Fig. 1.13. An ultrasonic immersion system for inspecting a flawed component.

that uses the paraxial approximation and a superposition of Gaussian
beams is developed for fluids and isotropic elastic solids. This multi-
Gaussian beam model allows one to simulate the ultrasonic sound beams
found in many ultrasonic testing geometries and is computationally very
efficient. Appendix F provides some background in Gaussian beam theory
needed for a more thorough understanding of the models discussed in
Chapter 9. Chapter 10 describes models of the waves scattered from flaws,
using the Kirchhoff and Born approximations — two approximate methods
that have been found to be very useful in modeling NDE problems.
Chapter 10 also describes some exact scattering models for simple flaw
shapes that can be used to validate those more approximate models. In
Chapter 11, a general expression for the acoustic/elastic transfer function is
derived for an ultrasonic immersion flaw inspection system of the type
shown in Fig. 1.13. This transfer function is shown to be given by

1
‘(o) (v ey )as, 08

= T;a
Zr vT vR A\

where Z'* is the acoustic radiation impedance of the transmitting
transducer, T. The quantities (t(l),v(l)) are the traction vector and velocity
vector, respectively, on the surface, S, of the flaw when the transmitting
transducer, T, is firing and the flaw is present (labeled as state (1)), while
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(t(z),v(z)) are the traction vector and velocity vector, respectively, if the

receiving transducer, R , was acting as a transmitter and the flaw was absent
(labeled as state (2)). The quantities v\ (a)),vﬁf) () are just the average
velocities on the faces of the transmitting transducer in state (1) and the
receiving transducer in state (2), respectively.

Equation (1.8) is a very general result as it relies primarily on the
assumptions of linearity and reciprocity. It is also a very useful result since
it shows that if one has beam models and flaw scattering models that can
predict the fields on the surface of the flaw in states (1) and (2), then those
fields can be inserted into Eq. (1.8) to obtain the acoustic/elastic transfer
function that is needed to predict the measured output voltage, V, (@), in
Eq. (1.6).

By making some additional assumptions, Eq. (1.8) can be reduced
to a very modular model. For example, it is shown in Chapter 11 that if the
flaw is small enough so the beam variations across the flaw surface can be
neglected and if the incident beam can be expressed as a quasi-plane wave
acting on the flaw, then the transfer function of Eq. (1.8) can be written in
the form

, \ 4
zA(w)=Vo“)(w)n@(w)A(w){.”p—%}, (19
_lkaZZr

where I}O(m) (m = 1,2) are the velocity fields incident on the flaw in states
(1) and (2) (normalized by the average velocities on the face of the
transmitting transducer), A(a)) is a particular component of the vector
plane wave far-field scattering amplitude of the flaw, and the remaining
term in Eq. (1.9) is a combination of known material and geometrical
parameters that are defined explicitly in Chapter 11. Equation (1.9) is in a
very useful form since the velocity field terms, VO('") ,(m =1,2) ,which involve
ultrasonic beam model calculations, and the flaw response, which is contained
entirely in the A(a)) term, are separated. This modularity allows one to easily
perform engineering parametric studies and to isolate the contribution of
the flaw from the overall measured response. The latter capability is
particularly important since ultimately one must extract information on the
flaw itself for sizing and classification purposes, and that information is
contained only in 4(®).

Equations (1.8) or (1.9) complete the overall measurement model
defined by Eq. (1.6) and Fig. 1.11, since it is possible to measure
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1.2 Ultrasonic System Modeling — An Overview 17

t;(®),t,(@),V,(®) and with beam and flaw scattering models we can
obtain 7, (a)) , leading to a prediction of the output voltage frequency compo-
nents, ¥, (). This voltage can then be transformed into the time-domain
to obtain the A-scan flaw signal that would be seen on an oscilloscope
screen of the system shown in Fig. 1.1. Figure 1.12 (b) shows all the
measurement system components and the transfer functions that combine
those components into the model of Eq. (1.6). Chapter 7 gives some
examples where A-scan signals determined experimentally in a pitch-catch
measurement calibration setup are compared to the signals synthesized by
measuring/modeling all the system components of Fig. 1.12 (b) and
combining them to predict the output response.

There are, of course, many electrical measurements that underlie
the determination of the transfer functions 7;(@),7,(®) and the voltage
source term,V,(@). Obtaining these individual terms is essential if one
wants to quantify how a particular component, such as a transducer or a
cable, affects the measured result. However, in many cases one is only
interested in the net combined contribution of all of the electrical and
electromechanical components to the measured response. In that case all of
these terms can be combined into a single system function, s(a)) , where

s(o)=t;(0)ty(0)V, (). (1.10)

It is shown in Chapter 7 that if one measures the output voltage in
a reference experiment, VR"’f (a)) , Where the acoustic/elastic transfer function,
1/ (@), is known explicitly, then one can obtain this system function directly
by deconvolution, i.e.
Ve (@)
s(@)=— :
ty (o)
In practice, this deconvolution is carried out with a Wiener filter to
desensitize the result to noise, but the basic process is still primarily the
simple complex division of Eq. (1.11). If a subsequent flaw measurement

is then made with the same electrical and electromechanical components
(pulser/receiver, cabling, transducers) and at the same system settings as in

the reference experiment, then the system function, S(a)) ,obtained from
Eq. (1.11) is the same in both the reference experiment and the flaw
measurement. Thus the measured flaw response V/ (w)=s(w)?} (@) is

(1.11)
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known once the acoustic/elastic transfer function for the flaw measurement
setup, ¢} (@), is obtained, using either Eq. (1.8) or Eq. (1.9) and the appro-
priate beam models and flaw scattering models. Obtaining the system
function experimentally in this fashion makes it very practical to develop
measurement models that can predict the measured output signals of very
complex inspection problems. In Chapter 12, we demonstrate the versatility
of this approach by combining a system function with the acoustic/elastic
transfer function of Eq. (1.8) to produce an overall ultrasonic measurement
model of the form

S\
IR PO

T T (1)
Z, Vv,

If the transfer function of Eq. (1.9) is used instead we obtain the
Thompson-Gray measurement model

(o) =5 () (@ (@)a(0) S|y

In Chapter 12, MATLAB codes are developed that implement these meas-
urement models as well as a measurement model suitable for cylindrical-
shaped scatterers such as a side-drilled hole, which is a commonly used
reference reflector in ultrasonic testing. These measurement models are
combined with measurements of s (a)) , the multi-Gaussian beam model of
Chapter 9 and flaw scattering models of Chapter 10 to predict the output
signals for spherical pores, flat-bottom holes, and side-drilled holes. It is
shown that these measurement model predictions agree well with the
responses measured experimentally for these reflectors.

Finally, in Chapter 13, we discuss some of the ways in which
ultrasonic measurement models can be used as tools in NDE applications.
For example, the use of the models to determine flaw scattering amplitudes
experimentally is demonstrated. This is an important capability since if we
can extract the flaw response from the total measured response, this flaw
response can be directly used in quantitative flaw classification and sizing
algorithms [Fundamentals]. We also discuss in Chapter 13 how models can
predict distance amplitude correction (DAC) transfer curves. DAC curves
are commonly used for calibration purposes but in current practice their
determination requires the construction of sets of reference specimens for
every different testing situation. Model-based DAC transfer curves allow
one to perform calibrations on a simple specimen and then transform those
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calibrations to other more complex testing configurations, thus avoiding
the considerable expense of fabrication of many different test specimens.
Chapter 13 also applies our ultrasonic measurement model to angle beam
shear wave tests, demonstrating that the concepts presented for immersion
systems also can be applied to other setups as well. These angle beam
inspection models are then used in model-assisted flaw identification and
sizing applications. All the examples shown in Chapter 13, however, only
illustrate a very small fraction of the areas where these models are useful.
Model-based applications are still in their infancy, so there is considerable
work that can be done with these models (and others) to help solve
fundamental NDE problems.

1.3 Some Remarks on Notation

In some of the following Chapters it will be necessary to occasionally use
Einstein summation notation to avoid overly complex expressions. In that
notation a repeated subscript is understood to imply a summation over the
values (1, 2, 3) of the indices. For example, in calculating the scalar (dot)
product of two vectors we can write w-v=uy, =u,v, +u,v, +u;v;. In
contrast an unrepeated (free) subscript takes on any of the values (1, 2, 3).
For example: the expression u,=0¢/0x; implies the three equations:
u, =0¢/0x,, u, =0¢/0x, ,u, =0¢/0x, . For more details see the reference

[Fundamentals].

1.4 Organization of the Book

Models that characterize the individual electrical and electromechanical
components (pulser/receiver, transducer(s), cabling) of an ultrasonic
measurement system are discussed in Chapters 2-6. Appendices A, B, and
C provide some of the necessary background material for those Chapters.
As discussed previously, all those components can be lumped together into
a single system function, s (a)) , that can be determined experimentally in a
calibration experiment. Thus, if the reader wants to concentrate primarily
on the wave processes present in an ultrasonic system, he/she can begin
with the discussion of S(a)) in Chapter 7 and then cover Chapters 8-13

that discuss beam models, flaw scattering models, and ultrasonic
measurement models in detail and describe a number of applications.
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Appendices D and E provide background material on waves needed for the
Chapters on wave modeling and Appendix F gives some of the funda-
mental properties of Gaussian beams.

A number of short exercises are given throughout the book. In
most cases those exercises involve the use of MATLAB and MATLAB-
based functions. MATLAB functions and scripts are also developed and
described at a number of places in the book. A complete set of all the
MATLAB resources used in this book can be found on the Web at
www.springer.com/978-0-387-49061-8. Appendix G also gives listings of
the MATLAB functions and scripts used to develop a complete ultrasonic
NDE flaw measurement model.

References to all the topics discussed in this Chapter can be found
at the ends of each of the following Chapters. For more information on
ultrasonic nondestructive evaluation methods and applications we have
listed a few suggested reading references below.

1.5 Reference

Schmerr LW (1998) Fundamentals of ultrasonic nondestructive evaluation — a
modeling approach. Plenum Press, New York (referred to as [Fundamentals]
in this book)

1.6 Suggested Reading

Blitz J and Simpson G (1996) Ultrasonic methods of non-destructive testing.
Chapman & Hall, London, UK

Harker AH (1988) Elastic waves in solids. Adam Hilger, Philadelphia

Krautkramer J, Krautkramer H (1990) Ultrasonic testing of materials, 4" ed.
Springer-Verlag, Berlin, Germany

Lempriere BM (2002) Ultrasound and elastic waves — frequently asked questions.
Academic Press, San Diego, CA

Rose JL (1999) Ultrasonic waves in solid media. Cambridge University Press,
Cambridge, UK
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2 The Pulser

A pulser/receiver is a complex electrical network that generates the energy
that drives the transmitting transducer in an ultrasonic measurement
system. The pulser/receiver also amplifies and/or filters the electrical
response arriving from the receiving transducer. In this Chapter we will
examine only the pulser section of a pulser/receiver and describe some of
the important overall characteristics of its output signals and how those
signals are affected by instrument setting changes. Simple models that can
describe the pulser output are also discussed.

2.1 Characteristics of a Pulser

Figure 2.1 shows a sketch of the front panel of a typical laboratory “spike”
pulser/receiver while Fig. 2.2 shows a highly idealized circuit schematic of
this same instrument. The pulser side of this instrument has three controls.
One control is the “energy” setting. The energy setting basically controls
the amount of energy stored in the capacitor, C;, of Fig. 2.2. This energy is
periodically discharged into the sending transducer by closing the switch
shown in that figure. The “rep rate” controls the frequency at which this
switch is closed, which typically may be varied from several hundred
closings/sec to several thousand closings/sec. Generally this rate is set to
ensure that the waves traveling in a component have had time to decay in
amplitude to very small values before the next discharge occurs. In this
case there is no overlapping of the received responses from one closing to
the next which, if it occurred, could cause triggering problems when the
received signals are displayed on an oscilloscope screen since the oscillos-
cope is triggered by a signal generated in synchronization with the pulser
discharges. The “damping” control on the pulser changes the value of a
damping resistance, R, , in the pulser/receiver.

In addition to a spike-like pulser, which uses a capacitive discharge
to drive a transducer, there are also square wave pulser/receivers like the
UTEX 340 shown in Fig. 2.3 which drive a transducer with circuits that
produce a rectangular-shaped voltage pulse. This particular pulser has
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Fig. 2.1. The front panel controls of a typical laboratory “spike” pulser/receiver.
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Fig. 2.2. A highly simplified circuit representation of a “spike” pulser/receiver.

most of its controls also available under computer control. An image of the
UTEX 340 computer control panel is shown in Fig. 2.4. It can be seen
from that figure that on the pulser side of this instrument there are
primarily three settings- the pulse repetition rate, the pulse voltage
amplitude (in volts), and the pulse width (in nanoseconds). The energy/
damping settings of the spike pulser and the voltage/pulse width settings
of the square wave pulser control the amplitude and shape of the voltage
and current at the output port of the pulser. In the next section we will
show how the output behavior of these pulsers can be described in terms of
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2.1 Characteristics of a Pulser 23

Fig. 2.3. A UTEX 340 square wave pulser/receiver. Photo courtesy of UTEX
Scientific Instruments, Inc. , Mississauga, Ontario, Canada.

Fig. 2.4. The control panel of the UTEX 340 pulser/receiver. Photo courtesy of
UTEX Scientific Instruments, Inc., Mississauga, Ontario, Canada.
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Fig. 2.5. The Thévenin equivalent voltage source and impedance for a pulser.

a simple equivalent circuit whose parameters can be obtained with several
electrical measurements. The properties of that equivalent circuit, however,
are dependent on these pulser settings so that if they are changed, the equi-
valent parameters will change.

2.2 Measurement of the Circuit Parameters of a Pulser

As shown in Appendix B, Thévenin's theorem allows us to replace the
pulser, which is a circuit network with sources, with the equivalent voltage
source and equivalent impedance of Fig. 2.5 if one assumes that the pulser
is a linear device. Several authors have used either the simple model of
Fig. 2.5 or other similar equivalent circuits to model both the pulser and
receiver circuits [2.1-2.4]. As pointed out in these studies, because of the
internal diode protection circuits and other elements present in
pulser/receivers, strictly speaking those devices may not act in a linear
fashion. However, if the measurement of ¥, (@) and Z; (@) are made for a
specific set of pulser settings at the same external electrical loading
conditions (cabling, transducer) found in the measurement system, then the
simple equivalent circuit of Fig.2.5 can be successfully used to model a
given pulser [2.4]. It is relatively easy to measure the Thévenin equivalent
voltage source for the pulser, V; (a)) , by measuring the open-circuit voltage,
Vs (t) , at the output terminals of the pulser and then Fourier-transforming
this measured voltage to obtain ¥ (a)) Since there is no current flowing
from the pulser under open-circuit conditions we have V,(w)=V,(®).

1
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2.2 Measurement of the Circuit Parameters of a Pulser 25

Z (o)

Fig. 2.6. The Thévenin equivalent circuit for a pulser attached to a known
external resistance, R, , for measuring the impedance, Z; ().

To find the electrical impedance of the pulser we can place a known load
resistance, R, , at the output terminals of the pulser and measure the voltage,
V, (), across this load. Fourier transforming this voltage then givesV, (@) .
But from the Thévenin equivalent circuit of the pulser shown in Fig. 2.6,
we see that

V.-V, :Ziel

2.1
V,=R,I. 1)

So eliminating the current, /, we find

Z ()= RL(II//;((Z)) —1} 2.2)

Since the values of the Thévenin equivalent parameters (V;,Zf)
depend on the instrument settings of the pulser we have shown these
parameters at several different settings. Figure 2.7, for example, shows the
magnitude of the Thévenin equivalent voltage measured for a Panametrics
5052 PR pulser/receiver (spike pulser) at combinations of two different
energy settings and two damping settings. In the same fashion Fig. 2.8
shows the magnitude of the Thévenin equivalent voltage obtained for a
UTEX 320 pulser/receiver (square wave pulser) at combinations of two
different voltage settings and two pulse width settings. Figures 2.9 and
2.10 show the corresponding dependency of the equivalent impedance of
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Fig. 2.7. Magnitude of the Thévenin equivalent voltage source versus frequency
obtained for a Panametrics 5052PR pulser/receiver for (a) damping setting = 0 and
energy setting =1 (solid line) or energy setting = 4 (dashed line), and (b) damping
setting = 7 and energy setting = 1 (solid line) or energy setting = 4 (dashed line).
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Fig. 2.8. Magnitude of the Thévenin equivalent voltage source versus frequency
obtained for a UTEX 320 pulser/receiver at: (a) pulse width = 10 and voltage = 100V
(solid line) or voltage = 200V (dashed line), and (b) pulse width = 50 and voltage
=100 V (solid line) or voltage = 200 V (dashed line).
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Fig. 2.9. Magnitude of the Thévenin equivalent pulser impedance versus frequency
obtained for a Panametrics 5052PR pulser/receiver for (a) damping setting = 0,
energy setting =1 (solid line), energy setting = 4 (dashed line), and (b) damping
setting = 7, energy setting = 1 (solid line), energy setting = 4 (dashed line).
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Fig. 2.10. Magnitude of the Thévenin equivalent impedance versus frequency for
a UTEX 320 pulser/receiver at: (a) pulse width = 10, voltage = 100V (solid line),
voltage = 200V (dashed line), and (b) pulse width = 50, voltage = 100 V (solid
line), voltage = 200 V (dashed line).

the pulser at the same pulser settings for these two pulser/receivers. It can
be seen that the energy and voltage settings do increase the magnitude of
the Thévenin equivalent voltage source for these pulsers, as expected, but
that there are also changes in the shape of the voltage source and impedance
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with frequency so that the overall behavior of such pulsers is a rather complex
function of the pulser settings Although the resistance, R, , appears in
Eq. (2.2) the impedance.Zf(a)) should not depend on that resistance, as
discussed in Appendix B. Pulser impedance measurements made in this
fashion with spike and square wave pulsers, however, do show some
variations with the load used, possibly due the non-linear elements present
in those instruments, as discussed previously. Figure 2.11 shows, for
example, the magnitude of the equivalent impedance of the Panametrics
5052 PR pulser obtained when a 50Q) resistor was used at the pulser
output versus the impedance obtained when a transducer and cable were
attached to the output port instead. In the latter case the voltage and current
were both measured at the output port of the pulser in order to calculate
the impedance of the loading induced by the cabling and transducer. The
R, in Eq. (2.2) was then replaced by that load impedance to calculate the
pulser impedance. It can be seen from Fig 2.11 that there are indeed
differences in the calculated impedance of the pulser under these different
external loads. Similar changes have been observed when calculating the
equivalent impedance of square wave pulsers. In general our experience
has been that it is best to make these measurements of the pulser impe-
dance under the actual loading conditions that will be found when
using the pulser in ultrasonic flaw measurements, but we have also

2000

1600 1

1200

800

magnitude (QQ)

400

15 20
frequency (MHz)

Fig. 2.11. The magnitude of the Thévenin equivalent impedance of a Panametrics
5052 PR pulser/receiver versus frequency found using a 50 ohm resistor loading
(solid line) and a loading consisting of a cable and transducer (dashed line).
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2.3 Pulser Models 31

been successful in using the pulser impedance values measured with Eq. (2.2)
and purely resistive loads to simulate the pulser effects in an overall
ultrasonic system measurement model of the type discussed in Chapter 7.
Thus, while the loading at the pulser output port does change the measured
values of the equivalent impedance of the pulser it appears that these
loading effects do not significantly affect the measured output voltage in
an ultrasonic measurement system, where other parameters, such as
transducer sensitivity, play a more important role.

2.3 Pulser Models

It is possible to set up a simple model of the open-circuit output voltage of
a typical spike or square wave pulser by directly specifying this voltage in
the form of a four parameter model given by

0 ¢<0
Vi(t)=3-V,[1-exp(-ait)] 0<t<y, (2.3)
~Vyexp|-a, (t-1,)] 121,

where V, =V, /(1 —e ™ ’0) and the four parameters (7,,,,,,V,)control

the amplitude and rise and fall characteristics of the pulse. Figure 2.12 (a)
shows a plot of this modeled voltage which is very similar in form to a
measured Thévenin equivalent open-circuit voltage from the Panametrics
5052PR pulser/receiver, as shown in Fig. 2.12 (b). This same model, with
the appropriate choice of parameters, can also be used to model a square
wave pulse output (see Fig. 2.13 (a)). The actual open-circuit output
voltage of a UTEX 320 square wave pulser/receiver is shown in
Fig. 2.13 (b). The spectrum generated by this simple source model can be
obtained from Eq. (2.3) by numerically evaluating the FFT of this time

domain response or one can use the explicit Fourier transform of the V;(¢)
of Eq. (2.3), which is given by:

v, {l—exp[—(a1 —ia))to}} N V. {l—exp[ia)z‘o]}

Vi (a)) - a, —iw iw
! 2.4)
R expliat, |
a, —iw '
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Fig. 2.12. (a) Voltage pulse (volts) versus time (usec) obtained from Eq. (2.3) with
t, =0.0L, , =0.2, o, =50, ¥, =200 (shifted for better visualization). (b) Measured
open-circuit voltage versus time for a Panametrics 5052PR pulser/receiver at energy
setting 1, damping setting 5.
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Fig. 2.13. (a) Voltage pulse (volts) versus time (usec) obtained from Eq. (2.3)
with ¢, =0.1, o, =1000, o, =1000, ¥, =190 . (b) Measured open-circuit output volt-

age versus time for a UTEX 320 pulser/receiver.

It is not as easy to obtain an explicit parametric model of the impedance of
a pulser since this impedance changes significantly in both amplitude and
shape with the pulser settings and as a function of frequency, as shown in
Figs. 2.9 and 2.10. However, one could try to model the pulser impedance
by an equivalent RLC circuit whose parameters are adjusted to match the
measured impedance values (as a function of frequency) at various damp-
ing settings, as done by Brown [2.1]. Brown found that the equivalent RLC
parameters obtained for a Panametrics 5052PR did change significantly,
particularly at the higher damping settings.
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2.5 Exercises

1. The MATLAB function model pulser takes as inputs an energy setting
(energy = 1, 2, 3, 4), a damping setting (damping = 0, 5, 10), a resistance
loading , RL, (in ohms) across the output terminals of the pulser and
returns the sampled voltage, vt, across RL (in volts) and the sampled time
values, t, (in psec). The form of the calling sequence of this function is:

>> [t, vt] =model_pulser( energy, damping, RL);

Use this model pulser at energy = 2, damping = 5 settings for both open
circuit conditions (RL = inf) and a given load (RL = 250 ohms) to deter-
mine the Thévenin equivalent source voltage (in volts) and impedance (in
ohms) of the pulser at these settings as functions of frequency over the
range of frequencies from 0-20 MHz and plot the magnitude and phase of
these functions over the same frequency range. Use the MATLAB unwrap
function to eliminate any artificial jumps of 27 in the phase plots. Example:

>> plot(f, unwrap(angle(Vf)))

Show and explain all the steps you used to obtain your answers.
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3 The Cabling

At the MHz frequencies involved in NDE tests, the electrical cables that
transfer the electrical pulses from the pulser to the sending transducer and
from the receiving transducer to the receiver do not just pass those signals
unchanged. Thus, significant cabling effects may be present in some
ultrasonic testing setups. Here we will discuss models and measurements
that can help us to quantitatively determine the effects of the cables. These
models and measurements will enable us to predict how the voltage and
current change from one end of the cable to the other (Fig. 3.1).

3.1 Cable Modeling

At the most fundamental level we can model a cable as a set of coaxial
conductors transferring electrical and magnetic fields (E,H ) from one end
of the cable to the other, as shown in Fig. 3.2. It is shown in many texts on
electromagnetism [3.1-3.7] that the fields at each end of the cable are
related by the reciprocity relationship

[(EP xH —E{ < 1Y )-n, dS

Si
3.1)
(s
SZ

where (E;,H,) are fields at the left end of the cable acting over an area S,
whose unit normal (pointing out from the cable) is n,, and (E,,H,) are
the corresponding fields at the other end, S,, whose outward normal is n,
as shown in Fig. 3.2. The superscripts (1) and (2) on the field variables in
Eq. (3.1) designate these fields when the cable is under two different
driving/termination conditions at its ends. These two driving/termination
conditions are labeled as states (1) and (2). If the fields are carried in the
cable as a fundamental propagating electromagnetic wave mode called a
TEM mode, then it can be shown that the electric field, E, can be expressed
in terms of a potential (voltage), V, across the two conductors in the cable
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Fig. 3.1. A cable and the voltages and currents at its end connectors.

Fig. 3.2. The electrical and magnetic fields at the ends of a coaxial cable.

and the magnetic field, H, can be related to the current, /, flowing through
the central conductor [3.4]. These relations are

E=-VV
I=[H-a, 3.2)

where c is a closed path taken around the central conductor of the cable
and dl is a vector differential element along that path.

For such a propagating TEM mode it can also be shown that the
reciprocity relationship of Eq. (3.1) reduces to a similar reciprocity relation-
ship between the voltages and the currents in states (1) and (2) given by
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3.1 Cable Modeling 37

Fig. 3.3. A cable modeled in terms of the voltages and currents at its two ends
(ports).

Fig. 3.4. Cross-section of an ideal circular coaxial cable where the radius of the
inner conductor is a and the radius of the outer conductor is b.

V,(l)]l(z) _ K(z)ll(l) _ Vz(l)lgz) _ Vz(z)fél) (3.3)

so that we can then consider our cable as modeled in terms of these
voltages and currents where I, is the current flowing into the cable at the
left end and 7, is the current flowing out of the cable at the other end (see
Fig. 3.3). If the reciprocity relationship of Eq. (3.3) is satisfied for any set
of driving/termination conditions, then it can also be shown that the
voltage and current at one end (port) of the cable are linearly related to the
voltage and current at the other end (port) and we can model the cable as a
reciprocal two port system (see Appendix C) where one has

AR \
17 )l G4)

and det[T]=T,T,, - T,T, =1.
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Fig. 3.5. An equivalent circuit model of a cable.

As developed in many electrical engineering texts, one can use a
simple transmission line model of the cable and obtain an explicit expression

for this transfer matrix [T] in the form [3.5]

| | cos(kl) —iZgsin(kl) | [V,
1L =isin(kd) ze cos(kd) ||4)° (3-3)

where / is the length of the cable, Z; is the characteristic impedance of the
cable (in ohms), and k, = @/c is the wave number and c is the wave speed

of signals in the cable. For an ideal circular coaxial cable as shown in
Fig. 3.4 where the inner conductor is of radius a and the outer conductor is
of radius b the characteristic impedance of the cable is given by [3.5]

ze = ﬁln(éj, (3.6)

2r\ ¢ a

where u is the permeability and ¢ the permittivity of the material in the

cable between the inner and outer conductors.

In Appendix C we showed how a simple RC circuit could be express-
ed in transfer matrix form as a two port system. Thus it is not surprising
that conversely a two port system can also be expressed as an equivalent
circuit. There are actually many different equivalent circuits that yield the
same results as the transfer matrix. Figure 3.5 shows one commonly used
circuit [3.1] that uses three impedances arranged in a T-shape to model the
cable.

If our cable model is terminated with a impedance, Z;, as shown
in Fig. 3.6 (a) then the cable and its termination can be represented as a
single equivalent impedance, Z; , as shown in Fig. 3.6 (b). The behavior of
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Fig. 3.6. (a) A cable terminated with an impedance, Z,, and (b) the equivalent
impedance, Z;, of this terminated cable.
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Fig. 3.7. The effect of different termination conditions on the equivalent
impedance of a cable.

this equivalent impedance versus the non-dimension frequency k. is
shown in Fig. 3.7 for open-circuit (Z, — ) termination, short-circuit
(Z; =0) termination, and termination at the characteristic impedance of
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Fig. 3.8. Measured values of the magnitude and phase of a 50 ohm cable under
open-circuit (dashed line), short-circuit (dashed-dotted line), and 50 ohm (solid line)
termination conditions.

the cable (Z; =Z;). It can be seen that the open- and short-circuit cases
generate frequency dependent equivalent impedances while in the matched
termination case the equivalent impedance is frequency independent. This
same behavior is seen when the equivalent impedance of a 50 ohm cable is
measured experimentally, as shown in Fig. 3.8. The cables used in an
ultrasonic test for sound generation and reception are terminated/driven by
ultrasonic transducers which in general are not matched in impedance to
the cable so that inherently we can expect some frequency dependent effects
due to the cabling in NDE tests.
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M —
Vl‘”T [T] T v,
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Y —» —
Vltz)T [T]
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Fig. 3.9. (a) A cable, modeled as a two port system, under open-circuit conditions,
and (b) under short-circuit conditions. Measurements of the voltages and currents
shown can be used to determine the transfer matrix of the cable.

3.2 Measurement of the Cabling Transfer Matrix

As can be seen from Figs. 3.7 and 3.8 a simple two port model can
accurately represent the behavior of an ordinary coaxial cable. However,
we do not ordinarily know all the detailed parameters that are needed to
obtain the transfer matrix components in Eq. (3.5). Furthermore, in
immersion NDE testing, such cabling is connected to fixtures that support
the transducer in an immersion tank and the details of the cabling within
the fixtures are in general also not known. This is not a problem since it is
possible to directly measure the transfer matrix components of the
combined cabling and fixtures in situ by attaching the cable/fixture to a
driving source, such as the ultrasonic pulser, and making a series of
voltage and current measurements under different cable/fixture termination
conditions. Figure 3.9 (a) shows a two port model of a cable under open-

circuit conditions at its output port and driving voltage Vl(l) and current ]](')
at its input port while Fig. 3.9 (b) shows the same model under short-circuit
conditions at the output port with driving voltage Vl(z) and current / 1(2) at the
input port. From Eq. (3.4) it is easy to see that:
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Fig. 3.10. Measured values of the magnitudes and phases of the transfer matrix
components versus frequency for a cable.
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Fig. 3.11. A check on the satisfaction of reciprocity ( det [T] =1) for the measured
transfer matrix components of Fig. 3.10. The amplitude (solid line) and phase
(dashed line) of the determinant are shown.

(3.7)

so that all the transfer matrix elements can be obtained by making measure-
ments of the voltages and currents in these two states: ") (t),il("’) (1), v, (2),

i (t) (m=1,2) and Fourier transforming them to obtain V,(m) (a)),ll('") (a)),
V,(@),1,(@) (m=1,2). The consistency of these measured transfer matrix

0

elements can be checked by the reciprocity relationship 7,,7,, - 7,,7,, =1.

Figure 3.10 shows the transfer matrix components found in this
manner as a function of frequency for a cable (both amplitude and phase
are plotted). It can be seen that the measured magnitudes of these
components do exhibit the cosine and sine function behavior of Eq. (3.5)
and the measured phase terms also generally follow that simple model
behavior. As a reciprocity check on these measurements we can compute
the determinant of the measured transfer matrix. Figure 3.11 shows that
det[T] =1 is well satisfied over a wide range of frequencies.
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3.4 Exercises

1. Consider a 1 meter long, 50 ohm cable, where the wave speed in the
cable is one half the wave speed of light, ¢, ,in a vacuum (¢, = 2.998 x
108 m/sec). Determine the transfer matrix components of the cable at
10 kHz, 100 kHz, 1 MHz, 20 MHz.

2. Consider a cable for which we wish to measure the transfer matrix
components (as a function of frequency). We can do this in MATLAB for

a function cable X which has the calling sequence:

>>[v1,i1, vt it] = cable_X(V, dt, R, L, 'term');

V(b) Vi [T]

Fig. 3.12. A measurement setup for obtaining the transfer matrix components of a
cable.
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The input arguments of cable X are as follows. V is a sampled voltage
source versus time, where the sampling interval is dt. R is an external
resistance (in ohms). This source and resistance are connected in series to
one end of the cable, which is of length L (in m) as shown in Fig. 3.12.
The other end of cable can be either open-circuited or short-circuited. The
string ‘term’ specifies the termination conditions. It can be either ‘oc’ for
open-circuit or ‘sc’ for short-circuit. Cable X then returns the “measured”
sampled voltages and currents versus time (v1, i1, vt, it ) where (v1, i1) are
on the input side of the cable and (vt, it) are at the terminated end (Note:
for open-circuit conditions it = 0 and for short-circuit conditions vt = 0).
As a voltage source to supply the V input to cable X use the MATLAB
function pulserVT. For a set of sampled times this function returns a
sampled voltage output that is typical of a “spike” pulser. Make a vector, t,
of 512 sampled times ranging from 0 to 5 psec with the MATLAB call:

>>t=s_space(0, 5, 512);

(see the discussion of the s_space function in Appendix A; a code listing of
the function is given in Appendix G) and call the pulserVT function as
follows:

>>V = pulserVT(200, 0.05, 0.2, 12, t);

For the resistance, take R = 200 ohms, and specify the length of the cable
asL=2m.

Using Eq. (3.7), determine the four cable transfer matrix
components and plot their magnitudes and phases from 0 to 30 MHz. Note
that the outputs of cable X are all time domain signals but the quantities in
Eq. (3.7) are all in the frequency domain so you will need to define a set of
512 sampled frequency values, f, through:

>> dt = 1(2) —t(1);
>>f =g space(0, 1/dt, 512);

What is the range of frequencies contained in f here?
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4 Transmitting Transducer and the Sound
Generation Process

In this Chapter we will discuss models of the ultrasonic transducer as a
transmitting device that converts electrical energy into acoustic energy.
We will also combine the models of the pulser and cabling from Chapters
2 and 3 with the transducer model of this Chapter to describe a model of
the entire sound generation process.

4.1 Transducer Modeling

An ultrasonic transducer is normally based on a piezoelectric material that
has the ability to convert electrical energy at its electrical port into acoustic
energy (motion) at its acoustic port and, conversely, to also convert
acoustic energy back into electrical energy. Thus a piezoelectric ultrasonic
transducer can act as both a transmitter and receiver of sound. In this
Chapter we will examine the transducer in its role as a transmitter. By
treating the coupled electromagnetic and elastic fields contained in the
transducer as those of a piezoelectric medium and considering the fields at
the two transducer ports as purely electrical fields and acoustic fields that
arise from those internal piezoelectric interactions, one can define a recipro-
city relationship between the fields at the two ports in the form [4.1-4.3]

S{(E<2> xH" —EY x H?)-nds = ! (P"v® = pPV) s, @)

where (E,H ) are the electrical and magnetic fields at the transducer’s elec-
trical port (over area S_) and ( p,v) are the pressure and velocity fields at

the acoustic port (over area §S), and n is the unit normal pointing outwards
from each port (see Fig. 4.1). Only the pressure appears on the right side of
Eq. (4.1) since for an immersion transducer this is the only component of
the stress tensor that can exist for a fluid. Even for a contact transducer,
however, there is normally a thin fluid couplant layer between the transducer
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48  The Transmitting Transducer and the Sound Generation Process

Fig. 4.1. The electrical and magnetic fields at a transducer's electrical port and the
corresponding voltage and current flowing into that port. At the acoustic port
distributed pressure and velocity fields are generated, as shown.

and the solid component so that in contact testing again only a pressure
exists at the transducer face. The superscripts (1) and (2) indicate these
fields for two different states (i.e. under two different sets of driving and
termination conditions). If we assume that the electrical and magnetic
fields at the electrical port are in the form of TEM waves, as done for the
cable in the previous Chapter, then we have [4.3]

pO ) _ @0 _ f ( p(z)v(u) _ p(u)v(z)) ‘nds, 4.2)
N

where 7 and [/ are the voltage and current flowing into the electrical port,
as shown in Fig. 4.1. At the acoustic port, we will assume the transducer
acts as a piston transducer, i.e. the velocity is constant over the area S. This
is an assumption frequently used to model ultrasonic transducers and is
one we will adopt here. In that case, the right side of Eq.(4.2) can be
expressed in terms of the two quantities, F and v, where

F(w)sz(x,w)dS(x)

v(w)=v(w)-n

so that F'is the compressive force acting at the transducer face and v is the
uniform outward normal velocity on this face. In this case Eq. (4.2) becomes

(4.3)
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Fig. 4.2. (a) An ultrasonic transducer represented as a device that converts voltage
and current into force and velocity and (b) its corresponding two port system
representation. The pressure distribution over the acoustic port that generates the
force F'is generally non-uniform, as shown. However, we assume the velocity
distribution at the acoustic port is uniform as shown, i.e. the transducer acts as a
piston.

p0 ) _ 0 _ g0, _ @0 (4.4)

which is the reciprocity relation in terms of “lumped” parameters. Even if
the transducer does not act as a piston, it is possible to use Eq. (4.4). The
details can be found in [4.3] but we will not discuss that generalization
here. In terms of these parameters, therefore, we can consider a transducer
as a two port device that converts voltage and current into force and velocity,
as shown in Fig. 4.2. If the reciprocity relation Eq. (4.4) is satisfied for all
states then this two port system can be written in terms of a reciprocal

transfer matrix [TA] , Where

14 4 THF
Ul 7Y serde

By modeling the fields in the transducer as 1-D fields, Sittig [4.4],
[4.5] developed an explicit expression for the transfer matrix components
that describe a compressional wave transducer. In the Sittig model, the
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50  The Transmitting Transducer and the Sound Generation Process

transfer matrix of a transducer A, [TA] , can be written as a product of two

2x2 transfer matrices, [Tf ] ,[TaA ] , as [TA ] = [Tf ][Tf] , where

l/n  nlioC,
T e "0

1
T |=
7] Zy —iZ; tan(kd /2) (4.6)
|z +izgcot(kd) (Z;) +iZ;Z; cot(kd)
1 Z¢ —2iZ¢ tan (kd /2)

The multiple parameters appearing in this model are as follows.
The parameter £ is the wave number for the piezoelectric plate, k =w/v,,
where v, is the wave speed of compressional waves in the piezoelectric

plate given by v, =+/cl/p, in terms of the elastic constant of the plate,
ch, at constant electric flux density, and p,, the density of the plate. The
constant n = h,;C, is given in terms of 4, a piezoelectric stiffness constant
for the plate, and C,, the clamped capacitance of the plate, which is given
by C,=S/p5d , where S is the area of the piezoelectric plate, S, is the
dielectric impermeability of the plate at constant strain, and d is the plate
thickness. The quantity Z; = p,v,S is the plane wave acoustic impedance
of the piezoelectric plate, while Z; (a)) is the corresponding acoustic
impedance of the backing (which is a function of frequency since the
backing normally consists of one or more layers and is highly attenuating).

It can be seen from Eq. (4.6) that in order to use the Sittig model
one must know in considerable detail the internal material and geometry
parameters of the transducer. When designing and manufacturing trans-
ducers, such details are known explicitly but it is not possible to obtain
such detailed knowledge of transducers that are purchased commercially.
Thus, one must rely instead on experimental means to determine the
transfer matrix of the transducer. Unfortunately, at present a practical
experimental method does not exist that can determine the complete
transfer matrix of an ultrasonic transducer. The problem lies in the fact
that it is difficult to enforce different known termination conditions at the
acoustic port (as was done in the cable case for one of the electrical
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Fig. 4.3. (a) A 1-D model of the electrical and acoustic parameters for a plated
piezoelectric crystal and (b) its representation as a three port system.

ports of the cable). Also, while it is easy to measure the voltage and
current at the electrical port of the transducer it is more difficult to measure
the force and velocity parameters at the acoustic port without investing in
expensive equipment. Fortunately, as we will show later, we can char-
acterize the role of the transducer in an ultrasonic measurement setup in
terms of only two parameters that are related to the transducer's transfer
matrix. These two parameters are the transducer's sensitivity and its
equivalent electrical impedance. We will also show that it is possible to
determine the sensitivity and impedance with purely electrical measure-
ments at the transducer’s electrical port. Thus, we can bypass the need to
have the full set of transfer matrix components for characterizing the
transducer.

In designing ultrasonic transducers, many designers find it conveni-
ent to use a three port model instead of the two port Sittig model. The
Mason model and the KLM model are two models of this type that are
commonly used in practice [4.6],[4.7]. Like the Sittig model, both models
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A tan (4//2) —i Zy tan(kl/2) v
— , — +—
R A
—i Z{ sin(kl)
Fl - C() F}

Fig. 4.4. The Mason equivalent circuit model of the three port system defined by
Eq. (4.7).

v Va
Y iz 12 «—
F . Fy
Z, Z
I, -ix
—1 ¢=1/2M sin(kl/2)
| o X = Z!M*sin (k)

M =hy/(@Z])

1:f

Fig. 4.5. The KLM equivalent circuit model for the three port system defined by
Eq. (4.7).

treat the transducer as a plated piezoelectric element where 1-D electrical
and mechanical fields are present, as shown in Fig. 4.3. The electrical port
is where electrical connections are made to the plated faces of the
piezoelectric plate while the two acoustic ports are the two faces of the
plate (Fig. 4.3). The electrical and mechanical lumped parameters for this
three port model can be shown to satisfy the relations [4.8]

www.iran-mavad.com
sloo Uyl



4.1 Transducer Modeling 53

#
/ |
R
crystal \
backing facing layers
(Z; ) (epoxy bonding,

wear plate, etc.)

Fig. 4.6. Construction of a typical commercial transducer showing the crystal
backing and one or more facing acoustic layers at the transducer acoustic output
port.

F, T [T'] T F,

Fig. 4.7. The acoustic two port system model of an acoustic layer.

F, Zycot(kl) Zg/sin(kl) hylo |[v
Fy =i Zy /sin(kl)  Zjcot(kl) hylw |v,¢, 4.7)
V hy ! @ hy ! @ l/oC, || 1

which can be seen to be given in the form of a 3x3 impedance matrix. Note
that in Eq. (4.7) the velocities are assumed to be flowing into the
transducer at the acoustic ports. This convention is opposite to what is
assumed (at the acoustic output port) of a transfer matrix model (see
Fig. 4.2 (b)). If the material backing on the piezoelectric element is

specified as a given acoustic impedance, Z,‘,’(a)), as done for the Sittig
model, then this three port model reduces to a two port model. The Sittig

model is just a transfer matrix representation of the resulting two port
system. In contrast, the Mason and KLM models are just equivalent circuit
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54  The Transmitting Transducer and the Sound Generation Process

representations of the three port system described by Eq. (4.7) where the
acoustic impedance of the backing of the piezoelectric element is not
specified. Figure 4.4 shows a schematic of the Mason equivalent circuit
model and Fig. 4.5 shows the KLM equivalent circuit.

The Sittig model is a particularly useful model to use to consider
additional acoustic layers in the transducer model at the transducer output
port. Such layers are normally present in the form of wear plates to protect
the piezoelectric element or impedance matching plates (Fig. 4.6) and can
be represented as acoustic two port systems (Fig. 4.7). The transfer matrix

[Tl] for an acoustic layer containing 1-D propagating compressional waves
is given by

F B cos(kula) —iZ, sin(kula) F, 43

v | -isin(k2)/ze cos(kl) ||, ) (4.8)
where k, = w/cis the wave number for waves traveling in the layer with
compressional wave speed, c, [, is the layer thickness, and Z; = pcS is the
acoustic impedance of the layer, with p the density of the layer and S is
the cross-sectional area. Note that this transfer matrix has exactly the same
form as the matrix obtained for a cable, so this matrix is the acoustic
analog of that electrical model. A transducer containing such an acoustic
layer can be joined with the Sittig model by simply multiplying that model

by an additional acoustic transfer matrix so that the entire transfer matrix
for the transducer, [ T* ], is given by

[ =[] (49)

and more layers can be handled in exactly the same fashion.

4.2 Transducer Acoustic Radiation Impedance

When an ultrasonic transducer is used in an ultrasonic measurement
system its acoustic port is always terminated, i.e. the output force and
velocity are related to one another. For an immersion transducer radiating
into a fluid, for example, we will show in Chapter 8 that for a planar piston
transducer the pressure field, p(x,a)) , on the face of the acoustic output port
of the transducer is given in terms of the uniform normal velocity, v, (w) ,
at that port by the Rayleigh-Sommerfeld integral:
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|
+

—_— 4

Fig. 4.8. An ultrasonic immersion transducer radiating into a fluid.

V,,,T (1] F,T Z50

Fig. 4.9. A transducer 4, whose acoustic radiation impedance is Z“, radiating
into a material and modeled as a acoustically terminated two port system.

—iwpv, (a)) I exp(ikr) dS(y),

p(X,a))= 2z r

(4.10)

N

where x and y are two points on the surface, S, of the transducer face, p is
the density of the fluid, k=w/c is the wave number for waves propa-
gating in the fluid whose compressional wave speed is ¢, and r = |X - y| is
the distance between x and y. Since the compressional force, F;, at the
transducer’s output port is just the integral of this pressure, we have

R B2 s e o)

=Z (a))v[ (a)),

where the term in brackets in Eq. (4.11), Z? , is called the transducer radia-
tion impedance. The radiating transducer A of Fig. 4.8, therefore, can be
represented as a terminated two port system as shown in Fig. 4.9. Greenspan
[4.9] has shown that the two integrals in Eq. (4.11) can be performed for
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Fig. 4.10. The normalized acoustic radiation impedance of a circular, planar,
piston transducer 4 of radius a versus the non-dimensional frequency, ka.

a circular planar piston transducer of radius a, to obtain an explicit expression
for the radiation impedance given by

2601 pes =1 ka) 5, (k) e, @12

where J,, S, are first order Bessel and Struve functions, respectively, and

S,=ra’ is the area of the “active” face of the transducer at its acoustic
port. Figure 4.10 shows a plot of this normalized radiation impedance
versus ka , which is a non-dimensional frequency.

It can be seen from Fig. 4.10 that for approximately ka >10we
can take Z° = pcS, which is just the value of the acoustic impedance of a
traveling plane wave. For most ultrasonic transducers, the ka value at the
MHz frequencies used in testing is large. For example, at 5 MHz a
6.35 mm radius piston transducer radiating into water has a ka value of
approximately 135. This same transducer radiating into steel would have a
ka value of approximately 34. Thus, even though such ultrasonic
transducers generate sound beams that are not just plane waves, their
acoustic radiation impedances can generally be taken as simply as the
constant value, pcS, of a plane wave. This is true for any shaped piston
transducer, not just the circular case considered by Greenspan. To see this

consider Eq. (4.11) again and with x fixed let dS (y) =rdrd¢' (see Fig. 4.11
(a)). Then the radial integration can be performed to yield
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(a) “

(©)

Y.

Fig. 4.11. (a) Integration over points y on the transducer face, and (b) averaging
over points x on the transducer face, leading to (c¢) remaining integrations in terms
of the distance, R, , between points on the transducer edge.

F(0)= M]{ﬁexp(ikr)dmdds(x)

2z 5
(4.13)

_pev (@) j {2%—I{exp(z’kr3)d¢}dS(x),

2r

where 7, =7,(x,y, (¢')) is the radius from point x to a general point on the
edge of the transducer surface, S (see Fig. 4.11 (b)). With y, (¢') fixed, we
can let dS(x)=r.dr,d¢ and Eq. (4.13) becomes
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7—¢, 27| R,

cv, (@

F(0)= pcSv,(w)—pzf—() [ | [exp(ikr,)rdr, dgag',  (4.14)
T 5 0l0

where R, is shown in Fig. 4.11 (c). Performing the integral on 7, by parts, it

follows that

2

& 1 R
ikr \r.dr, =——| R? kR e (1- kR
}[exp(z e)rg r, IR . exp(z ")+ikR ( exp(z e))

e

(4.15)

e

=O(1/kR,)

so that at high frequencies the integral in Eq. (4.14) can be neglected and
we have

£ (@)= pes v, (o) (4.16)

4.3 Transducer Impedance and Sensitivity

Since to date there is not a practical method available to determine experi-
mentally all the transfer matrix components of a radiating transducer, it is
necessary to re-examine the terminated model of Fig. 4.9 and express it in
terms of quantities that can be easily measured. In this case we can write
the transfer matrix relations for a transmitting transducer A either in terms
of the transmitted output force, F,, or the transmitted output velocity, v,,

{VMHTJ’ TSHZ:’%}
Iin Tz? Tz; vt
{Tl:‘ TI;‘} { F, }
Asa |°
i iRz

The effects of this transducer on the other electrical components
connected to it through its electrical port are determined by the transducer’s

electrical impedance, Z,,* (@), which is given by

since

(4.17)

Asarm A A
ZA;E _ I/in _ Zr 711 +]12

in T _ﬁ
1, ZRTieTy

m

(4.18)
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4.3 Transducer Impedance and Sensitivity 59

However, this quantity can obviously be obtained by measuring V, and/, ,
the driving voltage and current at the transducer’s electrical port, respec-
tively, when it is radiating into a material and it is not necessary to know
the underlying transfer matrix components in Eq. (4.18) [4.10]. If the
transducer’s electrical impedance Z, (@) were found in this fashion by
electrical measurements and if we also had characterized the pulser and
cabling by the methods discussed in Chapters 2 and 3 for a given

ultrasonic setup, we could then find explicitly both the voltage ¥, and the
current 7, at the transducer’s electrical port for this setup. Thus, Z; (@)
is all that is needed to characterize the electrical properties of the
transducer in an ultrasonic measurement system. In addition, if we knew
the transducer’s radiation impedance, Z*“ and also obtained a measure of
a quantity such as v,/I, or F,/V, , we could determine both the output

force and velocity of the transducer and we would have characterized the
transducer completely, i.e. both electrically and acoustically. Such
quantities, which are just ratios of a transducer output to a transducer

input, are called transducer transmitting sensitivities, S,,, where O is an

output quantity such as force or velocity, and / is an input quantity such as
voltage or current, and S, =0/ . There are, obviously, a number of

different sensitivities one could define. For example we have

N
S =[—
F .
Sy =7t=2"S]
v’” (4.19)
Sy =—=8,17Z,°
v V;n Vi m
F . .
S;jl/ :V_t = Z;-A’QS; /Zif’e

n

We will choose to describe the transducer 4 in terms of its sensitivity S .
As Eq. (4.19) shows, if we also know the transducer’s electrical impe-
dance, Z/ (@) ,and its acoustic radiation impedance, Z**, we could then

also obtain any of the other sensitivities listed in Eq. (4.19). From Eq. (4.17)
it follows that:
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Fig. 4.12. A model of a transmitting ultrasonic transducer as an electrical
impedance and an ideal “converter” that transforms the input electrical signals into
the acoustic output signals.

Sy =—t=—r——7 (4.20)

It will be shown in Chapter 7 that it is possible to obtain this
sensitivity by direct electrical measurements of the voltage and current at
the transducer's electrical port, so that there is a practical way to determine

all the transducer parameters, Z.*,S4,Z*“ Thus, we can replace the two

port transfer matrix model of the transmitting transducer by the simpler
model shown in Fig. 4.12, where we have represented the transducer as an
electrical impedance and an ideal “converter” that transforms the input
current to output velocity (or force).

4.4 The Sound Generation Process

We can combine our pulser, cabling and transducer models into a complete
model of the entire sound generation process in an ultrasonic measurement
system [4.10]. This generation process model is shown schematically in
Fig. 4.13. We can treat this whole process as a single input, single output
LTI system that is characterized by a transfer function, 7 (a)) , as shown in
Fig. 4.14. We will choose to write this transfer function in terms of the output
force rather than the output velocity as #; (@) = F, (®)/V,(@). Since we have
defined all of the elements contained in the sound generation process, we
can obtain an explicit expression for this transfer function. From Fig. 4.13
we have
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V(o) KT [T]

pulser cabling transducer

Fig. 4.13. A model of the entire sound generation process in an ultrasonic system.

pulser transmitting
transducer
— <=
Vi () cable F (@)
Thevenin output
input voltage (@) force

Vo) = 1,(0) > F(o)

(b)

Fig. 4.14. (a) The elements in the sound generation process — the pulser, the
cabling, and the transmitting transducer and (b) an LTI system model of the sound

generation process whose transfer matrix is 7 (a)) .

V-V, =Z1, 4.21)
Vl} [Tn T]ZHVM}
= : (4.22)
{]1 TZI TZZ Iin
F; = Z:lv“S‘j;Iin’ (423)
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Fig. 4.15. A sound generation transfer function obtained experimentally. (a) Magni-
tude of the transfer function versus frequency and (b) its phase versus frequency.

Vii=2.L,. (4.24)

m

Using Eqgs. (4.21 - 4.24) it is easy to show that [4.10]

t (w)zF,(w): Z'S,; (425)
V@) (Zin A1)+ (20T + T ) 2 ‘

1

where (7,,,7,,,T,,,T,,) are the components of the transfer matrix, [T], for
the cabling between the pulser and the transmitting transducer, Z;is the

electrical impedance of the transmitting transducer 4 and S is its
sensitivity, and Z*“ is the acoustic radiation impedance of the transducer.
With this transfer function we can model completely the effect of the
pulser, the cabling and the transducer and predict the output force, F, ().
Figure 4.15 shows an example where the magnitude and phase of a sound
generation transfer function, 7, (a)) , was experimentally determined by
characterizing all the components contained in Eq. (4.21). In this case the
pulser was the pulser section of a Panametrics 5052 PR pulser/receiver
(measured at a set of specific energy and damping settings). The cabling
consisted of 1.83 m of flexible 50 ohm coaxial cable connected to a 0.61 m
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fixture rod. The rod also contained internal cabling and was terminated by
a right-angle adapter to which the transducer was connected. The trans-
ducer was a relatively broadband 6.35 mm diameter 5 MHz immersion
transducer. The sensitivity and impedance of the transducer were obtained
by the methods which will be discussed in Chapter 6.
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4.6 Exercises

1. Equation (4.8) gave the transfer matrix for a layer in terms of the force
and the velocity on both sides of an elastic layer. Consider the case where
a plane compressional (P-) wave is incident on a layer, generating both
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PG P26y P16

Fig. 4.16. A plane wave incident on a layer.
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Fig. 4.17. Waves incident on a layer, showing the first few reflected and
transmitted waves.

transmitted and reflected waves, as shown in Fig. 4.16. Let the velocities
of these waves in their directions of propagation be given by

v, =V, expik x|
v, =V, exp[—ikx]
v, =V, expl ik (x—h)],
where we have written the transmitted wave in terms of the coordinate

x, =x—h since that wave only exists for x, >0. Then the corresponding
forces in these waves are
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F = (IOICIS)Vt =Zy,.

On the sides of the layer we have Fi=F, +F F,=F.,v,=V,+V_,v,=V,.
Using Eq. (4.8) for the layer then we can obtain the reflection and
transmission coefficients of the layer in the forms
R :iz R + RZIT;ZTVZI eXp(21k2h)
E " 1-R, exp (2ik,h)
ﬂz 1,1, exp(ikzh)
F, 1-R} exp(2ik,h)’

where R, T, are the plane wave reflection and transmission coefficients

iy
for a single interface going from medium i to medium j given by (see
Appendix D):

R,=-R, = P26 — PG
PiC T Py
2
7‘{2 — pZCZ
PiC Tt P6
T o= 2p¢

2= .
PiC T 0,6,

The layer reflection and transmission coefficients (R,T ) are
functions of frequency because they contain all the waves that bounce back
and forth in the layer and emerge into the adjacent media. To examine this
behavior in frequency use MATLAB to plot the magnitude of these
coefficients for 500 frequency values ranging from zero to 20 MHz for a
thin (1 mm thick) aluminum plate in water. Can you explain the frequency
dependent behavior of this plot?

To see the individual reflected and transmitted waves, we can expand

the denominators of the (R,T ) expressions and obtain

R =Ry, + Ry T;, Ty, exp(2ik,h) {1+ Ry, exp(2ik,h) + .|
T =T,T,, exp(ik,h){1+ R}, exp(2ik,h) + ..},
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which are the first few reflected and transmitted waves as shown in
Fig. 4.17. Use MATLAB to calculate the magnitude of (R,T) for just

these first few terms. How do your results here compare to your previous
results?
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5 The Acoustic/Elastic Transfer Function and the
Sound Reception Process

5.1 Wave Processes and Sound Reception

The last Chapter showed how to characterize the relationship between the
Thévenin equivalent driving voltage of the pulser and the output force,
F (a)), at the face of the transmitting transducer. That output force will
launch waves from the transducer, waves that will propagate and interact
with the component being inspected as well as with whatever flaws may be
present. A portion of these waves will be captured by a receiving trans-
ducer as shown in Fig. 5.1. The waves incident on the receiving transducer
will generate a force on that transducer, labeled F, () in Fig. 5.1. All the
acoustic/elastic wave propagation and scattering interactions that occur
between the transmitting transducer and the receiving transducer are
complex 3-D wave phenomena.

Later Chapters will describe in detail how models can describe
these waves. Here, we are interested in characterizing the role that the
acoustic/elastic interactions play in the overall ultrasonic measurement
system and we will give some simple examples of those interactions. We
will also describe models for characterizing the entire reception process
(see Fig. 5.2) where the force, F,(w), is converted into electrical energy
at the receiving transducer, transmitted by a cable to the receiver, and then
amplified to generate a final system output voltage, V, (a)) . Like the process
of sound generation both the acoustic/elastic process and the reception
process can be modeled as transfer functions. The acoustic/elastic transfer
function is defined as:

t, (o) Fy (o)

(@) 0

and the reception process transfer function is defined as:
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\“
P 4

o A ]« (31

Fo) | u(@) | )

(b)

Fig. 5.1. (a) An ultrasonic pitch-catch immersion inspection, showing the
acoustic/elastic waves present between the sending transducer and the receiving
transducer, and (b) an LTI system model of those acoustic/elastic processes whose

transfer function is ¢, (@).

Ffr ((0) VR ((0)
g i -
cable
receiving output
transducer receiver voltage
()

Fy(o) —» () V(o)

Fig. 5.2. (a) The elements of the reception process — the receiving transducer, the
cabling, and the receiver portion of a pulser/receiver, and (b) an LTI system model

of the reception process whose transfer function is ¢, (a)) .
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Fig. 5.3. Modeling the interaction of the waves incident on a “blocked” receiving
transducer where the waves are treated as plane waves and the transducer surface
is treated as a infinite, planar and rigid (immobile) boundary.

()= o (52)

5.2 The Blocked Force

The force, F, (a)) , appearing in both Egs. (5.1) and (5.2) is a particular
force acting on the receiving transducer called the blocked force. This
blocked force is defined as the force that would be exerted on the receiving
transducer if its face was held rigidly fixed (immobile). We will see shortly
why this specific force arises naturally when we discuss the reception
process. However, we can use a simple model to gain some additional
understanding of this force. Consider, for example, the waves incident on a
receiving transducer in an immersion setup. Let 0 be the angle that these
incident waves make with the normal to the transducer and assume that
these incident waves behave like harmonic plane waves, as shown in
Fig. 5.3. If we neglect any wave diffraction effects at the edges of the
receiving transducer, we can model the face of that transducer, when its
face is held rigidly fixed, as an infinite plane rigid surface, as shown in
Fig. 5.3. The pressure of the incident plane wave can be given as

Pie = P exp| ik (xcos @+ ysin ) it | (5.3)
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and the pressure in the plane reflected wave given by
Prot = P exp [ik(—x cos@+ ysinf) - icot} (5.4)

since it reflects from the surface with the same angle as the incident wave
as shown in Appendix D. At the transducer face, x = 0, which is held
rigidly fixed, the total displacement and velocity normal to the transducer
(in the x-direction) must be zero. Thus, from the equation of motion (see
Appendix D) we have at the transducer face

1 Op(x,y,t
vx (X,y’[)L:O = _M = 0

iwp  Ox (5:5)

x=0

where p=p,. + p,, 1s the total pressure. Placing Eqs. (5.3) and (5.4) into
Eq. (5.5) we find

ikcos@
iwp

(P, —P.)exp(ikysin @ —iwt)=0 (5.6)

so that P =P and the total pressure, p,, at the blocked transducer face is
just p, =2p, . If we let S be the area of the face of the transducer then we
see that the blocked force acting on the face of the transducer,
Fy( ” pdS , s just twice that of the force F,, ” p,,.dS , exerted by

mc

the 1n01dent wave over the same area, i.e.

Fy(0)=2F, (@) (5.7)

To summarize: If we assume plane wave interactions at the receiving trans-
ducer, the blocked force, F; (), is just twice the force, F, (), exerted by
the waves incident on the area of the receiver. The force, F, ( ) acting

on § is computed from the incident waves as if the transducer were absent.

Many authors use Eq. (5.7) without further discussion since the
plane wave interaction assumption on which it is based is likely a good
assumption in most cases. We will also find it useful to use Eq. (5.7) when
obtaining the acoustic/elastic transfer function since then we can model the
pressure wave field of only the incident waves at the receiving transducer
and use Eq. (5.7) to obtain the blocked force, without having to consider
explicitly any more complex interactions of the incident waves with the

receiving transducer.
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Fig. 5.4. An ultrasonic pitch-catch calibration setup where the waves generated by
a circular planar piston transducer are received by a second circular planar
transducer and where the transducer axes are aligned.

5.3 The Acoustic/Elastic Transfer Function

To obtain the acoustic/elastic transfer function, ¢, (a)), in a general ultra-

sonic NDE measurement system requires a knowledge of the waves
propagating in the component being inspected as well as the waves
generated by any flaws present. We will develop models needed to
describe those waves in Chapters 9 and 10. Here, however, we will discuss
some simple setups where there are explicit analytical expressions for the
acoustic/elastic transfer function. One setup that is commonly used for
calibrating pitch-catch setups is shown in Fig. 5.4 where a circular planar
piston transducer, of radius a, radiates waves into a fluid which are
captured by a circular planar piston receiving transducer of radius b, where
the two central axes of the transducers are aligned and the transducer faces
are parallel to one another. In this case an explicit model has been

developed for F, (), the force of the waves incident on the area of the
receiver (in the absence of that receiver). This force is given by [5.1]

F,. (@)= pc,v, (w){@exp(ika)

sin®ucos’ u

72
—16a°b*
'([ (a—b)2 +4abcos’ u (5.8)

-exp[ ikp\/D2 +(a—b)’ +4abcos’u }du},

where
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zb® a>b
0= . (5.9

and p,c, are the density and compressional wave speed of the fluid, respec-
tively, k, =w/c,, v,(w) is the velocity on the face of the transmitting
transducer, and D is the distance between the transducers. If we take the
acoustic radiation impedance of the transmitter as Z* = za’ pc, and the

blocked force at the receiver as F, =2F, , then we have for the transfer
function

2 .
t, (a))z p {@exp(zka)
72
—16a’b’ I >
o (a—b) +4abcos’u

sin” ucos’ u

(5.10)

-exp[ ikp\/D2 +(a—b)’ +4abcos’u }du}

In the special case when the transducers are both of the same size (b = a),
Eq. (5.10) reduces to

t,(w)= 2{exp(ika)—%

zl2
. I sin’ u exp[ikp\/D2 +4a’ cos’ u}du}.
0

(5.11)

At high frequencies the integral in Eq. (5.11) can be evaluated analytically,
yielding [Fundamentals]

t, (a)) = 2exp(ikD)[l - exp(ikpa2 /D)
(5.12)
{Jo(k,a® /D)=, (k,a* I D)} ],

where J, J, are Bessel functions of order zero and one, respectively.
Although Eq. (5.12) is only an approximation of Eq. (5.11) it has

been found to give accurate results when k,a >>1 which is well satisfied

for the size of transducers and frequencies used in NDE testing. Thus,

Eq. (5.12) can be regularly used in place of Eq. (5.11). This eliminates the
need to numerically evaluate any integrals.
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Fig. 5.5. An ultrasonic pulse-echo calibration setup where the waves generated by
a circular, planar, piston transducer are reflected from a plane fluid-solid interface
at normal incidence and the reflected waves are received by the same transducer.

Some more explicit results can also be obtained from Eq. (5.10)
for other cases as well. For example, if we assume a >> b Eq. (5.10)
reduces to

t (a))z22—z{exp[ika]—exp[ikp\/D2 +a’ J} (5.13)

This is just the case where the receiver is small enough so that it acts as a
point source and the transfer function is just proportional to the on-axis
pressure of the transmitting transducer (see Chapter 8). Similarly, if we
assume b >> a then Eq. (5.10) becomes

t (a))=2{exp[ika]—exp[ikp\/D2 +a’ }}, (5.14)

which again is proportional to the on-axis pressure. For the case where the
transducers are separated by a large distance D, where D >> a, b,
Eq. (5.10) becomes

t,(w)=—ik,a® ———"—=, (5.15)

which has the behavior of a spherically spreading wave, a behavior that is
characteristic of point sources and the transducer far-field (again, see
Chapter 8).

A similar immersion calibration setup that is useful for pulse-echo
testing is shown in Fig. 5.5 where a circular planar piston transducer of
radius a is oriented at normal incidence to the planar surface of a solid
block. In this case, the force in the waves incident on the receiver from the

front face of the solid, F,, (), can be obtained as [Fundamentals]:

>~ inc
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F,.(@)=ra’pic,v,(o)R, exp(ZikplD)[l - exp(ikpla2 /2D)
(5.16)
(o (ke 12D) = iJ, (kp1a2/2D)}},

pl

where p,c,, are the density and compressional wave speed of the fluid,
k

pl
mitting transducer when it is firing, and D is the distance from the trans-
ducer to the fluid-solid interface (Fig. 5.5). The quantity R, is the plane

=w/c,, is the wave number, v, (@) is the velocity on the face of the trans-

wave reflection coefficient for the interface, based on the ratio of the
reflected pressure to that of the incident pressure (see appendix D) given
by

P T PICy

R, = 5
PrCon T PICy

(5.17)

where p,,c,, are the density and compressional wave speed of the solid,
respectively. If we again take the radiation impedance as Z‘ = za’ Py

and the blocked force as F, =2F, , we obtain the transfer function
t,(®)=2R, exp(2ikp1D)[1 - exp(ikpla2 /ZD)

(5.18)

{7, (k,a* 12D) s, (ke /2D)}].

It is interesting to note that apart from the reflection coefficient Eq. (5.18)
is identical to Eq. (5.12) if we replace the D in Eq. (5.12) by 2D. This
similarity occurs because we can view the reflected waves as arising from
a fictitious “image” transmitting transducer located a distance 2D from the
receiving transducer. Thus, for the pitch-catch response of two transducers
of the same radius located co-axially in a fluid we have, from Eq. (5.12)

t,(@)=D,(k,a*/ D)exp(ik,D) (5.19)
and for the pulse-echo case, from Eq. (5.18)
t,(®)=D,(k,a’/2D)R,, exp(2ik,D) (5.20a)
with
D, (u)=2[1-exp(iue){J, (u) i, (u)} ] (5.20b)
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Fig. 5.6. The magnitude of the acoustic/elastic transfer function for two identical
circular 3.175 mm radius planar piston transducers in water facing one another in
a pitch-catch configuration as shown in Fig. 5.4 with the distance D = 444 mm.
The effect of attenuation was included by using Eq. (5.22a) with the attenuation
given by Eq. (5.21).

From Eq. (5.19) we can recognize the term without the Dp function as just

the transfer function for a plane wave that had traveled directly from the
transmitter to the receiver, while in Eq. (5.20a) the terms without the
[)p function would be the transfer function describing a plane wave that had
traveled from the transmitter to the interface, been reflected from the inter-
face and then traveled back to the receiver. Thus, [)p is just the diffraction
correction term for these two cases that takes into account the deviations
from a plane wave result. These deviations exist because the transducer
produces a beam of sound rather than just a plane wave (see the discussion
in Chapter 8 of diffraction corrections and the paraxial approximation).
The factor of two in the [)p expression arises simply because our transfer
function is defined in terms of the blocked force rather than the force of
the incident waves.

In using these transfer functions to model the propagation of
waves in a real fluid, such as water, it is important to include the effects of
material attenuation, which is absent in these transfer functions since they
were developed under the assumption that the waves were propagating in
an ideal (loss free) compressible fluid. Adding attenuation to these transfer

functions can be done by including a term of the form exp[—a( f )z],
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Fig. 5.7. A receiving transducer as a two port system. To use this model we need
to know the nature of the acoustic sources driving the transducer.

where a( f ) is a frequency dependent attenuation coefficient (measured in
Nepers/unit length — see Appendix D) for the material the waves are
traveling in and z is the distance traveled in that material. The attenuation
coefficient for water at room temperature, for example, has been measured
as [Fundamentals]

a,(f)=253x10"° f* Nepers/mm (5.21)

where f is the frequency in MHz. Using this attenuation correction the
transfer functions of Eq. (5.19) and (5.20) become

t, ()= [)p (kpa2 /D)exp(ika)exp[—aw (f)D] (5.22a)
and
t,(®)=D,(k,a’/2D)R,, exp(2ik,D)exp[ -2a, () D] (5.22b)

An example calculation to show the behavior of the transfer function in
Eq. (5.22a) is given in Fig. 5.6.

There are other simple setups where one can develop explicit
expressions for the transfer function ¢, (@) but we will not discuss those

cases here. The two setups we have described will be particularly useful in
setting up model-based measurements that allow us to characterize all the
electrical and electromechanical components in an ultrasonic measurement
system (see Chapter 7) and for determining material attenuation (see
Appendix D).
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5.4 The Acoustic Sources and Transducer on Reception

The elements of the sound reception process are the receiving transducer,
the cabling, and the receiver portion of the pulser/receiver as shown in
Fig. 5.2 (a). In this section we will model the receiving transducer while in
the next section we will discuss models of the cabling and receiver. By
combining all of those components we will obtain the transfer function that
describes the entire reception process (Fig. 5.2 (b)).

First, consider a receiving transducer B. We can model this
transducer as a two port system where the input port is the acoustic port
and the output port is the electrical port, i.e. we have reversed the inputs
and outputs from the transmitting case as shown in Fig. 5.7. Note that
along with this reversal we have also changed the direction of the velocity
at the acoustic port and the current at the electrical port of the transducer.
By inverting the transducer transfer matrix [TB ] that describes B when it

is used as a transmitter (see Eq. (4.5)), using the fact that det [TB] =1, and
accounting for the sign changes on the velocity and current, we have

F 5 18| (Vv
{Hf? T‘?Hz}’ .23
21 11

i.e. the diagonal terms are interchanged but the elements of the transfer
matrix in Eq. (5.23) are exactly the same elements defined for the case
where the transducer acts as a transmitter. To make use of this two port
system model we need to know how the force and velocity inputs are
related at the acoustic port and define the “driving” sources at this port.
For the receiving transducer, the “sources” at the acoustic port are
obviously the waves incident on the transducer as well as the waves
scattered from the transducer by the interaction of the incident waves with
the transducer (see Fig. 5.8), generating a normal velocity on the face of
the transducer. We will again assume that the receiving transducer behaves
as a piston and let the normal velocity on its face bev, (a)) To see how
these waves generate the input force, F, and the input velocity, v, for our
two port model, we break up our original problem into the sum of the two
problems shown in Fig. 5.9 [5.2]. In Problem I, the face of the transducer
is held rigidly fixed. In this case we have the pressure from the incident

waves, p,., as well as the pressure of the waves scattered from the

blocked
scatt

“blocked” transducer face, p . The integral of the sum of these two

pressures over the transducer face is just the blocked force, Fy (@), we
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F(@) = the force on
the transducer

p&(.'tllf

Fig. 5.8. The incident and scattered waves at a receiving transducer and the total
force, F(w), and normal velocity, v, (@), that those waves produce on the face

of the transducer.

Problem I

X p"‘l’.'
Pl F, (@) = the blocked force on
the transducer

Problem I1

Fy (@) = the force due to motion of
the transducer face

Fig. 5.9. The decomposition of the original problem shown in Fig. (5.8) into the
sum of two auxiliary problems, labeled Problem I and Problem II.
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Fig. 5.10. (a) Representation of the waves received by a transducer as a blocked
force source in series with the acoustic radiation impedance of the transducer, and
(b) the representation of the acoustic sources and receiving transducer by a
Thévenin equivalent voltage source and electrical impedance.

defined earlier. In Problem II the incident waves are absent and we have
just the pressure of the radiated waves, p)», , generated by the motion,

v, (a)) , of the transducer face, which is taken as the same motion as in the
original problem shown in Fig. 5.8. Let F, (@) be the force acting on the

face of the transducer in Problem II due to this motion of the transducer
face. However, Problem II is just the same form as if the transducer were
radiating waves when the transducer is used as a transmitter so the force,

F,(w), acting on the transducer in this case is related to v,(®) by

F (0)=Z""(w)v,(w), where Z’(w) is the acoustic radiation impe-
dance of the receiving transducer B, the same impedance found when
B acts as a transmitter. Since we have taken the velocity v(a)) in our two
port system as flowing into the system (Fig. 5.7) and v, (@) is the normal
velocity pointing outwards from the transducer (Fig. 5.8), we have
F (a)) = —ZrB;” (a))v(a)) . The total force, F(a)) , acting on the transducer,

is the sum of the forces in Problems I and 11, so:
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v, T (1] 2 (o)

Fig. 5.11. A model of the receiving transducer when the acoustic sources are
removed.

F(o)=F,(0)-Z" (o)v(o). (5.24)

Equation (5.24) shows us explicitly how the force, F, and the velocity, v,
are related at the acoustic port. This relationship is equivalent to the

configuration shown in Fig. 5.10 (a), where a force “source”, FB(a)) , 18

placed in series with an acoustic radiation impedance, Z*“ (a)) . Thus, we

now have characterized the input side of the transducer. We see that the
blocked force arises naturally in this model so that it is the quantity that
makes sense to use in our transfer function definitions for both the
acoustic/elastic processes and the reception process. From our previous

discussion we see we could replace the blocked force source F, (a)) by a
source given by 2F, (), where F,_ is the force due to the incident waves

only (i.e. with the transducer absent).

Since there is at present no practical way to experimentally obtain
the transfer matrix of the receiving transducer (see the discussion in
Chapter 4), we need to replace the system shown in Fig. 5.10 (a) by an
equivalent system whose elements we can determine. The system in
Fig. 5.10 (a) is an active system (a system with a source) so Thévenin’s
theorem (Appendix B) allows us to replace that system with a single

equivalent voltage source, V, (), and an equivalent electrical impedance,

s

Z, (a)), as shown in Fig. 5.10 (b). Recall from Appendix B that to obtain

the equivalent impedance we can short out (remove) the sources and
examine the ratio between the input voltage and current for this config-
uration. When we do that for this system we find the configuration shown
in Fig. 5.11, where the transducer is simply terminated at the acoustic

port by its acoustic radiation impedance, Z (a)) This configuration is
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Fig. 5.12. The Thévenin equivalent circuit that characterizes a receiving trans-
ducer and its acoustic driving sources.

identical to the situation when this transducer is being used as a transmitter
and so if we measured the voltage and current (¥,,,1,, ) shown in Fig. 5.11,
we would find an equivalent impedance that is the same as that when the
transducer is being used as a transmitter, i.e. Z;, (w)=Z,*(w) where

m

BsarmB B
ZB;e(a)) — Zr T;l +T;2
in BiamB B
27T + 1
To obtain the equivalent voltage source, we need to examine the system
shown in Fig. 5.10 (a) under open circuit conditions. For this case, we have
from Eq. (5.23)

(5.25)

F(0)=12(0)V" (o)

W(0)=T2 ()" (o), (320

where V'~ (a)) is the open circuit voltage and the source for our Thévenin
equivalent circuit, i.e. V,(@)=V"(®). Placing Eq. (5.26) into Eq. (5.24)
we find

V(o) _ 1

Fy(0) Ty(@)+2(e)T; ()

(5.27)

This ratio is a receiving sensitivity called the open-circuit, blocked force
receiving sensitivity, M, () [5.3]. However, comparing Eq. (5.27) with
Eq. (4.20) where we defined the sensitivity, S, (@), for this transducer
when used as a transmitter, we see that:
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My (@) =5, () (5.28)
and it follows that the Thévenin equivalent voltage is just
V.(0)=585(0)F, (o), (5.29)

which reduces the transducer and its driving sources to the simple circuit
shown in Fig. 5.12. Since in Chapter 7 we will show that it is possible to

obtain S and Z”* by purely electrical measurements, those measure-

ments will determine completely the role of the transducer when acting as
both a transmitter and receiver of sound.

The equality of the two sensitivities in Eq. (5.28) is not accidental.
In fact, it is directly a consequence of the fact that the transducer is
assumed to be a reciprocal device. Thus, Eq. (5.28) can be considered as a
statement of transducer reciprocity (see [5.5] for further discussions of
transducer reciprocity). This fact can be easily demonstrated by again
starting from the transfer matrix of a transducer B when it is acting as a
transmitter (Eq. (4.5)) and then obtaining the transfer matrix relationship
of Eq. (5.23) but without assuming that the transducer is reciprocal ( i.e. let

det [TB ] #1). In place of Eq. (5.23) we then find during reception that

(-atef 2l
SR A (5.30)

Thus, when we relate the force and velocity in Eq. (5.30) to the open-circuit
receiving voltage, V™, in place of Eq. (5.26) we obtain

F(o)=Ty,(@)V” (a))/det[TB]

5.31
v(w)zﬂf(w)V@(w)/det[TB}, -3
which, when placed into Eq. (5.24), gives
o V@) 4T
T F(e) Th(0)+Z (o)L (o) (5.32)
=det [TB ] Sk,

where we have also used the definition of the transmitting sensitivity S’
given by Eq. (4.20). Equation (5.32) shows that the equality of the two
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Fig. 5.13. A two port model of the receiving cable.

sensitivities as stated by Eq. (5.28) is then equivalent to requiring
det [TB ] =1, i.e. the transducer must be reciprocal.

5.5 The Cable and the Receiver in the Reception Process

The role of the cable in the reception process is exactly the same as its role
in the sound generation process. We can characterize the cable by a 2x2

reciprocal transfer matrix, [R], where (see Fig. 5.13)

14 R, R, ||V,
{1}:[ ! IZH 2} (5.33)
Il R21 R22 [2
and the reversing of the current directions does not affect this relationship

if the cable is reciprocal (det[R]=1) and R, =R,, as found in a trans-

mission line model of the cable. If the cable does not exactly satisfy these
requirements of the transmission line model then we can take such
behavior into account by replacing Eq. (5.33) by

4 _ 1 Ry, R, ||V,
L] det[R]|R, R, ||L][ (5.34)

where (R,R,,R,,R,,) are the measured transfer matrix of the cable

when it is transferring signals from the pulser/receiver to the transducer
during the sound generation process. These components of the receiving
cable transfer matrix can again be found through the electrical measure-
ments described in Chapter 3.

The receiver part of a pulser/receiver amplifies the received signals
and can also filter them. Figure 2.1 shows these types of controls on the
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Fig. 5.14. Model of a receiver as an electrical impedance and an amplification
factor.

=
vR(l)

receiver

Fig. 5.15. A measurement setup where the waves driving a receiving transducer
are used as inputs to the receiver. The input voltage, v, (), and current, i, (¢), are
measured at the input port of the receiver, as is the receiver output voltage, v, (t) .

right side of the front panel of a spike pulser and Fig. 2.4 shows similar
gain and filtering settings that can be made on under computer control of a
square wave pulser. Here, any filtering operations of the receiver will not
be modeled as they can be easily applied to the unfiltered output at a later
stage if desired. In many quantitative studies filtering may be detrimental
because it removes frequency components that may contain useful
information.

Since the receiver provides an electrical termination at one end of

the cable, we will model the receiver as an electrical impedance, Z; (@)
(Fig. 5.14). The amplifier action of the receiver will be modeled by an
amplification (gain) factor, K(a)) =V, (a))/V0 (a)) , as shown in Fig. 5.14,
where ¥, (a)) is the output voltage frequency components of the receiver
and Vo(a)) is the corresponding voltage at the receiver's input port. By

measuring the voltages and currents at the input and output of the receiver
when it is receiving signals from a receiving transducer (see Fig. 5.15)
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Fig. 5.16. The measured magnitude (solid line) and phase (dashed line) of the

electrical impedance, Z; (a)) , of the receiver portion of a Panametrics 5052PR
pulser/receiver when driven by a 2.25 MHz transducer in a pitch-catch mode.
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Fig. 5.17. The measured magnitude (solid line) and phase (dashed line) of the
amplification (gain) factor, K (a)), of the receiver portion of a Panametrics
5052PR pulser/receiver when driven by a 2.25 MHz transducer in a pitch-catch

mode.
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and calculating their Fourier transforms, the quantities ¥, (@), 1,(®),V, (@)
can be found for a specific gain setting of the receiver. From these
measurements both the impedance, Z; (), and the amplification factor,
K (@), can be obtained since

(5.35)

where a Wiener filter can be used to desensitize these divisions to noise
(see Appendix C). Figure 5.16 shows the measured impedance of a
Panametrics 5052PR pulser/receiver determined in this fashion when the
pulser/receiver is operating in a pitch-catch mode. Fig. 5.17 gives the
corresponding measured amplification (gain) factor. There is little
structure seen in the impedance plot as a function of frequency. It is nearly
a constant, having a value of approximately 500 ohms. This is consistent
with the circuit diagrams of this particular instrument in a pitch-catch
mode. The amplification factor also has little structure, having a value near
10 which corresponds well with the 20dB gain setting at which the
measurements were taken. Since the 2.25 MHz receiving transducer used
in these measurements band limits the received response the results shown
in Figs. 5.16 and 5.17 can only be reliably estimated over the bandwidth
present. If the transducer used in such a calibration is the same as the one
used in an actual inspection, this may not be an issue since the same
bandwidth constraints will also be present in the inspection. Otherwise, we
may need to excite the receiver with a wider bandwidth source or combine
the measurements made with several different transducers to obtain

Z,(®),K (®) over a larger range of frequencies.
In a pulse-echo mode the received signals must pass through some

of the circuits of the pulser section so it is not surprising that in this case
the properties of the receiver are affected by the pulser settings.

Figure 5.18 (a) shows the behavior of the amplification factor, K (@), of a
spike pulser/receiver computed at two different damping settings and
Fig. 5.18 (b) gives the receiving impedance, Z; (a)) , as measured over a

range of different damping settings. The receiver was driven in these cases
by waves received from a broadband 5 MHz transducer in a pulse-echo
setup of the type shown in Fig. 5.5.
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Fig. 5.18. (a) Magnitude of the amplification factor for the receiver section of a
spike pulser/receiver in a pulse-echo mode obtained at a damping setting of 2
(solid line) and a damping setting of 9 (dashed line). (b) The equivalent
impedance of the spike pulser/receiver at a range of damping settings from 0 to 7
(the arrow indicates the trend of the curves for changing damping settings).

Figure 5.19 shows the results of measurement of the amplification
factor and receiving impedance of a square wave pulser/receiver when
operated in a pitch-catch mode while Fig. 5.20 shows these same para-
meters when the square wave pulser is operated in a pulse-echo mode. In
both cases the receiver was being driven by a broadband 5 MHz transducer.
In the pulse-echo mode it can be seen that there is some dependency of the
square wave receiver parameters on the pulse width setting in pulse-echo
but these changes are not large.
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Fig. 5.19. (a) The magnitude (solid line) and phase (dashed line) of the amplification
(gain) factor of the receiver section of a square wave pulser/receiver in a pitch-catch
mode. (b) The magnitude and phase of the equivalent impedance of the receiver
section of a square wave pulser/receiver in a pitch-catch mode.

5.6 A Complete Reception Process Model

By combining our transducer, cabling and receiver models we have the
complete reception process shown in Fig. 5.21. From Fig. 5.21 we have

SjFB -V = Zf,;elz (5.36)
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Fig. 5.20. (a) The magnitude of the amplification factor of the receiver section of
a square wave pulser/receiver in a pulse-echo mode obtained at a pulse width
setting of 10 (solid line) and a pulse width setting of 50 (dashed line). (b) The
magnitude of the receiving impedance of the receiver section of a square wave
pulser/receiver in a pulse-echo mode for a range of pulse width settings (the arrow
indicates the trend of the curves for changing pulse widths).

8 _ Ry Ry ||V,
I, B Ry R, |4, (5:37)

vV, =KV, (5.38)
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Fig. 5.21. A model of the entire sound reception process.
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Fig. 5.22. (a) All the electrical and electromechanical elements of both the sound
generation and sound reception parts of an ultrasonic measurement system, and (b)
their representation by equivalent sources, impedances, sensitivities, amplification
factors, and transfer matrix elements. All the wave propagation and scattering

processes are shown in terms of the acoustic/elastic transfer function, ¢, (a)) .
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v, =21, (5.39)

where the components of the cabling transfer matrix are those obtained
considering (¥;,/,)as the input side of the cabling and we have assumed

det[R]=1(i.e. the cable is reciprocal) but have not assumed that R, = R,,

(see the discussion leading to Eq. (5.34)). Using Eqgs. (5.36 - 5.39) it is
easy to show that the transfer function for this entire reception process,

1y (@), is given by [5.4]

(@)= Ve (@) KZ:Sh

— o™~vl
F (5.40)

B (a)) (Z:;ERM +R, ) + (Ziﬁ;eRm +Ry )Zf
in terms of all the parameters defined earlier. Recall the transfer function
for the sound generation process, 7, (a)) , was given by Eq. (4.21) as

F (o) zZ"Ss,

O ) @z O

1

All the electrical and electromechanical components in an ultrasonic
measurement system are shown in Fig. 5.22 (a). The corresponding models
are shown in Fig. 5.22 (b). It can be seen from Fig. 5.22 (b) that both the
complex sound generation and reception processes models are combined in
very similar ways, reflecting the close similarity between the sound
generation and receptions transfer functions in Egs. (5.40) and (5.41).
Figure 5.23 shows an example where the magnitude and phase of a sound
reception transfer function, ¢, (a)) , was experimentally determined by char-
acterizing all the components contained in Eq. (5.40). In this case the receiver
was the receiver section of a Panametrics 5052 PR pulser/receiver (measured
at a specific gain setting). The cabling consisted of 1.83 m of flexible 50
ohm coaxial cable connected to a 0.76 m fixture rod. The rod also contained
internal cabling and was terminated by a right-angle adapter to which the
transducer was connected. The transducer was a relatively broadband 6.35 mm
diameter, 5 MHz immersion transducer. The sensitivity and impedance of
the transducer were obtained by the methods which will be discussed in
Chapter 6.

In Chapter 7 it will be shown that these sound generation and
reception transfer functions can be combined with the pulser voltage
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Fig. 5.23. A sound reception transfer function obtained experimentally. (a)
Magnitude versus frequency and (b) phase versus frequency.

source term, V; (a)) , to form what is called the system function. It will also
be shown in that Chapter that the system function can be obtained either by
measuring of all its electrical and electromechanical components or by
performing a single voltage measurement in a calibration setup. Thus, the
acoustic/elastic transfer function, 7,(®), shown in Fig. 5.22 is the only
remaining part of the ultrasonic measurement system that is needed to
completely characterize an entire ultrasonic measurement system. Since
this acoustic/elastic transfer function involves the wave fields inside of
solid components that are being inspected, it is not practical to measure
this transfer function experimentally. Instead, accurate beam models and
flaw scattering models are needed to describe 7, (@) for an ultrasonic flaw
measurement system. In Chapters 8-10 such ultrasonic beam models and
flaw scattering models will be described in detail. In Chapter 11 these
beam models and scattering models will be combined with a general
reciprocity relationship to obtain the acoustic/elastic transfer function for
many ultrasonic flaw measurement setups.
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5.8 Exercises

1. Using Egs. (5.21) and (5.22b) write a MATLAB function t a that
computes the acoustic/elastic transfer function for the pulse-echo setup
shown in Fig. 5.5, where the fluid is water at room temperature. The calling
sequence for this function should be:

>>t=t_a(f, a, d, d1, d2,c1,c2);

where f is the frequency (in MHz), a is the radius of the transducer (in
mm), d is the distance from the transducer to the plane surface (in mm), d1
is the density of the fluid (in gm/cm”), c1 is the compressional wave speed
of the fluid (in m/sec), d2 is the density of the solid (in gm/cm’), and c2 is
the compressional wave speed of the solid (in m/sec).

Using this function, obtain a plot of the magnitude of this transfer
function versus frequency similar to Fig. 5.6 for a = 6.35 mm, d = 100 mm,
dl = 1.0 gm/cm’, ¢l = 1480 m/sec, d2 = 7.9 gm/cm’, ¢2 = 5900 m/sec
(steel). Let the frequencies range from 0 to 20 MHz. On the same plot,
show the magnitude of this transfer function versus frequency when the
attenuation of the fluid is neglected, so that the effects of attenuation on
this function can be demonstrated.
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6 Transducer Characterization

The sending and receiving transducers are some of the most important
parts of an ultrasonic measurement system and also some of the most
challenging components to completely characterize. To date there is no
practical way to determine the complete transfer matrix components of a
transducer, but as we have shown the role of the transducer as both a
transmitter and a receiver in an ultrasonic measurement can be completely
described in terms of its electrical impedance and sensitivity. In this
Chapter we will describe methods to obtain a transducer’s electrical imped-
ance and sensitivity and also obtain a transducer’s effective geometrical
parameters such as effective radius and effective focal length.

6.1 Transducer Electrical Impedance

The transducer electrical impedance, Z;“(®), of a given transducer 4 is
relatively simple to determine in the calibration setup shown in Fig. 6.1.
The transducer is connected by a short cable to the pulser and the input
voltage, v, (), and current, i (), are measured at point @ as shown in

Fig. 6.1 for the short time that the pulser is exciting the transducer and
generating waves in the fluid but before any reflected waves have arrived
back at the transducer. Taking the Fourier transform of these

measurements to obtain ¥, (a)),ll (a)) then gives the impedance directly

since for a short cable the transfer matrix of the cable is just the unit matrix
and V, () =V, (@), I,(@)=1,(®), where V, (®),1, (@) are the voltage

and current directly at the transducer electrical input port (point b in
Fig. 6.1) and

z) ()= EZ)’; 6.1)

As discussed earlier for other measurements of this type, in implementing
Eq. (6.1) it may be necessary to use a Wiener filter to desensitize the division
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pulser

Fig. 6.1. A calibration setup for measurement of a transducer's electrical
impedance.

process to noise (see Appendix C). The voltage measurement can be made
by inserting a T-connector in the cable and measuring the voltage on the
connector while the current can be measured directly by tapping the cable
and using a commercial current probe (Tektronix CT-2, Tektronix, Inc.,
Wilsonville, OR) attached to the central conductor of the cable. A current
probe of this type is shown in Fig. 6.2. If it is not practical to use a very
short cable, then the measurements at point @ must be compensated for
cabling effects. This is easy to do since in this case

Vin 1 T22 _le Vl
= : 6.2)
Im det [T] _Tzl T11 11

where [T] is the transfer matrix for the cable between points a and b in

Fig. 6.1 (considering a as the input port and b the output port). If the
cabling acted as an ideal reciprocal device the determinant of the transfer

matrix would be unity, i.e. det [T] =1. In practice, the measured determinant

is normally close to but not identically unity so those small differences are
accounted for by using Eq. (6.2) with the determinant calculated directly
from the measured component values. If the cable transfer matrix has been
measured, we can use Eq. (6.2) to determine V, (),I,(®) from
V,(@),1,(®) and use Eq. (6.1) to obtain the impedance.

Figure 6.3 shows a measured transducer impedance plotted versus
the frequency, f. To first order the magnitude of the impedance varies like
1/f and the phase is approximately 90 degrees. Figure 6.4 shows the
corresponding frequency response of a capacitor, which we see has the
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Fig. 6.2. A probe for measuring the current in a cable.

1500 150
£ 1000 1130 o
3 )
pr g
E ! 10 2
s 500 [! =)
£ .

\ P 90
O N "‘-" n T
0 5 10 15 20

frequency (MHz)

Fig. 6.3. The measured electrical impedance of a transducer showing the magni-
tude of the impedance (solid line) and the phase (dashed line) versus frequency.

same overall behavior. This is not surprising since a piezoelectric crystal
that is plated on its faces will act to first order much like an ordinary

capacitor. We cannot always expect to see purely a capacitor-like behavior
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Fig. 6.4. The magnitude (solid line) and phase (dashed line) of the impedance,
zZ°=1/ (—27ri f C) , of a capacitor versus frequency, f, where C is the capacitance.

for the impedance, however, if a commercial transducer contains additional
internal electrical “tuning” elements.

6.2 Transducer Sensitivity

With a new pulse-echo technique that has been recently developed,
determining the transducer sensitivity of transducer 4, S (co), is only
slightly more involved than finding the impedance [6.1]. In this case we

use a calibration setup such as the one shown in both Figs. 6.5 and 6.6
where the waves from the transducer are reflected from a solid block at

normal incidence and the acoustic/elastic transfer function, ¢ A(a)), is
known (see Eq. (5.18)). We first measure the input voltage, v,(¢), and
current, i, (t) , when the transducer is firing and before any reflected waves
arrive at the transducer (Fig. 6.5). After a time delay of approximately
t=2D/c, , where c,is the wave speed in the water, we measure the
received voltage, v,(¢), and current, i,(r) generated by the waves
reflected from the block (Fig. 6.6). In Fig. 6.7 we show the sound
generation process model corresponding to Fig. 6.5, where the frequency
components of v,(7),i(¢) at point a are labeled V,(®),I,(®) and the
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solid

Fig. 6.5. Mecasurement of voltage and current when transducer A is radiating
waves.

Fig. 6.6. Measurement of voltage and current when transducer 4 is receiving the
waves reflected from the block.

frequency components of the voltage and current at the electrical input
port are labeledV, (@)1, (@). It is likely that the measurements of

v,(¢).i,(¢) must by physical necessity be made outside the water tank so

that there may be a non-negligible length of cable between the
measurement point a and the electrical port of the transducer (point b).
Again, however, if the transfer matrix [T] of the cabling is known, the
voltages and currents measured in these two setups can be related directly
to the corresponding voltages and currents at the transducer electrical input
port. During the sound generation process, we can again use Eq. (6.2).

Note that V,, (@) and I,, () here are identical to those used in Eq. (6.1) so

www.iran-mavad.com
sloo Uyl



100  Transducer Characterization

1I in
—»> —»

v, =841

viTin

mn

Fig. 6.7. The generation process model for the measurement of voltage and
current when transducer A radiates waves.
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Fig. 6.8. The reception process model for the measurement of the voltage and
current when transducer A receives waves reflected from the block.

that the impedance can also be calculated directly in the setup of Fig. 6.5
from Z.*(w)=V, (®)/I,(®). In Fig. 6.8 we show the sound reception

process model corresponding to Fig. 6.6 where the frequency components
of v,(¢),i,(¢) at point a are labeled V,(®),l,(@) and the frequency
components of the voltage and current at the electrical input port are

labeled ¥, (@), (). To compensate for the cabling in this case we note
that (VT,—IT) in the reception process (Fig. 6.8) replaces (V I ) in the

in®~in

generation process (Fig. 6.7) and similarly (Vz,[z) replaces (Vl,[l) SO we

find
|2 1 T, -1, ||V,
ol _ 2 12 2| 6.3)
-1, det[T] -, T, ||,

Note that /, and I, are taken to be in the same direction in both cases

since these currents are both measured by the current probe in Fig. 6.2.
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Fig. 6.9. The measured sensitivity of a SMHz, 6.35 mm radius planar transducer.
The magnitude of the sensitivity versus frequency (solid line) and phase versus
frequency (dashed line).
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Fig. 6.10. The measured sensitivity of a transducer as determined with compensation
for cabling effects (solid line) and where cabling effects are ignored (dash-dot line).
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This probe is directional and is oriented so that it measures the current
flowing into the cable at point a during both the sound generation and
reception processes (see Figs. 6.5 and 6.6).

Now, consider determining the sensitivity from these measurements.
From Fig. 6.8 we have

SAF, =ZX1. +V, (6.4)
and also
_E By,
UEv " 6.5)
=t,72SI.

so that by combining these two relations and using Z,*° =V, /I, we obtain

V. I +V.I
SA — in~ T T in .
TN 0z (60

Since we know the acoustic/elastic transfer function for this setup and we
can take the acoustic radiation impedance as its high frequency value

Z' = pc,S,, measurements of V, (w),I,(@),V;(w),I; (@) are suffi-

cient to determine the transducer sensitivity. Since Eq. (6.6) involves
division of frequency domain values, a Wiener filter can be used here also
to handle noise issues.

Figure 6.9 shows a plot of a measured sensitivity. The dimensions
of the sending sensitivity S} are velocity/current while the open-circuit
s
two sensitivities are equal we can use either set of dimensions. We choose
here to use Volts/Newton in the SI system to characterize these sen-
sitivities. Figure 6.10 shows the differences in the measured sensitivity
obtained when cabling effects are accounted for and when they are
ignored. In most immersion setups such as the one used here there will
likely be more than a meter of cable between where the voltages and
currents are measured and the transducer electrical port, so that the cabling
effects cannot be ignored, as shown in Fig. 6.10. It is important to realize
that when the measured signals and modeled parameters are combined
they determine the square of the transducer sensitivity, not the sensitivity
itself. This can be seen from Eq. (6.6) if we rewrite it as

receiving sensitivity, M,;", has the dimensions of voltage/force. Since these
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Fig. 6.11. A generic pitch-catch setup that can be used with three transducers (in
various pairs) to determine the sensitivity of one of those transducers.

V(o)1 (0)+V, (@)1, (®)

s3] == oz @ (o)

mn

(6.7)

Thus, when the square root is taken of these values there is always an
ambiguity about the sign that should be chosen. In a pulse-echo
experiment, the sign is immaterial in predicting the measured voltage
output of the system since the output voltage is proportional to the
sensitivity squared (same transducer is both sender and receiver). In a
pitch-catch experiment, however, two different transducers are used and
this ambiguity in sign could affect the polarity of the predicted output
voltage. There is no way to resolve the sign with the procedures discussed
here, but there are two ways to deal with this issue. In a pitch-catch
situation, the measured sensitivities of the two transducers involved could
be combined with measurements of the other system components to
predict the system function s(a)) If the transducers were placed in a
measurement setup where the acoustic/elastic transfer function, 7, (@) was
known (such as the setup shown in Fig. 5.4) then the output voltage,
Vi(@)=s(w)t,(@)could be obtained and Fourier transformed into the
time domain and compared to the experimentally observed signal. If the
predicted polarity of the time domain signal was correct (i.e. agreed with
the experimental voltage), one could say that the signs of the two
sensitivities were consistent. If the polarities did not agree, one could
change the sign on one of the sensitivities to make them consistent. To
determine the sign in a more fundamental manner one could instead place
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Fig. 6.12. A model for the generic pitch-catch setup of Fig. 6.11, showing the
transmitting and receiving transducers and the acoustic/elastic transfer function
that defines the wave processes occurring between them.

t:l
t, ]
oo — [Tpe="

Fig. 6.13. Three separate pitch-catch setups and measurements for determining the
sensitivity of transducer 4. In this case we have assumed the transducers are all of
the same diameter and the distance, D, is fixed for all three setups.

the transducer in a setup where the input current driving the transducer was
measured as well as the pressure in the transducer wave field (such as the
on-axis pressure measured with a separate calibrated probe). Such a
measurement setup would only be needed, however, if it was essential to
predict in an absolute sense the generated pressure wave field.

There exists another reciprocity-based measurement procedure to
determine the open-circuit receiving sensitivity, M ,f;;”, that is commonly
described in the acoustics literature [6.2-6.10]. That method requires one to
make measurements with three different transducers in three separate
pitch-catch setups of the generic type shown in Fig (6.11) where the
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6.2 Transducer Sensitivity 105

transmitting transducer is transducer X and the receiving transducer is
transducer Y. The input current to transducer X measured at point P in
Fig. 6.11 is labeled /* and the open-circuit voltage measured at point Q
received by transducer Y due to the waves generated by transducer X is
labeled V¥ . If the effects of cabling between point P and the transmitting
transducer X and between transducer Y and point Q are both negligible,
then the measured current at the input port of transducer X is the same as
I and the open-circuit voltage at Q is the same as the open-circuit voltage
directly at the receiving transducer electrical port. In this case the sound
generation and reception model for the pitch-catch setup of Fig. 6.11 is as
shown in Fig. 6.12, Note that the acoustic/elastic transfer function,¢,, for
this pitch/catch configuration is known for a pair of circular, plane piston
transducers (see Eq. (5.10) for the case where the transducers are of dif-
ferent size, or Eq. (5.12) when the transducers are of the same size). Since
the open-circuit voltage at the receiving transducer electrical port is just
the equivalent source term for transducer Y given by F,M ;F:’ (see Chapter 5)
we find

v My
* I
F. F .. 6.8
:?B[—;(M‘Z;B ( )
= 1,2 S My

As shown in Chapter 5 the transmitting sensitivity S” and the open-circuit
receiving sensitivity, M fF: , are the same for any reciprocal transducer Z

(where Z = X or Y), so we can express the voltage over current ratio in
Eq. (6.8) in terms of either of these sensitivities. We will choose the open-
circuit receiving sensitivity here, as that is the choice normally made in the
acoustics literature. Then Eq. (6.8) becomes

Yx

=, 2 MM (6.9)

X = VFy *

Now, apply Eq.(6.9) to the three separate pitch-catch setups involving
three transducers A4, B, and C shown schematically in Fig. 6.13, where we
have assumed that the distance, D, between transducers is held fixed for all
three setups and the diameters of all three transducers are the same so that
there is only one acoustic/elastic transfer function, #,, for all three setups.

www.iran-mavad.com
sloo Uyl



106  Transducer Characterization

In setup one transducer X = C is firing and transducer Y = 4 is receiving
while for setup two transducer X = C again is firing and transducer ¥ = B
is receiving. In setup three, transducer X = B is firing and transducer ¥ = 4
is receiving. Applying Eq. (6.9) to each of these cases individually we
have

AC

0 Csa A;0 C;o0

= 2 MM

BC

) Csa B;» C;0

=1 2 M MG (6.10)

AB

Voo Bia Aj0 B;o
I_B:[AZT MVFBM .

VFy

From Egq. (6.10) we see we can eliminate the sensitivities of transducers B
and C by considering the particular combination of ratios

(5%

I I° y T

(VBC =1, [Mé};] 6.11)
I° ]

so solving for the open-circuit receiving sensitivity of transducer 4 we find:

M;‘F‘j:Sv, = —;BC;B —Ea (6.12)
0 r A

Equation (6.12), which is similar to the expression commonly found in the
acoustics literature, is very much like Eq. (6.6) for our pulse-echo method.
Instead of the two voltage and two current measurements needed for the
pulse-echo method, Eq. (6.11) requires that we make three open-circuit
voltage methods and one current measurement from the three pitch-catch
setups of Fig. 6.13. For acoustic transducers operating at kHz frequencies
or less, Eq. (6.12) has been commonly used in the acoustics community for
many years to obtain transducer sensitivity. In fact, for transducers at those
frequencies there exists a commercially available calibration system that
can implement the measurements required in Eq.(6.12) and extract the
sensitivity [6.11]. Dang. et al. [6.12] have also used this three transducer
method to obtain the sensitivity of NDE transducers operating at MHz
frequencies. However, Dang et al. [6.12] found that at MHz frequencies it
was important to consider the effects of the cabling present. They defined a

www.iran-mavad.com
sloo Uyl



6.2 Transducer Sensitivity 107

0.3
0.2f
0.1t

~
Cd L N - - §

0 5 10 15 20
frequency (MHz)

amplitude (V/N)

100

-100 e N e _ "

phase (deg)
o

2000 5 10 15 20
frequency (MHz)

Fig. 6.14. The magnitude and phase of the sensitivity, S, , of a 5 MHz, 6.35 mm

diameter planar transducer as calculated by the pulse-echo method (solid line) and
the three transducer pitch-catch method (dashed line).

generalized sensitivity that took into account those cable effects and
applied a modified version of Eq. (6.12).

The three transducer pitch-catch method is also a viable approach
to obtaining sensitivity but the pulse-echo method has several advantages.
First, the three-transducer method requires one to make measurements in
three separate pitch-catch setups while only one setup is needed in the
pulse-echo method. This makes the pulse-echo method faster and avoids
any delicate re-alignment issues for the transducers. Second, we note that
both the pulse-echo and the three transducer pitch-catch procedure for
obtaining sensitivity are model-based approaches. This means that the
model assumptions made on transducer behavior must be satisfied for all
three transducers for the three transducer method but only for the
transducer whose sensitivity is to be determined for the pulse-echo
method. Figure 6.14 shows the sensitivity of a 5 MHz, 6.35 mm diameter
planar transducer obtained via either the pulse-echo method or the three-
transducer pitch-catch method. It can be seen that there is little difference
between the results obtain with either method over the bandwidth of the
transducer.

There is also a pulse-echo technique for determining sensitivity
called the self-reciprocity method that has been developed in the acoustics
literature [6.13-6.17]. The self-reciprocity method applies Eq. (6.9) to a
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Fig. 6.15. A circular piston transducer of radius a receiving the waves reflected
from the front surface of a spherical reflector located on the central axis of the
transducer.

pulse-echo setup involving a single transducer, 4, and solves for the
sensitivity of 4 in the form

_ v
M =85t = [ — 6.13
VFy vI IA tAZrA;a ( )

where V' is the open-circuit voltage received by 4 due to the waves
generated by 4 and [ is the current driving transducer 4 when it is
radiating into the fluid. Equation (6.13) is very similar to our pulse-echo
expression, Eq. (6.6). In fact under open-circuit conditions /, =0 in
Eq. (6.6) and that equation simply reduces to Eq. (6.13). However, in order
to apply Eq. (6.13) directly one needs to measure the received voltage
under open-circuit conditions. Since inherently in a pulse-echo setup
the transducer will be loaded by the receiver and cabling on reception, this
has forced some authors to use rather complicated measurement systems
or special matching networks to infer the open-circuit response.
Equation (6.6) can be applied directly from measurements taken under the
actual conditions present in a pulse-echo setup, so it is significantly more
convenient to use than Eq. (6.13).

6.3 Transducer Effective Radius and Focal Length

It would appear that geometrical parameters such as the transducer radius
and focal length are parameters that are well-defined and need no experi-
mental determination. In practice, however, it has been found that if one
simply uses these parameters (as specified by the transducer manufacturer)
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Fig. 6.16. The magnitude of the on-axis normalized pressure versus normalized
distance z/N for a ¥ inch diameter circular piston transducer radiating waves at
5 MHz into a fluid, where N is the near field distance given by N=a’/1. As
shown the last on-axis null occurs at one-half a near field distance.

in transducer beam models, one often does not get good agreement with
theory when the behavior of the transducer beam is examined experi-
mentally [6.18], [Fundamentals]. This is perhaps to be expected since, for
example, a transducer crystal cannot have piston-like behavior over its
entire face as the crystal is supported and constrained at its edges. Thus,
one might define an effective radius for the transducer where a piston
model agrees better with experiments. Similarly, the geometrical focal
length of a focused transducer is determined in reality by a number of
other unknown parameters such as the material properties and geometry of
the focusing lens. Again, one might deal with these unknowns by defining
an effective focal length that matches experiments.

First, consider the problem of determining the effective radius of a
circular, planar immersion transducer. One configuration that can be used
to determine the effective radius of this transducer is shown in Fig. 6.15. A
spherical reflector is placed on the axis of the transducer and the
transducer is scanned so that the sphere remains on the transducer's central
axis at different distances, z. At each value of z, z =z, the received time
domain voltage response, v, (,z, ), from the front surface of the sphere is
recorded and Fourier transformed to obtain its spectrum, ¥, (f,z,). Then
the magnitude of these frequency domain responses are plotted versus z at
a single fixed frequency, f,, which is usually taken near the center
frequency of the transducer. Since the front surface reflection from the
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0 05 1 15 2 25 3 35 4
z/R

Fig. 6.17. The magnitude of the normalized on-axis pressure versus normalized
distance z/R for a spherically focused piston transducer of radius a and
geometrical focal length, R, radiating into water. The location of the null and
maximum that are used in the determination of the effective focal length and
radius are shown.

sphere is proportional to the square of the on-axis pressure of the transducer,
the magnitude of the frequency domain plot of V,( f;.z, ) has the same
behavior as the on-axis pressure squared of the transducer when it is driven
harmonically at frequency f, [Fundamentals]. In Chapter 8, an explicit

expression for the on-axis pressure of a circular plane piston transducer at
a fixed frequency is obtained analytically. This on-axis pressure is plotted

in Fig. 6.16 versus the non-dimensional distance z/N, where N =a’/A is
called the near field distance and A= ¢, / f, 1s the wave length. It can be
seen that in the region near the transducer there are a series of maxima and
nulls. The last null (the one farthest from the transducer) can be shown to
be located at the distance z,,, =a’/2A . Since this is a null of the pressure
field the squared pressure will also have a null at this position, as will
|VR (foz; )| . If, from the plot of |VR (-2, )| versus z one obtains an estimate

of the distance to that null then one can define the corresponding effective
radius, a, ,as

ay =22z, . (6.14)
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This last on-axis null position is used because it is relatively simple to
determine experimentally and does not require knowledge of the absolute
amplitude of the on-axis pressure wave field. Some authors have used
multiple on-axis nulls to obtain a better estimate of the effective radius or
have used a least squares fitting to theory of many points, both on- and off-
axis, in the transducer wave field to determine a,; . All of these methods
have the same goal — namely to obtain an estimate of a radius value that
will match the theoretical wave field better than simply using the nominal
radius. In principle the determination of a,, in this fashion can be done at
any fixed frequency and the result should not depend on the frequency
chosen. In practice some variations of the effective radius value with
frequency are found [Fundamentals]. Often these variations are not severe

and a simple averaging of a,, values over the bandwidth of the transducer

gives good results.
For a spherically focused transducer one can use the same setup
shown in Fig. 6.15 and the same procedures to obtain |VR (f5-2; )| , which is

proportional to the on-axis pressure squared wave field, but in this case we
must obtain estimates of both the effective radius, Ay s and the effective
geometrical focal length, R, [6.19], [6.20]. Figure 6.17 shows a plot of a
model prediction of the on-axis pressure of a circular, spherically focused
piston transducer radiating into water. Again one sees nulls and maxima in
the region close to the transducer and a very large peaked response due to
focusing. Only the distance, z_ , to the last on-axis null can generally be
obtained reliably, however, since at other nulls the response rapidly gets
very small. One could also measure the distance, z to the maximum

max

value of |VR (f5-2; )|, which also occurs when the magnitude of the

pressure is a maximum. In this case, models show that the effective focal
length is given in terms of z_, and z_ by [Fundamentals]

max

R . T—X 6.15
eff max ﬂ—x(zmax/zmjn) ’ ( )

where x is a solution of the transcendental equation

T = x(zmax /Zmin )

xcos(x) = sin(x). (6.16)

T—X
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Once the effective focal length is found from these relations the effective

radius is given by
/212 . R
min~ “eff’
Ay = R _s (6.17)
eff min

which we see reduces to the planar transducer case (Eq. (6.14)) when
R, — 0. In practice it has been found that the location of the distance to
the transducer peak response, z___, is difficult to determine precisely and the
results for R, are sensitive to those errors. It has been found better to use
a range of estimates for z,, and choose the best combination of R, and
a,; values that match (in a least squares sense) the predicted and measured
on-axis pressure values around the transducer focus. The details of these
procedures can be found in [6.20]. There are other fitting methods that can
be used to obtain these effective parameters but we will not discuss those
alternatives here. As in the planar case, the effective parameters have been
found to depend somewhat on the frequency one chooses, so one might
need to take an average of their values over the bandwidth of the
transducer.

Table 6.1. Effective radii and focal lengths found for some commercial
transducers.

Transducers Manufacturer's Effective Center Frequency
Specs Parameters (MHz)
R a Rc? - Ay
(mm) (mm) (mm) (mm)
A 76.2 476 1347 4.51 10
B 76.2 635 2074 5.56 5
C 76.2 4.76 74.5 4.69 15

Equation (6.15) shows that the effective geometrical focal length,

R, , is always larger than z . The distance z_, , which is the distance to

eff °
the maximum on axis pressure, is often called the location of the “true

focus”. The difference between R, and z _ occurs because of wave

max ?

eff
diffraction effects at finite frequencies. It is only in the limit when the

frequency goes to infinity that z,, /z; —1,and one finds R, =z,

Table 6.1 gives some example values of the effective parameters
obtained for several commercial transducers. It can be seen that in some
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cases the effective values are considerably different from the nominal
values given by the transducer manufacturer. Those differences can lead to
large errors if the nominal values are used in model calculations.
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6.5 Exercises

1. The MATLAB function transducer x(z) returns the time-domain sampled
voltage received from a spherical reflector in water (¢ = 1480 m/sec)
located at a distance z (in mm) along the axis of a planar transducer as
shown in Fig. (6.15). There are 1024 samples in this waveform, each
separated by a sampling time interval At =.01 psec. First, let z be the
vector of values:

>> 7 = linspace (25, 400, 100);
Use this set of values in the transducer x function, i.e. evaluate
>>V = transducer_x(z);

The matrix V will contain 100 waveforms calculated at each of these
z-values. Use FourierT to generate the frequency spectra of these waveforms.
Note that FourierT can operate on all of these waveforms at once as long
as they are in columns (which is the case) and will return a matrix of the
corresponding spectra, also in columns. Examine the magnitude of some of
these spectra versus frequency to determine the range of frequencies over
which there is a significant response. Pick one frequency value near the
center frequency in this range and plot the magnitude of the spectra at that
value versus the distance z.

Locate the last on-axis minimum in this plot and use Eq. (6.14) to
determine the effective radius of this transducer. Try using a different fre-
quency value within the transducer bandwidth to determine the effective
radius. Does your answer vary with the frequency chosen?
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7 The System Function and Measurement System
Models

7.1 Direct Measurement of the System Function

In the previous Chapters we have obtained explicit expressions for the
transfer functions #,(w),?, () that define all the electrical and electro-
mechanical components of an ultrasonic measurement system and we gave
some examples of simple calibration setups where we can also obtain
explicit expressions for the acoustic/elastic transfer function, ¢, (a)) . When

all these transfer functions are combined with the Thévenin equivalent
voltage of the pulser, V. (a)), we have a model of the entire ultrasonic

1

measurement system where the output voltage, V, (a)) , is given by

Vi(@)=t, (o)t (0)t,(0)V, (o). (7.1)

In section 7.3 we will give some examples of combining all of these
models and measurements to synthesize the output voltage of an ultrasonic
measurement system. Of course this type of synthesis requires a considerable
number of measurements since we must obtain the equivalent voltage and
electrical impedance of the pulser, the transfer matrices of the cabling, the
impedances (electrical and acoustical) and sensitivities of the transducers,
and the electrical impedance and amplification factor of the receiver.
However, there is an alternative approach where we combine 7, (®),t; (®),

and V() into a single factor, s(®), called the system function, where

s(@) =ty (o)1, (0)V, (o). (7.2)

In terms of the system function Eq. (7.1) reduces to simply:
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Ve (a))zs(a))tA(a)). (7.3)

For any calibration setup where we can model the transfer function ¢, (a))

explicitly and where we measure the frequency components of the received
voltage, V, (a)), Eq. (7.3) shows that we can obtain the system function by

deconvolution, i.e.

7.4)

In practice, to reduce the sensitivity of the deconvolution to noise, we use a
Wiener filter (see Appendix C) and obtain the system function from

AT

|tA (a))|2 +&° max {|tA (a))|2}

where ¢ is a constant that is used to represent the noise level present and

’ (7.5)

( )* indicates the complex-conjugate.

The system function contains all the electrical and electromechanical
components of the ultrasonic measurement system, so with one measurement

of V, (a)) in a well characterized calibration experiment, Eq. (7.5) allows

us to characterize the effects of all those components at once. This is
obviously a very convenient alternative to having to measure all the

elements that make up s (a)) . This method of determining the system function

is done at a fixed set of system settings (e.g. energy and damping settings
on a spike pulser, gain settings on the receiver) and with a given set of
cables and transducers. If another experiment such as a flaw measurement
is performed at exactly the same settings and with the same components
the system function obtained from the calibration setup will be the same as
for the flaw measurement. This fact allows us to quantitatively determine
the effects that all the electrical and electromechanical parts of the

measurement system have on a flaw measurement. Since s(a)) has nothing

to do with the response of a flaw being measured, it is important to be able
to characterize (and eliminate) those parts of the measured signals that are
not flaw dependent so that we can determine a response more directly
related to the flaw being examined.

Another way that we can use knowledge of s(a)) is to combine it
with beam propagation and flaw scattering models that can model the

www.iran-mavad.com
sloo Uyl



7.1 Direct Measurement of the System Function 117

x 102
8 T T T T T T T T T

2 6
g synthesized
£
i)
° 4 l“‘.‘\
> ! \
~ f L
= 2 \

\ #measured R

Y i L I e N

0 L
0 2 4 6 8 10 12 14 16 18 20

frequency (MHz)

Fig. 7.1. A system function, s ( f ) , measured directly by deconvolution (dashed line)
or synthesized by measuring all the electrical and electromechanical components
contained in s( /') (solid line).

acoustic/elastic transfer function, ¢, (a)) explicitly. In later Chapters we will

show just how to develop such detailed models. By combining a modeled
t,(®) and a measured s(w), Eq. (7.3) shows that we can predict the actual

measured voltage, V; (@), in a flaw measurement setup in an absolute
sense. This capability gives us a powerful engineering simulation tool to
design and evaluate ultrasonic NDE inspections.

In using a directly measured system function, one must re-measure
that function whenever a system setting or system component is changed
and this approach does not permit us to determine the significance of
individual changes, such as a replacement of a transducer, for example,
without such a re-measurement. Determining s(@) by combining a know-
ledge of V,(®) and all the components that make up #, (@) and 7, (),
however, does allow us to examine the effects of such changes. Of course,
either a directly measured system transfer function or one synthesized
from its components should agree with each other. This is the case, as
illustrated in Fig. 7.1, where a system function was both directly measured
by deconvolution and constructed from individual measurements of all the
electrical and electromechanical components [7.1].
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7.2 System Efficiency Factor

In [Fundamentals] a quantity which is closely related to the system function
was defined called the system efficiency factor, f(@) . This system efficiency

factor is related to the measured voltage, V,, (@), as follows:

Vk<w)=ﬂ<w>%, 76

where p,, (@) is the average pressure generated by the incident waves at

the receiving transducer, v, (a)) is the output velocity of the transmitting
transducer (which is assumed to act as a piston) and pc is the specific
acoustic impedance of the material into which the transmitting transducer
radiates. The blocked force F, (@)=2p,,(@)S,, where S, is the area of
the receiving transducer, and the force transmitted by the sending
transducer F,(w)=Z""(®)v,(®)= pcS,v,(®) for a piston transducer at

high frequencies, where S, is the area of the transmitting transducer.
Thus, combining these relations with the two equivalent forms

/(o) =s(0) - plo) L=t &

we see that the system function and the system efficiency factor are just
proportional to one another, where

ST

s(@)=—hl@), (78)

so it makes no difference if we characterize our measurement system with
either of these quantities.

In determining the system function or system efficiency factor
experimentally by deconvolution in a reference experiment, the values of

s(w) or B(@) should not depend on the choice of that reference experi-

ment and it’s corresponding transfer function, ¢, (a)) Schmerr et al. [7.2]

demonstrated this fact by using a number of different reference setups to
calculate the system efficiency factor. Some of the simple calibration

setups where the transfer function ¢, () is known are shown in Fig. 7.2.
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Fig. 7.2. Reference experiments that can be used to determine the system function
or system efficiency factor where circular planar transducers are involved: (a)
reflection from a plane front surface of a block at normal incidence, (b) reflection
from the back surface of a block at normal incidence, (¢) reflection from an on-
axis flat-bottom hole at normal incidence, (d) reflection from an on-axis solid
cylinder at normal incidence, (e) reflection from an on-axis side-drilled hole at
normal incidence, and (f) two transducers (not necessarily the same) whose axes
are aligned.

Cases (a) and (f) were discussed in Chapter 5. Cases (b), (¢), (d) and (e)
can be found in [7.2] and [Fundamentals]. All the cases shown in Fig. 7.2
are suitable for determining the system function for circular, planar
transducers in pulse-echo immersion setups except Fig. 7.2 (f) which
can be used for circular, planar transducers in immersion pitch-catch
setups. In Chapter 8 we will develop an explicit expression for ¢, (a)) in
the setup shown in Fig. 7.2 (a) for a circular, spherically focused
transducer that can be used to determine s(a)) for that type of transducer

www.iran-mavad.com
sloo Uyl



120 The System Function and Measurement System Models

S
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Fig. 7.3. Reference experiments that can be used to determine the system function
for (a) an angle beam probe test setup where the waves are reflected from the
curved surface of a calibration block, and (b), a contact setup where the waves are
reflected from a curved surface of a block.

as well as transfer functions for planar rectangular transducers and cylin-
drically focused rectangular transducers. In Chapter 13 we will show how
a multi-Gaussian beam model can be used to numerically determine the
transfer function ¢, () for the pulse-echo contact angle beam shear wave
setup of Fig. 7.3 (a) where the waves are reflected from the cylindrical
interface of a standard calibration block. That same approach can also be
used for other contact testing setups such as the one shown in Fig. 7.3 (b)
or in other contact setups with planar or curved surfaces. In contact
problems, however, one must be aware of the fact that changes of the thin
fluid couplant layer between the transducer and the component being
inspected (or between the transducer wedge and the component) and non-
uniform component surface conditions can produce measured response
variabilities that must be carefully considered.

7.3 Complete Measurement System Modeling

The ultimate test of the ability of all these models and measurements to
simulate an ultrasonic measurement system is to compare the measured
output voltage of a particular setup with one that is synthesized from the
models/measurements we have discussed in previous Chapters. Consider,
for example, a calibration setup of the type shown in Fig. 7.2 (f) where
two planar transducers of the same nominal radius are placed opposite
to each other in an immersion tank with their axes aligned. An explicit
acoustic/elastic transfer function for this configuration was given in
Eq. (5.12) for an ideal lossless fluid. Adding attenuation into this ideal
model as shown in Chapter 5 (see Eq. (5.22a)) we have a complete
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acoustic/elastic transfer function for this example. Combining this transfer
function with a measured system function gives the frequency components
of the measured output voltage (Eq. (7.3)). Finally, taking an inverse
Fourier transform out this output voltage spectrum then yields a time
domain A-scan signal for the entire system. We can simulate this A-scan
signal using a system function that is calculated from Eq. (7.2), using

measurements of all the components that make up ¢, (a)) and ¢, (a))
together with V/, (a)) Recall, these transfer functions were given by
KZS,

_ o~ vl
W) R TR (2R S R 1.9

and

ZA;uSA
tG (Cl)): ( r vl

ZT, + T, )+ (25T, + Ty ) 2

(7.10)

The pulser used here was a Panametrics 5052 PR pulser/receiver operating
at an energy setting of 1 and a damping setting of 7. The open-circuit

voltage of the pulser was measured to obtain V(a)) and the pulser

impedance, Z; (a)) ,was measured by placing a 50 ohm resistor across the
pulser output and measuring the resulting voltage across this resistance, as
outlined in Chapter 2. The transfer matrix components, [7;,,7;,,7;,,T,] of

the cabling between the pulser and transmitting transducer 4 and the cable
components, [RlezaRszzz] for the cabling between the receiving
transducer B and the receiver were both measured as functions of
frequency using different cabling termination conditions as discussed in
Chapter 3. The receiver gain, K (a)), and impedance, Zg(a)), were
obtained from measurements of voltage and current at the receiver inputs
and outputs, as described in Chapter 5, at receiver gain and attenuation
settings of 20 dB and 12 dB, respectively, and with the filter control of the

receiver set to “off’. The two transducers used in this pitch-catch setup
were two nominally identical 5 MHz, 6.35 mm diameter planar

transducers. Their electrical impedances, Z,“ (@) and Z.*(w), and their

sensitivities, S and S’ , were found using the electrical measurements
which were discussed in Chapter 6. Finally, the acoustic radiation impe-
dance of the transmitting transducer 4, Z*“ (a)), which appears in the

sound generation transfer function, was computed from the high frequency
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Fig. 7.4. Directly measured output voltage signal of an ultrasonic pitch-catch measure-
ment system (solid line) and the voltage synthesized by measurement and modeling
of all the ultrasonic components (dashed-dotted line) for a pair of 5 MHz, 6.35 mm
diameter planar transducers in the configuration of Fig. 7.2 (f).
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Fig. 7.5. Directly measured output voltage signal of an ultrasonic pitch-catch
measurement system (solid line) and the voltage synthesized by measurement and
modeling of all the ultrasonic components (dashed-dotted line) for a pair of 2.25
MHz, 12.7 mm diameter planar transducers in the configuration of Fig. 7.2 (f).
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Fig. 7.6. Directly measured output voltage signal of an ultrasonic pitch-catch measure-
ment system (solid line) and the voltage synthesized by measurement and modeling
of all the ultrasonic components (dashed-dotted line) for a pair of 10 MHz, 6.35 mm
diameter planar transducers in the configuration of Fig. 7.2 (f).

limit expression for a piston transducer, Z** = pcS,, using the density,

p=1 gm/cm’, and measured wave speed, ¢=1481 m/sec, of the water
and a transducer area, S, = za®, calculated from the nominal radius of the

transducer, a =3.175 mm. The distance, D, between the two transducers
was set at D=67 mm and the attenuation of the water (at room
temperature) was taken as the value given by Eq. (5.21). Figure 7.4 shows
a comparison of the directly measured output voltage for this configuration
with the voltage synthesized from the measurement and modeling of all the
system components. Figure 7.5 shows the corresponding results when a
pair of 2.25 MHz, 12.7 mm diameter planar transducers were used instead
in the same setup and Fig. 7.6 shows the results for a pair of 10 MHz,
6.35 mm diameter planar transducers. For the 5 MHz transducers a
difference of —0.7 dB was observed between the peak-to-peak voltage
response of the synthesized signal to that of the measured signal. The
predicted waveform using 2.25 MHz transducers shows a difference of
—1.1 dB in the peak-to-peak voltage with respect to that of the corres-
ponding measured output voltage. For the 10 MHz transducers a somewhat
larger difference (—2.5 dB) was observed. In all cases the predicted
waveforms had very similar shapes to the measured ones.

Figure 7.7 shows some similar comparisons between a synthesized
signal and a measured signal for the pulse-echo setup shown in Fig. 7.2 (a)
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Fig. 7.7. Directly measured output voltage signal of an ultrasonic pulse-echo measure-
ment system (solid line) and the voltage synthesized by measurement and modeling
of all the ultrasonic components (dashed-dotted line) for (a) a 5 MHz, 6.35 mm
diameter planar transducer in the configuration of Fig. 7.2 (a) ,and (b) a 10 MHz,
6.35 mm diameter planar transducer in the configuration of Fig. 7.2 (a).

where a planar transducer is receiving the signals reflected from the planar
front surface of a solid. The acoustic/elastic transfer function is also available
for this configuration (see Eq. (5.16)) in an explicit form. In this case a
UTEX 320 square wave pulser/receiver was used in the measurements and
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again we compared the received measured signals with a voltage synthesized
by combining the acoustic/elastic transfer function, the measured Thévenin
equivalent source voltage of the pulser, and the sound generation and
reception transfer functions obtained by measuring all the components
contained in those functions. Figure 7.7 (a) shows a comparison of the
measured and synthesized received voltage when a 5 MHz planar
transducer was used in this setup. Figure 7.7 (b) shows the corresponding
comparison for a 10 MHz transducer. In both cases the peak-to-peak
values of the measured signals agreed with the synthesized wave forms to
within about 0.2 dB.

7.4 References

7.1 Dang CJ, Schmerr LW, Sedov A (2002) Modeling and measuring all the
elements of an ultrasonic nondestructive evaluation system. II: Model-based
measurements. Research in Nondestructive Evaluation 14: 177-201

7.2 Schmerr LW, Song SJ, Zhang H (1994) Model-based calibration of ultrasonic
system responses for quantitative measurements. In: Green RE Jr., Kozaczek
KJ, Ruud CO (eds) Nondestructive characterization of materials, VI. Plenum
Press, New York, NY, pp 111-118

7.5 Exercises

1. The beam of a planar immersion transducer is reflected off the front surface
of a steel block (see Fig. 7.2 (a)) and this reference signal can be used to
determine the system function. The file FBH_ref contains a sampled reference
signal of this type and its corresponding sampled times. Place this file
in your current MATLAB directory and then load it with the MATLAB
command

>> |oad( ‘ FBH_ref ")

This command will place in the MATLAB workspace 1000 sampled time
values in the variable t ref, and a 1000 point reference time domain
waveform in the variable ref. Plot this waveform. Take the FFT of this
reference waveform and keep only the first 200 values of the resulting
1000 point spectrum (from 0 to 20 MHz) in a variable, Vc. Plot the
magnitude of Vc from 0 to 20 MHz. Use Vc and the data given below to
determine the system function via deconvolution (using a Wiener filter)
and plot the magnitude of this system function versus frequency from zero
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126 The System Function and Measurement System Models

to 20 MHz. Compare this system function with Vc. Use the acoustic/elastic
transfer function for this configuration as:

t,=2R, exp(—2aplD)[l - exp(il’cp]a2 /2D)

‘{Jo (kp1a2/2D)—iJ1(kp1a2/2D)}J

where we have dropped the phase term exp(2ika) as it only produces a

time delay and the plane wave reflection coefficient is:

_ PaC T PG,

R, =
PrCn + PiCy

The parameters for this setup are:

p,=1.0, p, =7.86: density of the water and steel, respectively (gm/cm’)
c, =1484,c,, =5940: P-wave speeds of the water and steel, respectively
(m/sec)

a, =24.79x 107° £ : water attenuation (Np/ mm) with f the frequency (in
MHz)

D =50.8: distance from the transducer to the block (mm)

a =6.35: radius of the transducer (mm)
e =0.3 : noise coefficient for the Wiener filter

Note that the Bessel functions are available directly in MATLAB. The Bessel
function of order zero, J, (x) , s given by the MATLAB function besselj(0, x)

and the Bessel function of order one, Jl(x), is given by the MATLAB
function besselj(1, x).
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8 Transducer Sound Radiation

In this Chapter, we will examine models that can describe the radiated
sound field generated by an ultrasonic transducer and some of the
important parameters that govern the behavior of that field. We will
demonstrate most of these results for immersion transducers but many of
the concepts introduced also are valid for contact transducers as well. We
will also discuss some of the major differences between immersion and
contact transducers.

8.1 An Immersion Transducer as a Baffled Source

Figure 8.1 (a) shows a circular planar (non-focused) immersion transducer
radiating into a fluid medium, where we have placed the face of the
transducer in the x-y plane so that it is pointing in the positive z-direction.
When this transducer is driven by the pulser the underlying piezoelectric
crystal will move. That motion, in turn, will produce a transient velocity
field on the face of the transducer which we will assume is a normal
motion (in the z-direction). This velocity field we will write asv_(x, y,t).
Since the pulser drives the transducer with a very short voltage pulse, the
motion of the face of the transducer that is generated by this excitation will
also be a short time duration pulse. However, we will not model this
mechanical motion directly, but instead will deal with its Fourier
transform, v, (x, y,a)) . Such a frequency domain response can alternately
be viewed as the result of assuming that the velocity field on the face of
the transducer has a harmonic motion given by v, =v, (x, y,a))exp(—ia)t)
which generates a radiated sound pressure field in the fluid given
by p(x, y,z,a))exp(—ia)t). Since all the variables for harmonic motion
problems have the same common time factor, exp(—ia)t), it is customary
to drop this time factor and assume it implicitly, a convention we will
often follow here.
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128  Transducer Sound Radiation

Fig. 8.1. (a) A planar immersion transducer radiating waves into a fluid produced
by a harmonic velocity field v, (x, y,a)) on its face, and (b) a transducer model

consisting of the same velocity field in (a) surrounded by a motionless baffle on
the z= 0 plane.

Most transducer models do not directly deal with the geometry of
Fig. 8.1 (a) but instead consider the alternate geometry of Fig. 8.1 (b)
where it is assumed that there is an infinite plane at z = 0 over which the
velocity is specified [Fundamentals]. On the surface, S, of the transducer,
which lies in this plane, the velocity is given as v, =v, (x, y,a)). For the
remainder of the plane one takes v, = 0. These conditions would correspond
to having the transducer face embedded in an infinite, motionless, plane
baffle. This modified geometry should still represent well our original
problem, however, since the transducer will generate a sound field that is
significant only in the region ahead of the transducer anyway and the
actual fields in the fluid on the plane z = 0 outside of the surface S will be
very small, if not identically zero. Mathematically it is more convenient to
use the baffled geometry of Fig. 8.1 (b) rather than the original geometry
since we then need only to find how a specified velocity field on z = 0
generates fields in the fluid half-space z > 0.

Determining what the velocity field distribution is on the face of a
commercial transducer is not a trivial task. Although in principle it is
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8.1 An Immersion Transducer as a Baffled Source 129

Fig. 8.2. A transducer radiating a perfectly collimated beam at high frequencies.

possible to determine this field experimentally, the measurements are time-
consuming and require expensive equipment. Fortunately, for many commer-
cial transducers we can avoid this difficulty by assuming a velocity
distribution. The most common assumption is to treat the transducer as a
piston transducer where the velocity is taken to be spatially uniform over
the entire transducer face, i.e. v.(x,y,®)=v, (@) . This simple piston model
has proven to work well as a basis for characterizing many commercial
transducers so it is the model we will adopt here. One should be aware that
the validity of this assumption, however, depends on the construction
details of the transducer and may be violated in some cases.

If the frequency, ®, was infinitely large a transducer would emit a
beam of sound that is confined only to the cylinder of fluid z>0,r<a
ahead of the transducer as shown in Fig. 8.2. Such a beam is said to be
perfectly collimated. In reality the frequency is not infinite so that the
beam will spread beyond this cylinder, but at the MHz frequencies found
in NDE testing a transducer beam will still remain fairly well collimated.
This fact is demonstrated in Fig. 8.3 where the magnitude of the pressure

Fig. 8.3. A 5 MHz, ' inch diameter circular piston transducer radiating sound into
water.
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130  Transducer Sound Radiation

field in the x-z plane is shown for a one half inch radius planar piston
transducer radiating at 5 MHz into water. There are strong pressure vari-
ations in the pressure field, particularly in the region near the transducer.
These variations show that one cannot consider the transducer beam to be
a simple uniform and well collimated beam as seen, for example, in a
flashlight beam. Modeling these pressure variations, therefore, is a non-
trivial task.

8.2 An Angular Plane Wave Spectrum Model

Although a transducer does not generate only a plane wave, one way to
model a transducer (as a baffled source) is to treat it as the superposition of
an infinite number of plane waves, all traveling in the positive z-direction
but with different x- and y- component directions. This is basic idea behind
an angular plane wave spectrum model, where the pressure wave field at a

point, x=(x,y,z), is represented in the form of a 2-D integral given by
[Fundamentals], [8.1]

2 400 +0

p(x,a))z(ij [ [ Pkok, )expl i(kox+k,y+k.z)|dkdk,  (8.1)

—00 —00

Since the time-domain pressure, p(x,7), must satisfy the 3-D wave
equation

2 2 2 2
6p+8p+8p_i6 p_O

R S A (82)
for p(x,t)zp(x,a))exp(—ia)t) we must have p(x,a)) satisfy
2 2 2
6p+5p+8p+k2p=0’ (8.3)

o oyt o
which is called the Helmholtz equation. Clearly, p(x,w) will satisfy
Eq. (8.3) if all of the exponential terms in Eq. (8.1) also satisfy that
equation. Placing exp[i(kxx+kyy+kzz)] into Eq. (8.3), we find as a
requirement that k. =+,/k* =k —k’ . In order to have waves traveling in

the positive z-direction (as they must, physically, for our problem), only
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8.2 An Angular Plane Wave Spectrum Model 131

Fig. 8.4. Model of a transducer as a superposition of plane and inhomogeneous
waves radiating into the region z >0 .

the positive value is acceptable and so we choose k, =/k* —k; —k; . Terms

such as p= exp(ikxx +ik,y+ik® =k} -k} z) are just plane harmonic
waves as long as k” > k; +k; is satisfied. In Eq. (8.1), however, all values of
k..k, are superimposed so that there will be values of those variables in the
integrations where k; +k; >k* and k_ will be imaginary. For those cases if

we take k, =i [k’ + kf, —k* we will no longer have plane waves propagating

into the half-space z > 0 but instead will have waves that propagate in the
x- and y-directions from the transducer but that are exponentially decaying

in the z-direction of the form p = exp(ikxx+ ik,y—\Jk; +k} =k z) [note:

k, =—i\[k; + k. —k* cannot be used since then we would obtain waves

that grow exponentially in the z-direction away from the transducer, which
is not physical]. Such waves are called inhomogeneous waves. Thus, strictly
speaking, Eq. (8.1) represents the pressure wave fields as a superposition
of both plane wave and inhomogeneous wave fields (see Fig. 8.4) where

we must have
1/kz—kf—kf, k22k3+kj
k. = ’ .
. 2 2 2 2 2 2
11/kx+ky—k , kT <k, +k;

Appendix D gives a discussion of inhomogeneous waves found when
solving plane wave transmission/reflection problems.

(8.4)
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132 Transducer Sound Radiation

In order for Eq. (8.1) to represent the solution to our baffled trans-
ducer model, we must determine the unknown P(kx,ky) so that the velocity

boundary conditions are satisfied on the plane z = 0. From the equation of
motion for the fluid (see Appendix D) we have

1 ¢
vz(x,y,z=0,a))=%6—1:(x,y,z=0,a)), (8.5)

where p is the density of the fluid. Placing Eq. (8.1) into this relationship
we find

1\ ek Pk, k)
ju iwp (8.6)
exp|i(kx+k, ) |dk,dk,

To see what Eq. (8.6) means, let V(kx,ky)=ikzP(kx,ky)/ia)p. Then Eq.
(8.6) becomes simply

2 400 +o0

vz(x,y,z:O,a)):(ij [ [7(k.k,)

% (8.7)
exp|i(kx+k,y) |dk,dk,.

Equation (8.7) is in the form of two inverse Fourier transforms where the ¢
and o parameters in the time and frequency domains (see Appendix A)
are replaced by wave numbers and spatial parameters, i.e. @ >k ,—t —>x
for one transform and @ — k,,—t — y for the other transform. Thus, Eq. (8.7)

is called an inverse 2-D spatial Fourier transform. By the properties of the
Fourier transform it then follows that we must have

400 +00

V(kx’ky ) = J I v, (x,y,z = O,a))exp[—i(kxx + kyy)J dxdy, (8.3)
which shows that V(kx,ky) is just the 2-D spatial Fourier transform of the
velocity field on the plane z = 0. For a circular piston transducer of radius

a, for example, where

\ (a)) x2+y2 <a’
vz(x,y,z=0,a))={00 FR (8.9)
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8.2 An Angular Plane Wave Spectrum Model 133

the 2-D spatial Fourier transform in Eq. (8.8) can be obtained explicitly as
S (K +ka)
JE+ka

where J, is a Bessel function of order one. Similarly, for a rectangular piston

V(k,.k,)=27a’v, (o) (8.10)

transducer of length / in the x-direction and length /, in the y-direction

sin[k"l"‘jsin[kylyj
2 2
YRYTTREE (8.11)
x'x yy
1)

Thus, for any given velocity distribution on z = 0, the pressure wave field
from the transducer can be found explicitly as

( 1 j“j.”jfia)p v (k,.k,)

% ik, (8.12)

we find

V(k,.k,) =11, ()

%500

p(x,a))z 2z

exp| i(kx o+ k,y+ k.z) |dkdk,

once the 2-D spatial Fourier transform of the velocity field at z = 0 is
known. Equation (8.12) is an exact result that can be used directly for
numerical modeling of transducer wave fields. However, it is a model that
is numerically very challenging to implement since one still needs to
perform two infinite integrations of rapidly varying functions. In practice,
it has been found that the inhomogeneous waves contribute little to the
pressure wave field except in a region very close to the transducer, which
is usually not of great interest. Thus, most numerical evaluations of
Eq. (8.12) simply ignore all the inhomogeneous waves and compute
instead the finite integrals over all the plane wave terms

1Y ia)pV(kx,k,)
p(x,w):(_j —}
2 k§+.l[;!:sk2 ik, (8.13)

cexp| i(kx+k,y+k.z) dk,dk,

Equation (8.13) is now a more tractable transducer model, but it still
requires a significant amount of computation (i.e. many plane wave
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134  Transducer Sound Radiation

components need to be superimposed) in order to adequately simulate the
transducer beam. Also, Eq. (8.13) does not explicitly show us much about
the physics of the sound generation process. Thus, we will consider
another transducer model that remedies some of these deficiencies.

8.3 A Rayleigh-Sommerfeld Integral Transducer Model

In discussing linear systems in Appendix C, we saw that the convolution
theorem played a crucial role. In that case, we showed that a 1-D time
domain convolution of two functions was equivalent to taking the inverse
Fourier transform of a product of their Fourier transforms. Since here
Eq. (8.12) is in the form of a 2-D inverse spatial Fourier transform of a
product of 2-D transforms, we could expect that a 2-D form of the
convolution theorem might play an equally important role here. This
indeed turns out to be the case. First, we state the following 2-D (spatial)
convolution theorem [8.2]:

If

2 400 +o0

f(x, ﬂ:(i] [ [ H(k..k,)G koK, )exp| i(kx+,y) | dk,dk,

—00 —00

then

+00 +00

f(x,y) = I I h(x',y')g(x -x',y— y')dx'dy'
where H (kx,ky) is the 2-D spatial Fourier transform of A(x,y) and
G(kx,ky)is the 2-D spatial Fourier transform of g(x,y). We can use this
theorem directly for Eq. (8.12) if we make the following definitions

H(k,.k,)=—iopV (k,.k,)

G(kx,ky,z):M_ (8.14)

G(k,.k,) -y

Then it follows that
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8.3 A Rayleigh-Sommerfeld Integral Transducer Model 135

h(x,y)=—iwpv,(x,y,z=0,0)
exp[ik./x2 R ZZJ (8.15)

27r\/x2 +y*+2°

g(xy)=g(x,y.z)=

The expression for 4 in Eq. (8.15) follows directly from the fact that
V(kx,ky) is the 2-D spatial Fourier transform of v, (x, y,z=0,a)). The

expression for g in Eq. (8.15) comes from Weyl’s representation of a
spherical wave in terms of an angular plane wave spectrum integral
[Fundamentals]. In particular, Weyl showed that

exp[ik\/xz +y7 + ZZJ
27X+ + 2

= (Zi)z TT%exp[i(kxx—k k,y+k.z) |dk dk, (8.16)
v -1

00 —00 z
00 +00

1Y exp(ik.) _
- (Z) jw [O Tkzexp[l (kox -+, ) |dk.dk,.
From Eqgs. (8.12), (8.14) and (8.15) and the 2-D convolution theorem then
it follows that we have an alternate representation for the pressure wave

field of a transducer given by

+00 400

r(x,0)= —;a;p I I v, (x,y,z=0,0)

—00 —00

exp[ik\/(x—x')2 +(y—y')2 + 22} (8.17)
' > - dx'dy’,
\/(x—x') +(y—y’) +z2

which is called the Rayleigh-Sommerfeld integral. Just as Eq. (8.12) gave
us a transducer model in terms of a superposition of plane (and
inhomogeneous) waves traveling in different directions, the Rayleigh-
Sommerfeld integral represents the transducer radiation as a superposition
of spherical waves radiating from point sources distributed on the plane
z=0. Since any transducer only generates a non-zero velocity over some
finite area, S, (see Fig. 8.5), we can rewrite Eq. (8.17) more compactly as
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X, X' A ALA AL
X=(x,y z2)

point source at
y=(x,y.z'=0)

Fig. 8.5. A transducer modeled as a superposition of radiating point sources.

—i exp(ikr
r(x.0)= ;a;p”vz(x',y’,zzo,a))#dS (8.18)

N

where » = \/(x—x’)2 +(y —y’)2 +z* (see Fig. 8.5) is the distance from an
arbitrary point y=(x’,)",0)on the transducer surface, S, to a point,

x=(x,y,z), in the fluid and dS is an element of area on the transducer

surface. For the particular case of a piston transducer the Rayleigh-
Sommerfeld integral reduces to an even simpler form given by

p(x.0)= (8.19)

—iwp v, (o) _U exp(ikr)dS‘
2 < r

The Rayleigh-Sommerfeld integral for a piston source, Eq. (8.19), is used
in many texts to discuss transducer radiation in a fluid [Fundamentals]. In
general, it still requires a significant amount of numerical effort to evaluate
since although one now only has to integrate over the finite face of the
transducer, the complex exponential term in the integrand of Eq. (8.19) has
a rapidly varying phase for the frequencies and transducer sizes used in
NDE tests that makes the 2-D numerical integrations lengthy. However, as
we will see, the Rayleigh-Sommerfeld integral does allow us to examine
more directly the physics of the transducer radiation problem than
Eq. (8.12) permits and we can even extract exact results in some important
special cases.
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8.4 On-Axis Behavior of a Planar Circular Piston Transducer 137

Fig. 8.6. Geometry for a circular planar piston transducer radiating direct and edge
waves to a point x on the axis of the transducer.

edge wave

direct wave

edge wave

Fig. 8.7. The direct and edge waves generated by an impulsively excited circular
piston transducer.

8.4 On-Axis Behavior of a Planar Circular Piston
Transducer

Consider first the special case where we wish to obtain the pressure wave
field on the central axis of a circular piston transducer of radius a as shown
in Fig. 8.6. In this case because of symmetry we can take the area element
as dS =2np,dp,, where p, is the radial distance on the plane z = 0 from
the center of the transducer to an arbitrary point on the transducer surface.
Since r* =p; +z" it follows that dS=2zrdr. Placing this result into
Eq. (8.19) then allows us to integrate the remaining complex exponential
term to obtain an exact expression for the on-axis pressure given by
[Fundamentals]

p(z,a)) = pcv, (a))[exp(ikz) - exp(ik\/z2 +a’ )} (8.20)
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Fig. 8.8. On-axis normalized pressure versus normalized distance z/N for a
5 MHz, 1/2 inch diameter planar transducer radiating into water, where N is the
near field distance.

The first term is a wave that has traveled a distance z directly from the face
of the transducer to the point on the transducer axis while the second term

is a wave that has traveled a distance +/z° +a” so that it appears to have
come from the edge (rim) of the transducer, as shown in Fig. 8.6. Indeed, if
one examines the pulses which travel from an impulsively excited
transducer, as shown in Fig. 8.7 , one sees a plane wave front (the “direct”
wave) that travels normal to the face of the transducer and a doughnut-like
wave front that comes from the transducer rim (the “edge” wave). Except
very near the transducer and for very short pulses, however, we will likely
not see these two waves separately. Indeed, at large distances from the
transducer where z >>a, an expansion of the edge wave term gives

Nzt +a? zz[1+a2/222]. If we also assume ka’/2z<<1 it follows to
first order that

. 2 k
p(z,a)) _ la)pazvo(a)) expiz z)’ 821)

which now looks like a single, spherically spreading wave. This result is
reasonable since at sufficiently large distances from the transducer the
transducer should act like a point source. Distances that satisfy this
criterion are said to be in the transducer far field or in the spherically
spreading region of the transducer.
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If one plots the magnitude of the on-axis pressure versus z that one
obtains from Eq. (8.20), then one sees two distinct types of behavior for
the on-axis response (Fig. 8.8). Near the transducer one sees a series of
nulls and maxima. In this near field region, one can show from Eq. (8.20)
that the maxima are located approximately at the distances
z= N/(Zm +1) m=0,1,2,... while the nulls are at approximately
z=N/2n n=1,2,3,... where N=a"/A (the ratio of the radius squared

of the transducer to the wave length, 1) is called the near field distance
and distances z< N are said to be in the transducer near field
[Fundamentals]. As the distance z increases, the last on-axis null occurs at
z=N/2 and the last on-axis maximum occurs atz=/N . Beyond z=N
the pressure field simply decays monotonically. At a distances greater than
approximately three near field distances from the transducer the exact on-
axis response begins to agree very well with the far field expression of Eq.
(8.21) so that z=3Nis generally taken as the start of the transducer far
field region.

8.5 The Paraxial Approximation

Having the exact on-axis behavior of the transducer also enables us to
discuss an important concept called the paraxial approximation. If we
examine the direct and edge waves we see (Fig 8.6) that they are separated
by the angle 0. At a distance z approximately equal to a transducer diameter
(2a), this angle begins to become small enough so that we can assume

Nzt +a = z[l +a*/ 222J . However, unlike the far field case, we will not

also assume ka’/2z <<1(which is equivalent to z>> 7N, i.e. under this
condition we must be many near field distances away from the transducer),
so that we are not necessarily in the transducer far field. This means that in
the present case we are only assuming that the angle & is small enough so
that all the waves in the transducer beam can be considered to be traveling
in approximately the same direction (which in this case is along the z-axis).
This is the essence of the paraxial approximation. For this approximation
we have

p(z,0)= pcv, exp(ikz){] - exp[ikaz ﬂ (8.22)

2z
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Fig. 8.9. On-axis normalized pressure versus normalized distance z/N for a 5 MHz,
1/2 inch diameter planar transducer radiating into water (paraxial approximation).

Equation (8.22) still contains the direct and edge waves of the original
exact response but it is in the form of a quasi-plane wave since it can be
written as

p(z,a)) = C(z,a,a))[,ocv0 exp(ikz)]. (8.23)

The term in the brackets in Eq. (8.23) is just a plane wave traveling in the
z-direction. The coefficient C(z,a,®) that multiplies this plane wave is
called a diffraction coefficient. It accounts for all the deviations in
amplitude and phase of the on-axis response in the actual transducer beam
from that of a plane wave. In this case we simply have

C(z,a,0)=1 —exp(z‘ka2 /2z). (8.24)

Figure 8.9 plots the on-axis response in the paraxial approximation
(Eq. (8.22)) for the same case shown in Fig. 8.8. It can be seen from those
figures that the paraxial approximation captures well both the near and far
field on-axis behavior of the transducer. Only within approximately a
transducer diameter, a region not shown in these figures, does the paraxial
approximation begin to lose accuracy. This means that for most NDE
testing situations where we are not concerned with the wave fields imme-
diately adjacent to the transducer, the paraxial approximation should work
well. The importance of the paraxial approximation is that it can also work
well in much more general testing situations where we are considering
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Fig. 8.10. An immersion transducer radiating at normal incidence through a planar
fluid-solid interface.

off-axis transducer responses and where the transducer beam itself has
been transmitted or reflected from various parts of a component’s geometry.
These types of complicated interactions occur frequently in NDE tests, so
that if the paraxial approximation is valid, we may still treat the sound
beam approximately as a quasi-plane wave and all the complicated
interactions of the transducer sound beam with the component geometry
can be treated approximately as interactions of a plane wave with that
geometry. Plane wave interactions are much easier to deal with than inter-
actions involving more general wave types so that the paraxial approxi-
mation gives us a powerful tool for accurately simulating many complex
problems. The key, of course, is in being able to efficiently determine the
diffraction coefficient (either analytically or numerically) for a given
testing problem. Fortunately, this is possible, as we will see, in many
cases. We will outline here one example where the paraxial approximation
can be used in a more general testing setup to determine the transducer
wave field. Consider a planar circular piston transducer of radius a radiating
through a planar fluid-solid interface at normal incidence (see Fig. 8.10).
In this case the compressional waves (P-waves) in the fluid generate primarily
P-waves in the isotropic elastic solid and the on-axis velocity in the solid is
given by [Fundamentals]

ik a’
V(zz,a)):vOTl;:Pdp exp(ikplzl+ikp222) 1—exp( ;‘~ ] ’ (8.25)
z

where k, =w/c, (j=1,2)are wave numbers for P-waves in the fluid and

solid, respectively, d  is aunit vector (polarization vector) along the

P
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P2:Cp25Cy

A
b

Fig. 8.11. Propagation of an edge wave through a fluid-solid interface to an on-
axis point x in the solid and the corresponding “virtual” point V" that the edge wave
would travel to in the solid if it's angle was not changed upon refraction through
the interface.

propagation direction, 75" is a plane wave transmission coefficient for
P-waves in the solid due to P-waves in the fluid (the ratio of the velocity at
the interface on the solid side to the velocity on the fluid side) and
Z=1z+c,z,/c, . The combined leading terms multiplying the bracketed
expression in Eq. (8.25) represent a plane wave that has traveled from the
transducer to a depth, z,, in the solid while the bracketed term itself is the
diffraction coefficient for this problem. Interestingly, this diffraction
coefficient is in exactly the same form as for the on-axis response for a
single fluid medium so that all of the near and far field on-axis behavior
we discussed previously for the single fluid case remain valid for this
problem if we replace the z-distance in the fluid by the equivalent distance
z,+¢,,z,/c,, . This result can be explained by the behavior of the edge
wave at the interface as shown in Fig. 8.11. From that figure we see that
e=d,sinf,, =dsind, where d,is the path length of the edge wave in
the solid and d is the distance from the interface to a “virtual” point, V, on
the axis of the transducer in the solid, which is where the edge wave would
arrive on the axis if it had not had its direction changed upon refraction.
Solving for d, we findd =d,sin6 , /sin6,, . However, from Snell's law for

refracted waves we have sin6,,/sin6,=c,/c, sod:(cﬂ/cpl)dz. If

we now define the corresponding distance to the virtual point along the z-
axis as Z, in the paraxial approximation this virtual point distance is given
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Fig. 8.12. Geometry parameters for defining the far field behavior of a transducer.

by Z=d +d=d, -‘r(sz /cpl)a’2 =z +(Cp2 /cpl)z2 . We see that for the inter-

face problem, in the paraxial approximation the refracted waves appear to
go through a z-distance, Z, to the virtual point on the axis in exactly the
same manner as for a single medium problem where the interface is absent.
In the diffraction correction for a single medium, therefore, one can simply
replace the z-distance by the equivalent distance, Z, to obtain the diffraction
correction for this case.

8.6 Far field On-Axis and Off-Axis Behavior

In section 8.4 we obtained an explicit expression (Eq. (8.21)) for the on-axis
far field wave field of a circular planar piston transducer. Here, we will
show that it is possible to obtain an expression for the entire far field
transducer behavior for both on- and off-axis points for planar transducers.
This expression is often referred to as the Fraunhoffer approximation for
the transducer wave field. First, we express the radius » in Eq. (8.18) in
terms of the distance R and unit vector e pointing from the center of the
transducer to point x as (see Fig. 8.12)

r=y(x-y)-(x-y)
=\(Re~y)-(Re-y).

In the far field |y| << R so we can expand the square root in Eq. (8.26) to

(8.26)

obtain:
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Fig. 8.13. The unit vector, e, and its cylindrical components, where e_ is along the
z-axis and e, is in a radial direction in a plane parallel to the circular transducer

of radius a.

r=R\1-2e-y/R

8.27
=R-e-y. ( )

Both terms in Eq. (8.27) are used to approximate » in the phase part of the
spherical wave term in Eq. (8.18) while only the leading term is used to
approximate the 1/r amplitude term. The reason for this difference in the
number of terms retained is that the phase is much more sensitive to
approximation than the amplitude since in the phase not only must a term
that is neglected be smaller than those terms retained but the neglected
term must also be much less than 2rt. These approximations reduce Eq. (8.18)
to the form

. IR
r(x,0)= %% J.vz (x',",0,@)exp(—ike-y)ds, (8.28)
N

which can be rewritten as

p(x.0)= —_;a;p —expgkR) [[{v. (x.5".0,) 829

-exp [—i(kxx + kyy)] dx’dy'} ,

where k =ke k, =ke . From Eq. (8.8) we recognize the integral in

Eq. (8.29) as just the 2-D spatial Fourier transform of the velocity field,
V (kx,ky ) , so that we have, finally
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Fig. 8.14. The far field variation of the normalized pressure versus radial distance, p, ,

for a circular transducer at three and six near field distances, showing the spreading
of the angular lobes of the response and the decay in amplitude with increasing
distance from the transducer.

y-axis distance
—
o (8] o

'
4]

x-axis distance

Fig. 8.15. The contours of the far field pressure distribution in a plane parallel to
the face of a 3mm x 6 mm rectangular transducer radiating into water at 5 MHz
and at a distance of 70 mm.
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—iwpV\k,.k, ) exp(ikR
p(x0)= 27(T ) p; ) (8.30)

For a circular piston transducer, we have, using Eq. (8.10) and
e, = je; +e, =sin@ (see Fig. 8.13)

J, (kasin @) exp (ikR)
kasin@ R

p(x,0)=—ivpa’y,(®) , (8.31)

which represents a spherical pressure wave in the far field whose
amplitude is angular dependent. Figure 8.14 plots the magnitude of the

normalized pressure, p|/ pcv, , at different fixed distances, z, from the trans-

ducer face as a function of the radial distance, p,, from the transducer’s
central axis, where sin@=p,/z. For both z=3N and z=6N one sees
the lobe structure generated by the J, (u)/ u angular directivity term of the

response in the far field. Atz =6N , however, the lobes are broader than at
z =3N due to beam spreading and the amplitude is also smaller because of
the 1/R spherical wave decay term.

For a rectangular transducer with length / in the x-direction and

length /, in the y-direction, Egs. (8.11) and (8.30) give the far field behavior

as

~iopl 1 vy (@) sin(kl, /2)sin(k,l,/2) exp(ikR)
27 (k1. 12)(k,1,/2) R

p(x.0)= (8.32)

Figure 8.15 gives a 2-D cross sectional plot of the magnitude of the
normalized pressure, 27r| p|/ pcv, , as a function of the distances x and y for

a given distance z, where k, =kx/R=kx/\/x’+y*+z° and

2 2 2 .
k,=ky/R=ky/\/x"+y~+z" . This figure shows the complex 2-D lobe
structure present for a rectangular transducer.

8.7 A Spherically Focused Piston Transducer

Many commercial focused transducers produce a focused acoustic sound
beam by incorporating an acoustic lens into the transducer design. Modeling
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uniform
velocity, v,

§ ... spherical surface

Fig. 8.16. The O’Neil model for a spherically focused piston transducer.

Fig. 8.17. Geometry parameters that appear in the on-axis response of a spheri-
cally focused transducer.

in detail such a configuration is very difficult but one can induce the
same focusing effect by considering the transducer to be a piston
transducer where a constant (radial) velocity is placed on a spherical
surface instead of a plane one. In this case one still uses the Rayleigh-
Sommerfeld integral (Eq. (8.19)) but now the integration is over a finite
radius, a, of a spherical surface S whose radius of curvature is R;, as

shown in Fig. 8.16. This focused transducer model is due to O’Neil [8.3],
[Fundamentals]. While the replacement of the integration over a plane
surface in the Rayleigh-Sommerfeld integral by integration over a
spherical surface is an ad-hoc approach that is not valid in a strict
mathematical sense the O’Neil model has been shown to be accurate as
long as the focusing is not too severe. Such severe focusing can be found
in practice, for example, in acoustic microscopes. Most commercial
focused NDE transducers, however, are not tightly focused so that the
O’Neil model should work well in practice for most NDE applications. For
a point x in the fluid on the axis of the spherically focused transducer one
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Fig. 8.18. The on-axis normalized pressure for a 6.35 mm radius spherically
focused piston transducer radiating into water at 10 MHz with a geometric focal
length of 76.2 mm.

can show that the element of area dS =(27z/q,)rdr where g,=1-z/R,

[Fundamentals]. Thus, the O’Neil model, like the Rayleigh-Sommerfeld
model, can be integrated exactly for this case. We find

CV, . .
p(z,a))=%[exp(zkz)—exp(zkre)], (8.33)
0
where 7, =+/(z—h) +a® and h=R,—R:—a*. These distances are
shown in Fig. 8.17.
Figure 8.18 shows a plot of the normalized pressure,

pl/ pev,,
versus normalized distance, z/R,, for a 6.35 mm radius transducer with

geometrical focal length of 76.2 mm radiating into water at 10 MHz. It can
be seen from that figure that for distances where z < R, the response has a

series of nulls and maxima which eventually produce a single large peak
near z=R, (the geometrical focal length). There is another null at

approximately z=2.25 R, and a very small response thereafter. It can be
shown that the nulls are located approximately at distances z, given by
[Fundamentals]
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h
=R |
z, O(hinﬂj’ (8.34)

where A is the wave length and the plus sign is for nulls satisfying z < R
while the minus sign is for nulls where z > R, . For nulls beyond the geo-

metrical focus, however, there is an additional restriction % > nA that must
be satisfied for those nulls so that in some cases such nulls may not exist at
all. Unfortunately, one cannot write down a simple relationship for the
location of the on-axis maxima as done for the planar transducer case. The
most one can do is state that they are determined by the roots of a transcen-
dental equation which is [Fundamentals]

2(§+ z)sin(ké'/2)
kR, (5 + h)q0

cos(ks/2)= (8.35)

where §=r, —z=/(z—h) +da* - z.

Note that due to wave diffraction effects the maximum response
(true focus) at finite frequencies occurs at a distance somewhat less than
the geometric focal length (geometric focus), as shown for this case. It is
only at infinitely large frequencies that the maximum on-axis response
occurs at z=R,.

With some algebra we can express the distance 7, also in the form

r,= \/ z + (az +h )% — z [Fundamentals]. In the paraxial approximation

we must have & <<a (not too severe focusing) and z >>a (not too near
the transducer). In this approximation we find

az%
:z(1+ = +.|—-z (8.36)
2

so that the on-axis response in Eq. (8.33) becomes

p(z,0)= pev, exp(ikz){i[l —exp(ika’q, /22)]}, (8.37)

9

www.iran-mavad.com
sloo Uyl



150  Transducer Sound Radiation

12
10}
sl
el 6
pev,
2|

0 . i i i ! i i
0O 051 156 2 25 3 35 4

#R,

Fig. 8.19. The on-axis response calculated with the paraxial approximation for the
same spherically focused transducer shown in Fig. 8.18.

which shows that the on-axis diffraction coefficient for a spherically focused
piston transducer is given by

C(z,a,R,,®) =qi[1—exp(i/mzq0 /22)]. (8.38)
0

For a planar transducer g, — 1 and Eq. (8.38) reduces to Eq. (8.22). As in
the planar case the paraxial approximation works very well in describing
the ultrasonic beam from a spherically focused transducer as long as the
focusing is not too severe and one is not too close to the transducer.
Figure 8.19 shows the on-axis pressure plot predicted in the paraxial
approximation for the same case shown in Fig. 8.18. It can be seen that the
two responses are nearly identical.

The paraxial approximation also can be used as a means for
illustrating a relatively simple way to incorporate focusing into a
transducer beam model. Consider a planar circular piston transducer. Since
the velocity is uniform over the face of the transducer, the phase of this
velocity field is constant (zero) on this aperture. In contrast, if the
transducer had generated a spherically converging wave which focuses at z
=R, on the axis of the transducer the phase of the velocity field on the
aperture would not be a constant (see Fig. 8.20). On the plane z = 0 we
would instead have a phase term given, in the paraxial approximation, by
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2

Fig. 8.20. Geometry for defining the phase variations on the plane z = 0 of a spheri-
cally converging wave that focuses at z= R, .

exp(—ik][r, —RO]) = exp[—ik[\/pg +R; —Roﬂ

(8.39)
= exp(—ikp(f /2R, )

[Note: we have included the ikR, term in Eq. (8.39) so that the phase of the
wave is zero at the origin ( Po=2z= 0) , 1.e. the wave starts out from that
point at time ¢ = 0. The —ikr, term has a negative sign because r, decreases
as the time ¢ increases, i.e the wave is a spherical wave converging to point
O on the axis]. Now, suppose we take the Rayleigh- Sommerfeld integral
model of a planar piston transducer and simply include the phase term
given in Eq. (8.39) over the planar transducer surface S. From Eq. (8.19)
we would have

Fig. 8.21. Geometry variables for defining the field behavior at a plane located a
distance from the transducer equal to the geometrical focal length.
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—iwp v, (o)

ds. 8.40
e (8.40)

p(x0)= )exp(ikr)

” exp(—ik,oo2 /2R,

N

Consider now the on-axis response. For a circular transducer we can take
dS =2mp,dp,.But r=/p; +z> =z+ p; /2z in the paraxial approximation
so that we obtain an integral that can be done explicitly, giving

p(z.0)= 20PN (@)exp (i) [explikpian /22 ] pydp,y
z 0
' (8.41)
= LU i 12:)].

9

Equation (8.41) is identical to the paraxial result of Eq. (8.38) obtained
from the O’Neil model. Thus, in the paraxial approximation, the effect
of spherical focusing can be modeled by including a phase term
exp(—ikpj /2Ro) = exp[—ik(x2 + yz)/ZRO] on the aperture plane z = 0 of
a planar transducer model. In a similar manner one could introduce bi-
cylindrical focusing (different focal lengths R, and R, in the x- and y-
directions, respectively) by including a phase term of the form

exp[—ik()c2 /2R, + Y’ /2R, )] .

8.8 Wave Field in the Plane at the Geometrical Focus

The wave field of a spherically focused piston transducer in a plane
located at a distance z = R, can also be obtained explicitly from the O’Neil

model. One finds (see Fig. 8.21) that [Fundamentals]

y R exp(ikﬁO)Jl(kay/Eo)
p(x,0)=-iovpvya 3 tay E

: (8.42)

where R, is the distance from the origin to a point x in the wave field.

Since for most focused transducers the beam at the geometric focus is
confined to a relatively small region near the transducer axis, in most cases
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Fig. 8.22. The pressure distribution (due to the J, (u)/u function) on a plane parallel
to the transducer face at a distance from the transducer equal to the geometric
focal length.

we can take, approximately, EO =R, . It is interesting to note that the form

of Eq. (8.42) is identical to that of the far field behavior of a circular planar
piston transducer (see Eq. (8.31)). In this case, Eq. (8.42) gives us an
explicit expression from which we can obtain an estimate of the beam
width at the geometric focus. Usually that width is specified as the width
of the main lobe when the magnitude of the response has dropped 6 dB
from the maximum on-axis response, as shown in Fig. 8.22. Using Eq. (8.42),
this beam width is given as [Fundamentals]

R
W, =4432=1412F (8.43)
/16 dB ka

where F'=R/2a is called the transducer F-number.

8.9 Radiation of a Focused Transducer through an
Interface

If one uses a focused transducer in an immersion setup, the transducer
beam will be affected by the fluid-solid interface and focus at a shortened
distance in the solid, as shown in Fig. 8.23 where a spherically focused
piston transducer of radius a and focal length R is radiating P-waves at
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Fig. 8.23. A spherically focused piston transducer radiating a sound beam at
normal incidence through a fluid-solid interface.

normal incidence to a planar fluid-solid interface. It can be shown that in
the paraxial approximation the on-axis velocity wave field in the solid again
can be expressed as a plane wave multiplied by a diffraction coefficient, C,
i.e.[Fundamentals]

v(x,0)=v,T7"d, exp(ikplz1 + kpzzz)C(zl,z2,a,R0,a)), (8.44)
where
1 ik lazéo
C(z,z,,a,R . 0)=—|1—exp| L—— )
( 1522 0 ) 7 P( 2z (8.45)

is of the same form as the diffraction coefficient for the single fluid medium,
but with the distance z replaced by zZ=z +c,z,/c, as in the planar
transducer case and where g, =1-2/R,.

8.10 Sound Beam in a Solid Generated by a Contact
Transducer

All the examples discussed to this point have been for immersion trans-
ducers. In contact testing a P-wave transducer, like an immersion transducer,
has an element whose motion is primarily normal to the face of the
transducer. This transducer is placed in direct contact with the surface of
the solid and a small layer of liquid couplant such as water, oil, or glycerin
is placed between the transducer and the surface to ensure good coupling
of the transducer to the solid. Under these conditions the transducer
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Fig. 8.24. The waves generated by a contact P-wave transducer radiating into a solid.

cannot drive the solid with a piston-like uniform velocity, since the solid is
as stiff (or stiffer) than the transducer crystal and its wear plate. Instead,
it is more reasonable to assume that the transducer generates a uniform
pressure, p, , over the transducer face. Even though this transducer is called

a P-wave transducer, this pressure will actually launch a complicated set of
waves of various types, as shown in Fig. 8.24 where a circular P-wave
transducer is shown in contact with a stress-free planar surface of a solid.
As in the fluid case, there will be a direct P-wave, D", that exists in a
cylindrical region ahead of the transducer and an edge P-wave, E”, that
radiates from the transducer edge. However, there will also be an edge
S-wave, E°. When the edge P-wave grazes along the stress-free surface, it
will generate a “Head” wave, H, (also called a von Schmidt wave) that
radiates in a conical-like fashion from the interface and links up to the
edge S-wave. Finally, the transducer also generates a surface Rayleigh
wave, R, which moves radially from the transducer along the free surface
at a wave speed slightly smaller than the shear wave velocity of the solid
and is confined to a region between the free surface and the edge S-wave.
Although it appears that the wave field of the contact transducer in
Fig. 8.24 is considerably more complicated than the immersion transducer
case, not all of the waves in Fig. 8.24 are of equal importance in
determining the wave field below the transducer in the solid. The Rayleigh
waves, for example, do not affect the wave field except in a region very
close to the free surface. The head waves do travel into the solid but they
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Fig. 8.25. A model of a contact P-wave transducer as a uniform pressure, p,,
acting on the free surface of an elastic solid.

radiate outwards at an angle from the transducer and generally are very
weak. Thus, the predominant waves that one needs to consider are the direct
P-wave and the edge P-waves and S-waves. A Rayleigh-Sommerfeld
integral type of model can also be developed for these direct and edge
waves, where the displacement vector, u, due to the waves in the solid is
given by (see Fig. 8.25) [Fundamentals]

! — p() K 9! dx
u(x ,a)) 27z'plcs21 S'[ S( ) 1
(8.46)
Dy ' )
——— | K (6')d?
+ 27z_plcz I P ( ) 1

pl Sy

where D =|x'—x" , P, 1s the density of the solid, the compressional and

shear wave speeds are c,,,c,,, respectively, and d/,d; are the polarization

pL>
vectors for the P-waves and S-waves. Unlike the immersion transducer
case, the integrals also contain angular dependent directivity functions,

K,(0'),K,(0') for the P-waves and S-waves. These functions are given

P
by the expressions [Fundamentals]
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Fig. 8.26. The directivity functions for a contact P-wave transducer.

_ cos O'x} (Klz /2 —sin’ 49’)

K (0')=
9) 2G(sind") 8
K.(0)= K7 cos@'sin 9’W '
S 2G(x;sin@') ’

where G(x)= (xz —K /2)2 +x°V1-x*\Jk} -x* and x =c,/c,. The
directivities are plotted in Fig. 8.26. Near the central axis of the transducer
K,=1,K =0 so that Eq. (8.46) reduces to

r pon ¢ I(l pl )
ll(X ,60)— lc;l 5[ dS, (848)

which now only contains the direct and edge P-waves in a form almost
identical to the expression for an immersion transducer. When such a
transducer is used to interrogate a material for flaws, it is likely that the
response will be “peaked up” by moving the transducer so that the flaw
will be on or near the central axis of the transducer. In that case we see
from Eq. (8.48) that a Rayleigh-Sommerfeld integral may also be an
appropriate model.
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Fig. 8.27. A contact P-wave transducer on a wedge which is contact with another
material that is to be inspected.

solid 2

Fig. 8.28. An equivalent “fluid” model of an angle beam shear wave transducer.
When the incident P-wave in the wedge is beyond the first critical angle, primarily
a refracted S-wave only is generated in the solid with polarization d*, as shown.
Since for the configuration shown d* lies in a vertical plane, the S-wave in the solid
is called a vertically polarized shear wave (SV-wave). There is a small transmitted
P-wave as well in this configuration that can generally be neglected, as indicated
by the dashed arrow in the figure.
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8.11 Angle Beam Shear Wave Transducer Model

A contact P-wave can also be placed on a solid wedge and used to generate
a shear wave in the solid by the process of mode conversion. In general, as
shown in Fig. 8.27 the P-wave transducer generates in the wedge primarily
the compressional and shear waves we have just discussed. These waves
then mode convert to each generate compressional and shear waves in the
solid, as shown. However, studies of this configuration have shown that
again the only significant wave in the wedge is the compressional wave
[Fundamentals]. If the angle of the wedge is chosen so that the compress-
ional wave traveling along the central axis of the transducer is beyond the
first critical angle, then primarily a shear wave is generated in the solid, a
configuration in which the transducer is called an angle beam shear wave
transducer. Since the only significant wave in the wedge is the P-wave, an
angle beam shear wave transducer can be modeled by replacing the wedge
by an equivalent fluid that has the same density and compressional wave
speed of the wedge material, as shown in Fig. 8.28 and model the waves
transmitted across the interface by using the transmission coefficients for
two solids in smooth contact (see Appendix D). Thus, one can use an
immersion transducer model as the basis for also modeling an angle beam
shear wave transducer.

8.12 Transducer Beam Radiation through Interfaces

In immersion testing, the transducer sound beam inherently must pass
through a fluid-solid interface. This causes the beam in the solid to be
distorted from its behavior in the fluid. We have seen how at normal
incidence to a plane interface we can model the on-axis behavior of these
distortions in a simple manner for both planar and spherically focused
transducers (see Egs. (8.25) and (8.44)). For curved interfaces and oblique
incidence, the models become much more complex. We can gain some
understanding of these cases by using high frequency ray concepts.
Consider, for example, a planar piston transducer radiating at oblique
incidence to a curved interface, as shown in Fig. 8.29. If we model the
wave field in the fluid by a Rayleigh-Sommerfeld integral, then in that
model we are radiating a distribution of spherical waves to the interface.
From an element of area dS at point y on the transducer surface a spherical
wave generates a pressure at a general point x, on the interface given by
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Fig. 8.29. An immersion transducer radiating a sound beam of type o (a = p,s) in
a solid through a curved fluid-solid interface, showing a ray path from a point y on
the transducer surface to a point x in the solid through the interface. In the
transducer beam model, this ray path must satisfy generalized Snell’s law. The polari-
zation of the transmitted waves is defined by the unit vector d” . For a transmitted
P-wave, the polarization will be along the direction of propagation while for a
transmitted S-wave it will be perpendicular to the direction of propagation. Both
polarizations are shown along the refracted ray but for a given wave type only one
will be present.

—iwpv, eXp(ikpm )
2r n

dp(x,, )= ds. (8.49)

At high frequencies, the corresponding velocity in this spherical wave is
given by

ikplv0 exp(ikplrl)

dv(x,o)=dv(x,,o)e, =—e ds, (8.50)

" ox i
where e, is a unit vector along a line from point y on the transducer face
to point X, on the interface and 7 = |x1 - y|. By high frequency ray theory,
this velocity is propagated into the solid as a bulk wave of type «, where
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a=(p,s), to generate a velocity at point x in the solid of the form
[Fundamentals]

dv® (x,0)=d%dv(x,,,®)T;"

Tl

a a
P Ty
3T =‘x—xf‘0‘ are distances from point y on the trans-

P (8.51)

exp(ikazr;g +ig” ),

o o
Py T Ty

a _|ga
where 7 _‘xm -y
ducer surface to an interface point, x;, and from that interface point to

point x in the solid along a ray path that satisfies Snell's law for a wave of
type o in the solid (see Fig. 8.29), i.e. we must have

sin(6,) _sin(6,,)

c

(8.52)

ol Ca2

We will assume that there is only one such path for the present argument,
although that may not be true in general for complex curved interfaces.

The term 7,7 is just the plane wave transmission coefficient (based on

velocity ratios) for a wave of type a in the solid generated by the P-wave
in the fluid traveling along this ray path. The factor

7

o a
P T 1y

a
pv2

i

that appears in Eq. (8.51) involves two “virtual” source distances p_, o5,
and represents the amplitude changes predicted by ray theory. Essentially
this factor distorts the incident spherical wave fronts in the fluid to more
general curved wave fronts in the solid. Ray theory also predicts that there
are additional phase changes, ¢ in the wave traveling in the solid beyond
the term, k_,r,, due to solely propagation in the solid. The vector d* in
Eq. (8.51) is a unit vector that describes the polarization of the transmitted
wave. It is identical to the polarization defined for a transmitted plane
wave of type « generated by the interaction of a plane P-wave with a
plane interface at point x;, where the normal to the plane interface coincides
with the actual interface normal of the curved interface at that point.

o o
Py T 1y
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(a)

(b)

Fig. 8.30. (a) A planar transducer radiating through a curved fluid-solid interface
that spreads (defocuses) the waves in the solid, and (b) a curved interface that
focuses the waves in the solid.

By integrating the expression in Eq. (8.51) over the face of the
transducer one then obtains a beam model for the total velocity in the

transmitted waves:
N

o o
P Ty

a
pv2

Ve (x,0)= I[ d“75"
w0 el

exp(ikazr;(’) +ig” )dv(xlo, a))]

Py + Ty (8.53)

There are, however, some difficulties with this model [Fundamentals]. As
long as the curved interface is of a defocusing type, as shown in Fig.
8.30 (a), where the rays from a point on the transducer surface traveling
into the solid do not touch or cross, Eq. (8.53) is well-behaved and can be
used, like the Rayleigh-Sommerfeld equation, to calculate the sound beam
in the solid. However, if the curved interface is of a focusing type, as
shown in Fig. 8.30 (b), the rays can touch or cross and the ray theory
amplitude term becomes infinite. There are uniform ray theory appro-
ximations that can remove those singularities but the analysis and
resulting expressions become much more complex. This difficulty arises
mathematically because we have modeled the transducer beam as a
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superposition of spherical waves arising from point sources, and spherical
waves can become singular, for example, when focused at a point by a
curved interface. Similar focusing singularities can occur for plane waves
incident on a curved interface so that an angular plane wave spectrum
model will also have these same difficulties when focusing curved inter-
faces are present. In the next Chapter, we will show that these problems
can be eliminated by expanding the transducer wave field in terms of
Gaussian beams which always remain non-singular.

There is an important special case when Eq. (8.53) is always well-
behaved [Fundamentals]. That case is when the planar piston transducer is
incident at oblique incidence on a planar interface. In that case we have

¢* =0 and

P h
"o, cosz(Qpl) 0
(8.54)
Pl =—"rg
a2
so Eq. (8.53) becomes, explicitly,
—ik v
a _ pl70 apa
v (x,a))——zﬁ ![le d
(8.55)

o a1 a
exp(lkplrlo 'Hkazrzo)

a 2 2 a a 2 2 2 2 a

\/’”10 +(ca2/cpl)r20 \/”10 +(ca2 cos” 8, /c,, cos Haz)rzo

Equation (8.55) is in a form very similar to the Rayleigh-Sommerfeld
equation. Instead of superimposing spherical waves traveling directly from
the transducer to the point in the fluid, we now need to superimpose a
more general set of waves with elliptical wave fronts in the solid that travel
along rays satisfying Snell’s law and are modified by the plane wave
transmission coefficient of the interface. Since both that transmission
coefficient and the polarization vector depend on that ray path, they are
both implicit functions of point y on the transducer surface and so must
remain inside the integral. In general the integral in Eq. (8.55) must be
performed numerically, so that like the Rayleigh-Sommerfeld integral the
highly oscillatory complex exponentials in Eq. (8.55) make this evaluation
a rather intensive computation. Fortunately, the Gaussian beam models
discussed in the next Chapter will also be much more numerically efficient
than these types of Rayleigh-Sommerfeld integral models.

ds.
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prc,,:*C.\z

X, X,

solid

Fig. 8.31. An experimental setup for a spherically focused transducer of radius a
and focal length R, where one can obtain the acoustic/elastic transfer function

explicitly.

8.13 Acoustic/Elastic Transfer Function — Focused
Transducer

In Chapter 7 it was shown that the acoustic/elastic transfer function is needed
in order to determine experimentally the system function. In Chapter 6 the
acoustic/elastic transfer function also played a key role in determining the
transducer sensitivity. In Chapter 5 we obtained an acoustic/elastic transfer
function for both a pitch-catch and a pulse-echo immersion setup. In
Chapter 13 a general procedure is given for using a multi-Gaussian beam
model to determine the acoustic/elastic transfer function in cases where the
transfer function cannot be obtained analytically (angle beam testing and
contact testing setups with curved surfaces, etc.). A number of other
acoustic/elastic transfer functions can be derived from results given in
[Fundamentals]. All of those cases, however, are for planar piston
transducers. The acoustic/elastic transfer function for a spherically focused
piston transducer in a pulse-echo immersion configuration is also available
[8.4], [8.5], a case we will develop here as a simple application of the
paraxial approximation and the use of the phase term discussed in Eq.
(8.39). This approach will also lead to the transfer function for planar and
cylindrically focused rectangular piston transducers in the following
section.

The configuration we will consider is the pulse-echo setup shown
in Fig. 8.31 where a spherically focused piston transducer of radius a and
focal length, R, , radiates waves into a fluid and receives the waves reflected

from a plane fluid-solid interface. The distance from the transducer to inter-
face is made equal to the geometrical focal length in this configuration.
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As discussed in section 8.7, in the paraxial approximation we can use the
Rayleigh-Sommerfeld equation to represent the wave field of a spherically
focused transducer in the form (see Eq. (8.40))

r(x0) =_ia)pé—;:)(a))”exp[—ikpl ()?2 +7° )/ZRO]
s (8.56)

'exp(ikplr) s

r

b

where ()E, y,z= 0) are coordinates of a point on a plane at the transmitting

transducer and r= \/(55 —x,) +(7-»,) +2 is the distance from that

point to a point (x;,y,,z,)in the fluid. Let the point in the fluid lie on the

interface as shown in Fig. 8.31. Then r = \/(i—xl Y +(5-y,) + R .We
also apply the paraxial approximation to this distance function to obtain
r=R;,+ [(i - X, )2 +(7-» )2 }/ZR0 and Eq. (8.56) becomes

—iop, v, (®) exp(ikleO)
27R,
(F+7) (F-x)" +(F-n)
|| exp| —ik,,———— |exp| ik d L\ dxdp.
ISI { " 2R, ] [’“ 2R

0

p(x,,y,,Ro,a))=
(8.57)

Equation (8.57) is in the form of a quasi-plane wave so at high frequencies
the pressure in the reflected wave at the interface, p,(x,,y,,R,,®), can be

obtained by the plane wave relationship
Pr (x,,y,,RO,a)) = Rlzp(‘xhyl’RO’w)
_ ParCpr ~ PiCp

PrC0 T PIC,

8.58
p(x,,y,,Ro,a)), ( )

where R,, is the reflection coefficient (based on a pressure ratio). The normal
velocity at the interface in the z, direction, v , (see Fig. 8.31) is also given
by the plane wave relationship

v, (%, Ry,0) = R, p(x,,,, Ry, @)/ pic,,. (8.59)
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Using this velocity field as specified on the entire interface, we can again
use the Rayleigh-Sommerfeld integral (with the paraxial approximation
applied again to the radius, 7, in that integral) to obtain the reflected waves
that are incident on the transducer from the interface. We find

—ik R , exp (ikz, )TTP (51,31, Ro )
15 V151,

—00 —00

p(x.,y,.z2,,0)= -

(8.60)
(xr_xl)2+(yr_yl)2 dx,dy[.
2z,

-exp| ik,

For a spherically focused transducer, this pressure is received not at the
plane z =R but instead over the curved spherical surface given by

z =R, —(x>+y)/2R,. Placing this distance into the plane wave phase
r 0 r yr 0 g

term in Eq. (8.60) (and using z, = R, elsewhere in Eq. (8.60)), the average
pressure, p, ., over the area, S, of the transducer is given by

—ik,\R., exp (ikR, ) ?
g BRI o, 1222

{ J‘ J‘ P(xz,yl,Ro,a))exp{ikm (xr _XI)2-;§yr _y/) ] (8.61)

—00 —00

-dx,dy, } dx.dy,.

Substituting the expression for the pressure at the interface (Eq. (8.57))
into Eq. (8.61), we obtain an explicit expression for the average pressure
acting on the transducer. Then from this average pressure we can find the
blocked force, F, =2p, S, received by the transducer as
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—ik,, —ik, pic, v,
2zR, 2rR,

. f! ISI ex{—ikﬂ (xzz;ROyZ)] exp[—ikpl %1

T o (o=x) 0 -w)
.[J.J.exp[lkp1 2R0y Y ]

—00 —00

F, =2R,, exp(2ik,,R, )

(8.62)

- 2 . 2
eXp|:ikp1 (x_XZ)z-;(y_yl) :ld‘xldyl}dxrdyr dxdy.
0

Since F, = pc,Sv, is the force transmitted by the transducer acting as a
transmitter, the acoustic/elastic transfer function for our focused transducer,
t* =F,/F, is given by

—ik, ik,

. Xf +y3 . EZ +j>2
J;:[ L[ exp{—zk[,1 (2—&)} exp[—lkpl %]

i . (xr_xz)z"'( P 1)2
[I J.exp[zkp1 2R0y Y ]

—00 —00

tl* =2R, exp(Zikleo)

(8.63)

L GEox) +(-n)
exp{zkpl Z R L

0

} dx,dy, } dx.dy, |dxdy.

Equation (8.63) is a rather formidable looking expression, but we can
proceed as follows. First, we note that the acoustic/elastic transfer function
for a planar transducer of the same size as our spherically focused trans-

ducer, ¢t is given by exactly the same expression as Eq. (8.63) without
the first two phase terms:
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—ik ik

pl "~ p

2RSS 27 R,

ISI Lj U f exp{ikm (xr_x’);fyr_yl) (8.64)

7" = 2R, exp(2ik,,R, )

—00 —00

: (’?_xz)2+(J7—y;)2 ~ g~
-exp| ik, 2R, dx,dy, |dx.dy, |dxdy.

In Egs. (8.63) and (8.64) the integrals over the interface are identical for
the focused and planar cases. These integrals can be rewritten as

1= TTexp{ikpl (s =x) + (=) ]

2R,

—00 —00

~ 2 ~ 2
.exp{ikpl (F-x) +(5-»)
2R,

2 2 ~2 , ~2
- exp[ikpl %J exp{ikpl (";y)} (8.65)

} dx,dy,

0 2R,

+0o0 2 = +
: J exp (ikp1 ;—’] exp [—ikp1 (xRﬂJ dx,
—0 0 0

+00 2 ~+
J exp(z’kp] ;;—’jexp[—ikp] —(y ;’ ) jdyl

0 0

—00

The remaining integrals can be performed exactly because we have [8.2]

+o0

s _.Bz
exp(idx®)exp(—iBx dxz\/gex [ ! J,
J oxplitoxp (i) = exp| <2 (5.66)

Im[4]>0

where Im[ ] indicates “imaginary part of ”. In Eq. (8.65) the corresponding
A terms are purely real but if we add a small amount of “damping” by
letting 4= A+ie and then take the limit as & — 0, the result is the same
as using Eq. (8.66) directly on the forms given in Eq. (8.65) and we find
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2 2 =2 ~2
I z;I:RO exp{lk (X,zzyr)]exp[ikpl (x +y )]

pl 0 2R0

o Erx)) L ()
+€X —1 ——— |€X —1 _— .
Pl 4R, Pl 4R,

In the focused case, we see that the first two phase terms in Eq. (8.67)
simply cancel the first two phase terms in Eq. (8.63) and we obtain

—ik,,
4z RS
e .5 o

~ 2
+
-exp {—ikp, (“V“Ty’)] dx,dy, } dsdy.

0

(8.67)

£/ =2R,, exp(2ik,R,)

pl

However, we note that for a circular, spherically focused transducer the
integrations in Eq. (8.68) are over symmetrical intervals in both x, and y, so

that we can make the replacements x. - —x, and y, - —y, in Eq. (8.68)

without affecting the end result. With those, replacements, we have,
finally,

- _.k i _ 2
R exp(2ikp1Ro ) 47;Rp15 H[”exp {—ikpl %]
0 S N 0

~ 2
exp {—ikﬁl %] dx,dy, J d7dy

(8.69)

0

In the planar transducer case, we can place Eq. (8.67) into Eq. (8.64) to find
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ik, Y
tf;lanar = 2R12 exp(2lkp|R )m.”. J‘J‘ exp(ikpl M]
S S

0 2R,

.exp(ikp1 %J exp[—ikpl M] (8.70)

0 4RO

~ 2
+y.
exp [—ikpl %J dx.dy, J didp,

0

which, when the exponential terms are combined, gives

—ik
thr = 2R, exp(sz R ) 2

I ool

J (8.71)

~ 2
exp (z’kﬁl %J dx dy, J dids.

0

In Chapter 5, we obtained an explicit expression for acoustic/elastic transfer
function for the planar transducer case. For the geometry of Fig. 8.31 we
can write the transfer function for a planar transducer in terms of the

diffraction correction, D, , used in Chapter 5 (see Eq. (5.20)) as
17 () =D, (k,a* /2R, ) R,, exp(2ik R, ), (8.72)
where
D, (u)=2[1-exp(iue){J, (u) =i, ()} ] (8.73)

Comparing Egs. (8.69) and (8.71) and using Eq. (8.72) for the planar case,
we see that for the focused case we have

t (o) = _[Dp (kpl"2 /2R, )] R, exp(2ikp1R0) (8.74)

where [ ]* denotes the “complex conjugate”. Thus, by making the changes
indicated by Eq. (8.74) one can simply use the same diffraction correction
obtained for the planar case for this focused case as well. Note, however,
that while in the planar transducer case the interface is not restricted to
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being at a particular distance from the transducer the interface must be
placed at the geometrical focal length of the focused transducer in order to
use Eq. (8.74).

8.14 Acoustic/Elastic Transfer Function — Rectangular
Transducer

The results of the previous section can also be used to obtain the acoustic/

elastic transfer function for a rectangular piston transducer that is either

planar or cylindrically focused and receiving the waves reflected from the

front surface of a block (same setup as shown in Fig. 8.31). First, consider

a planar rectangular transducer of length 2a in the X-direction and 26 in

the y-direction and let the distance R, =D (see Fig. 8.31). Then from
rect

Eq. (8.71) the acoustic/elastic transfer function, ¢, is

—ik
£ =2R exp(2ik D)—2—
4 2 p( 7l )16;zDab

+b+a +b+a . (i—x,,)z
1] ool 5 w9

But in this case we have

e [ (-x) _ gD
— =— F
J;J;exp[lkpl D dx dx ‘) .([ (x)dx, (8.76)

where F' (x) is the Fresnel integral

F(x) = [exp(it* /2)dt. (8.77)
0
and similarly
+b+b ~ 2 N2kb? /2D
—y. . 4zD
[] exp[ikpl%]dyrdysz [ F(x)ax (8.78)
~b-b pl 0
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For the integral of the Fresnel function we can use the relationship [8.6]
(which comes directly from integration by parts)

X,

.[F(x)dx = [xF(x)Jr;exp(iﬁx /2)1 (8.79)

X 1

to obtain

rect . 4
=R, exp(ZIkPID)Y{F(Jkalf/ﬁD)+
i

W[exp(ﬂ{”az '2)-1] (8.80)
. F(,/zkplb2 /7Z’D) +m[exp(z’kﬂbz /D)-1]¢.

rect

We can express Eq. (8.80) in terms of a diffraction correction term, [)p ,

where

e =i{F(4 k0> (D )+

1

i

7\2k a* | xD [eXp(ikplf /D) _IJ (8.81)
P
AF (2K, 2D +m[exp(z’kﬂbz /D)-1]
pl

so that

e (a)) _ D;ect (kp]a2 /ZD)R12 exp(2ikp1D)- (8.82)

Figure 8.32 shows a plot of ﬁ;ec’ versus frequency for a rectangular trans-
ducer where D =50.8 mm and ¢ =12.7 mm, b =6.35 mm. For comparison
the corresponding diffraction correction for a 12.7 mm radius circular
transducer (Eq. 8.73) is also plotted in Fig. 8.32. It can be see that the
rectangular transducer has a very similar behavior to the circular probe and
that both diffraction corrections asymptotically approach a value of two for
high frequencies.
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0 2 4 6 8 10 12 14 16 18 20
frequency (MHz)

Fig. 8.32. The diffraction correction, f);“’, for a rectangular 25.4 x 12.7 mm
rectangular transducer (solid line) and the corresponding diffraction correction,
ﬁp, for a 12.7 mm radius circular transducer (dashed line). In both cases the

distance D = 50.8 mm.

We can also consider a rectangular cylindrically focused transducer
in the same fashion as done for the spherically focused transducer. For a
transducer with cylindrical focusing of radius R in the y -direction, we can

introduce the phase term exp(—ikp1 7 /2R ) into the Rayleigh-Sommerfeld

equation and follow the same steps as in the spherically focused transducer
case to obtain the acoustic/elastic transfer function, ¢’ ', in the form

. . —ik +b+a( +b+a . ()Z'—)Cr )2
tAyl = 2R12 exp(2zkp1R)l6ﬂ—];;bJ;£ J;J;exp lkp] T
2 (8.83)
exp| ik, G+r) dx dy, |dsdy,

where we must set the distance, D = R , as in the spherically focused case.
Again, we can express these integrations in terms of Fresnel integrals.
Since the details are the same as for the planar case, we just give the end
result, namely
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: 4
t9 =R, exp(2ikp1R)7{F(1 /2kpla2 /7R ) +
I

ﬂ,leplaz/ﬁR
: F(1/2k b/ R) L Texplit 52 /R)-1]L .
b T +7[W[exp(l 1 ) ]

[exp(ik,a*/R)~1] (8.84)

where again { }* indicates the complex conjugate.
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8.16 Exercises

1. The exact on-axis pressure for a circular piston transducer was given by
Eq. (8.20) and the far field approximation for this same pressure was given
by Eq. (8.21). Using MATLAB, write a script that computes these two
pressure expressions and plots the magnitude of the normalized pressure,
p/ pcv,, versus the normalized distance, z/ N, for both of these express-
ions on the same plot, where N is the near field distance. Let the transducer
radius a = 6.35 mm, the frequency f= 5 MHz, and the wave speed of the
fluid ¢ = 1480 m/sec. Show both pressure plots over the range z/N = 0.2 to
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z/N = 4.0. What can you conclude about when Eq. (8.21) is valid?

2. Equation (8.31) shows that the angular distribution of the far field
radiation field of a circular planar piston transducer is controlled by the
directivity function J, (kasin®)/(kasin@). Using MATLAB, write a func-
tion that calculates the angle where the amplitude of this directivity
function drops by 6 dB from its maximum on-axis value. Use this function
to determine the 6 dB angular spread of a 0.5 inch diameter piston
transducer radiating into water at frequencies of 2.25, 5, and 10 MHz.

3. Equation (8.19) is the Rayleigh-Sommerfeld integral for a planar piston
transducer radiating into a fluid. Consider this equation for a rectangular
transducer with width 2a in the x-direction and width 26 in the y-direction.
In the paraxial (Fresnel) approximation we can approximate the radius

F= \/ 2 +(x- x’)2 +(y- y')2 appearing in the denominator of that equation

as r=R=+/x"+y" +2*, where (x,y,z) is a point in the fluid and (x',y’,O)

is a point on the transducer face. In the phase term of Eq. (8.19), however,
we approximate the radius 7 instead as

N2 2
rzz\/l—i—(x_zx) +(y zy)
z z

(x=x)  (r=y)
2z 2z

=Zz+

Thus, with these approximations Eq. (8.19) for a rectangular transducer is:

ciopn ot [akGemaf ] [k-s)]
p_TRoexp(zkz)jexp[T dx__[bexp — dy

—a

Show that this expression can be written as the product of the difference of
two Fresnel integrals in the form

pfvo :;_i;exp(ikz){F( %(x+a)j—F[ %(x—a)ﬂ

[([Ewren) ol Eo)
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where F(x)is the Fresnel integral as defined in Eq. (8.77). Using the

MATLAB function fresnel int and the above expression, write a MATLAB
function that computes this pressure wave field at any point (x, y,z) in

the fluid. For a 6mm by 12mm rectangular transducer radiating into water
(c = 1480 m/sec) at 5 MHz, plot the magnitude of the normalized on-axis
pressure for distances z = 6 mm to z = 100 mm. For the same transducer
plot cross-axis pressure profiles in the x- and y-directions at z = 45, 70 mm.

4. Write a MATLAB function that returns the normalized on-axis pressure,
p/ pcv,, versus distance for a spherically focused piston transducer (see

Eq. (8.37)). The input arguments of the function should be the distance
values (in mm), the frequency (in MHz), the radius (in mm), the geo-
metrical focal length (in mm), and the wave speed (in m/sec). Use this
function to find the location of the true focus (i.e. the distance to the
maximum pressure) for a 12.7 mm (0.5 inch) diameter, 101.6 mm (4 in.)
focal length transducer radiating into water at 5, 10, and 20 MHz. What
can you conclude about the relationship between the location of the true
focus versus the geometrical focal length?

5. Equation (8.20) gives the exact on-axis pressure for a planar immersion
transducer at a single frequency. Ultrasonic NDE transducers, however, do
not normally operate at a single frequency but are driven by a voltage
pulse and hence contain a spectrum of frequencies that generate a time
domain pulse. The near field behavior of such a pulsed transducer does not
show nearly the same strong near field structure as a single frequency
model suggests.

Write a MATLAB function that computes the normalized pressure,
p/ pcv,, at a given on-axis distance at many frequencies and multiplies this

pressure at each frequency by the MATLAB function spectruml1 written
for exercise 1 in Appendix A. The function should evaluate this product at
1024 positive frequencies ranging from 0 to 100 MHz and then use the
Fourier transform IFourierT defined in Appendix A to obtain the time-
domain pulse generated by the transducer at the given location. Finally, the
function should compute the peak-to-peak magnitude of this pulse and
return that value. The inputs to the MATLAB function should be the
distance (in mm), the transducer radius (in mm), the wave speed of the
fluid (in m/sec), the center frequency, fc (in MHz), and the bandwidth, bw
(in MHz).
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Use this function to evaluate the peak-to peak response of a trans-
ducer radiating into water for 200 points ranging from 10 to 400 mm and
plot this peak-to-peak response versus distance. Take the radius of the
transducer to be 6.35 mm (0.25 in.), the center frequency fc = 5 MHz and
the bandwidth bw = 2 MHz.
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9 Gaussian Beam Theory and Transducer
Modeling

As seen in the last Chapter and in Appendix D plane waves and spherical
waves are important wave types. They can be used as a means to
understand many aspects of wave propagation and scattering and they can
serve as building blocks to form more complex waves such as the beam of
ultrasound generated by an ultrasonic transducer. As building blocks,
however, plane waves and spherical waves have some disadvantages. To
adequately represent the high frequency beams found in ultrasonic NDE
applications, many plane wave components or spherical wave sources are
needed, leading to computational inefficiencies. Also, as discussed in the
last Chapter, when these wave types are transmitted or reflected through
certain geometries at high frequencies mathematical singularities in the
resulting approximate wave fields can be encountered that must be
eliminated. These wave types do have the virtue of being exact solutions to
the equations of motion for both fluids and solids so that other wave fields
formed from them also satisfy the equations of motion exactly as long as
the wave fields are not obtained with the use of approximations.

Gaussian beams are another important wave type that can elimi-
nate many of the disadvantages of plane waves and spherical waves. In this
Chapter we will show that it is possible to accurately model the sound
beam of an ultrasonic transducer with as few as ten Gaussian beams.
Furthermore, we will see that it is possible to analytically define the pro-
pagation and transmission/reflection laws for these Gaussian beams even
after they have undergone multiple interactions with curved interfaces.
These properties of Gaussian beams will allow us to construct a multi-
Gaussian transducer beam model that is computationally efficient and
capable of simulating sound beams generated in very complex inspection
geometries. Unlike plane waves and spherical waves, Gaussian beams are
only approximate paraxial solutions to the governing equations of motion.
Similarly, a multi-Gaussian transducer beam model will also be an
approximate paraxial solution. Thus, there will be some situations where a
multi-Gaussian beam model will lose accuracy. We will describe those
special cases in some detail later. Fortunately, many of those special cases
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180  Gaussian Beam Theory and Transducer Modeling

are not encountered in common testing setups so a multi-Gaussian beam
model is a practical, powerful modeling tool for many NDE applications.

In Appendix F we have given an extensive discussion of Gaussian
beam fundamentals for the special case of circularly symmetrical Gaussian
beams to illustrate the important properties of Gaussian beams in a simple
context. While circularly symmetrical Gaussian beams are very useful for
describing many laser science problems, they are of limited use for the
types of problems we need to model in ultrasonic inspections. In this
Chapter we extend the treatment given in Appendix F to the more general
Gaussian beams that are needed for ultrasonic NDE applications.

9.1 The Paraxial Wave Equation and Gaussian Beams in a
Fluid

Consider first the case of wave propagation in a fluid. We know that the
pressure, p, satisfies the wave equation. If we place a harmonic wave solution

(of exp(—ia)t)time dependency) into the wave equation in the form of a
quasi-plane wave traveling in the x, -direction given by:

p=P(xl,x2,x3)exp(ikpx3) 9.1)

(Note - we will not write the time dependency explicitly here or in most
subsequent expressions) then we find that P satisfies the equation

o’p o'P o'P ., OP
> > >+ 2ik, —
ox; Ox, Ox, ox,

=0. (9.2)

If we use the solution of Eq. (9.1) to represent a wave which is propagating
primarily in the x,-direction, then we expect that at high frequencies the
complex exponential term in Eq. (9.1) will capture most of the wave field
variations in the x, -coordinate so that the wave diffraction effects associated

with the 0°P/ox; term in Eq. (9.2) will be small in comparison to all the
other terms in that equation, i.e. we make the paraxial approximation [9.1]
o’P __0°P O°P oP
<<

2ik, — (9.3)

2 22 A2 2%y
ox; ox; Ox, ox,

which leads to the paraxial wave equation for P:
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(a) (b)

Fig. 9.1. (a) Propagation of a spherical wave from a point source and (b) the behavior
of the spherical wave in a small region around the x; -axis.

o’P o°P oP
—+—+2ik, —=0. 9.4
oxg  ox) " ox, S
In Appendix F it is shown that the paraxial approximation of Eq. (9.3) places
some physical limits on the properties of a propagating Gaussian beam.
We can also gain some physical understanding of the meaning of
the paraxial approximation by considering the radiation of a spherical wave
from a point source in a fluid as shown in Fig. 9.1 (a). The pressure in the
fluid in this spherical wave is given by
explik r
p= ALP), (9.5)

-
where  r=./x/ +x; +x] is the radial distance from the source and
k,=wlc, is the wave number, with @ the frequency in radians/sec and

¢, the wave speed of the fluid.

Now, consider this spherical wave in the neighborhood of a fixed
direction, which we will take as the x,-axis (see Fig. 9.1 (b)). In a small

angular region about this axis (where x,/x; <<1, x,/x; <<1) the spherical

wave is traveling approximately in the x;-direction and we have

r=\x;+p; =x,+p,/2x,, where p,=+x/+x;. In this case, the

spherical wave can be approximated by
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1.4
1.3]
phase |
e, 1.2
117

10075 10 15 20 25 30 35 40
angle, 0, degrees

Fig. 9.2. Normalized phase for a spherical wave in the neighborhood of the x, -axis.

Solid line: exact normalized phase, dashed line: paraxial approximation for the
normalized phase.

=4 exp[ikp (x3 + o0 12x, )J ’ 9.6)

X3

which satisfies the paraxial wave equation exactly so that Eq. (9.6) is the
paraxial approximation of the spherical wave in the neighborhood of the
x, -axis. How large of an angular neighborhood about the x,-axis can we
take before the paraxial approximation loses accuracy in describing the
spherical wave? To answer this question, consider the phase term of the
spherical wave (kpr) divided by the phase of a plane wave traveling in the

x, -direction (k px3) and let p,/x, =tan(0), where @ defines an angle about

the x;-axis (Fig. 9.1(b)). [Remark - a normalized phase term is considered

here so that we can discuss phase differences in non-dimensional terms
and we consider the phase differences, not the amplitude differences since
it is the former that are most sensitive to approximation] Then we have:

kr
exact spherical wave: ’—=yl+tan’ @ (9.7a)

X3

P
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. o k,r _ tan’@
paraxial approximation: =1+
k,x, 2

(9.7b)

Figure 9.2 compares these two normalized phase terms versus & where the
solid line is the exact phase result and the dashed line is the paraxial
approximation to this phase. As can be seen from that figure, the paraxial
approximation for the phase begins to lose accuracy at an angle of approxi-
mately 30 degrees from the x, -axis.

Now, apply the results for this simple example to the case of Fig. 9.3
where a planar piston transducer radiates waves into water that travel from
the transducer surface to a point on the transducer axis. As discussed in the
last Chapter a Rayleigh-Sommerfeld integral model represents this transducer
as a distribution of point sources over the face of the transducers, each of
which generates a spherical wave of the type just discussed. Thus, if we
apply the paraxial approximation to those distributed sources, we would
expect that the paraxial approximation for the Rayleigh-Sommerfeld model
also breaks down if the angle &#shown in Fig. 9.3 exceeds approximately
30 degrees. Typically, this means that the paraxial approximation should
begin to lose accuracy when the distance from the face of the transducer to
the point where the wave field being evaluated is less than about a trans-
ducer diameter. This can be demonstrated by comparing the magnitude of
the exact on-axis pressure for a circular planar piston transducer radiating
into a fluid, as found in Eq. (8.20):

p(z,0)= pcv, [exp(ikpz) - exp(ikp Na* + 2 )J 9.8)

with the same pressure in the paraxial approximation given by Eq. (8.22):

Fig. 9.3. A transducer radiating into a fluid.
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10 20 30 40 50 60 70 80
z-distance (mm)

Fig. 9.4. A comparison of the magnitude of the normalized pressure versus on-axis
z-distance for a 12.7 mm diameter, 5 MHz planar piston transducer radiating into
water where the solid line is for the exact results and the dashed line is for the
paraxial result.

p(z,a)) = pev, exp(ikpz)[l - exp(ikpa2 /22)}. (9.9)

Figure 9.4 plots the magnitude of these exact and approximate pressures
versus z for the case of a SMHz, 12.7 mm diameter transducer radiating
into water. It can be seen from that figure that even in the near field, where
there are significant pressure variations, the paraxial approximation repre-
sents the pressure of this transducer very well but that the approximation
begins to have a significant shift from the exact on-axis pattern at about
one diameter distance from the transducer which is the smallest distance
plotted in Fig. 9.4. This distance corresponds to an angle #in Fig. 9.3 of 30
degrees.

Another way of viewing the paraxial approximation of Eq. (9.3) is
to recall from the last Chapter that we can also use an angular spectrum of
plane waves to represent the sound beam of a transducer. Thus, consider a
plane wave component of this spectrum that is traveling in the x, — x; plane

at an angle 6 with respect to the x,-axis (Fig. 9.5). This plane wave is
given by

perxp(ikpx] sin@ +ik x, 0059), (9.10)
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Fig. 9.5. A plane wave traveling in the x, —x, plane at an angle 6 with respect to

the x3-axis.

which can be placed in the quasi-plane wave form of Eq. (9.1),
p= Pexp(ikpx3) , Where

P=Aexp[ikpx1 sin¢9+ikpx3(1—cos6’)]. (9.11)
Then for small angles 6

o*P

2
ox,

2p . 20~ 1.2DN2
=—kas1n Qz—kaH

., OP
ik, ——= —2k’P(1-cosf) = k. PO’ (9.12)
3
2 k*Po*
0 }2) =—k.P(1- 0056’)2 e
Ox; g 4

so that we see that 0°P/dx; will be at least an order of magnitude smaller

than the other derivative terms if €< 0.5 rad, or approximately & <30°.
This shows that as long as the transducer beam is sufficiently well
collimated so that the angular plane wave spectrum components needed to
represent the beam are very small outside a cone angle of about 30 degrees
about the x; -axis, we expect the paraxial approximation will be valid.
There are number of exact solutions to the paraxial wave equation,
Eq. (9.4). An ordinary plane wave where P = 4 = constant is a solution.
Also, as mentioned previously, the paraxial approximation of a spherical
wave given by Eq. (9.6) is
. 2
Py exp [zkppo /2x3] ©.13)

b
X3
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radius of curvature

beam waist

Fig. 9.6. A Gaussian beam of circular cross-section propagating in the x,-direction,

showing the wave front curvature and the beam width. The beam waist is located
at x; =X

which is an exact solution of the paraxial wave equation. We can also
obtain a solution of Eq. (9.4) in the form of a Gaussian beam propagating
along the x;-axis. Here, we will consider a general form of a Gaussian

beam given by:
io
P= P(x3)exp(7XTMp(x3)Xj, X=[x,x,] (9.14)

where P(x;) is a complex-valued scalar, and M , is a 2x2 complex-valued

symmetric matrix. A circular cross-section Gaussian beam of the type
considered in Appendix F is then a special case of Eq. (9.14). This type of
Gaussian beam is shown schematically in Fig. 9.6 along with some of its
defining parameters (beam width, radius of curvature). For an in-depth
discussion of these and other defining parameters, see Appendix F. We
will also discuss later in this Chapter how the M, matrix is related to these
properties of the propagating beam. Substituting Eq. (9.14) into Eq. (9.4),
we obtain

dM
id_P+ptr(Mp)+iPXT L—"+Mf} X=0. (9.15)
c, dx, ¢, ax;

In order to satisfy Eq. (9.15) for all X, we obtain the two equations

2 dP
———+Ptr(M,)=0 (9.16)

¢, dx,
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and

1de

c, dx

+M: =0, 9.17)

where tr(M ) is the trace of the matrix M ,. In ray theory, Eq. (9.16) is

usually called the transport equation [9.2]. Equation (9.17) is in the form
of a non-linear matrix Ricatti equation [9.2].

We can manipulate both of these equations into alternative forms
where we can solve them directly. Consider first Eq. (9.17). We start by

differentiating the identity M pM;l = I with respect to x, . We obtain
(am, /dx, )M, + M, (dM'/ dx, ) =0. (9.18)

If we use Eq. (9.17) in this result and pre-multiply by M;l , then we obtain

-1

¢ 1=0, (9.19)

X3

where I is the 2x2 identity matrix. Equation (9.19) gives us a simple differen-
tial relationship that we will use shortly to obtain the solution of Eq. (9.17).
Now, consider transforming the M part of Eq. (9.16). If we pre-multiply

Eq. (9.19) byM , we find

M, ZCLMP (dM:/dx3). (9.20)
p
Using the relationship
o adj(M)
M, =(M;) IZ#MZ; 9.21)
r

(which comes directly from the definition of the inverse of a matrix) in
Eq. (9.20) yields

» :cpdet—(Mp')adj(Mpl )(aM;!/ dx, ), (9.22)

where adj[ ] denotes the adjoint and det[ | the determinant. Taking the trace

of both sides of Eq. (9.22) and applying the general matrix relationship
[9.3]
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W = tr| adi(M,')(dM;,'/dx,) |, ©.23)

it follows that

) | d [det(M;} )]
e det(M,))  dx,

()

9.24
| d{in[det(m;)]} 029
B g dx, .
Placing Eq. (9.24) into Eq. (9.16) then gives
2d_P+ Pi[ln(det[M; })J =0. (9.25)

dx, dx,

The solutions of Egs. (9.19) and (9.25) are now both easy to obtain. The

solution of Eq. (9.19) by direct integration gives us the propagation law:
M ! (x;)=c,x1+M,'(0)

» (9.26)

=[c,xM, (0)+1]M,'(0).

Taking the inverse of both sides of Eq. (9.26) gives the corresponding
solution for M :

M, (x)=M,(0)[T+c,xM,(0)] (9.27)
which can be rewritten as
1
Mp(x3)=X(Mp(0)+x30pldet[Mp(O)]) (9.28)
where

A=1+(x,c, ) o[ M, (0)]+(x ¢, ) det[ M, (0)]. (9.29)

The solution of Eq. (9.25) also follows directly, since we can write
it in the equivalent form
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d{ln{m}}/d)@ =d<In det(Mp]—w] / dx;, (9.30)

P(0) M,'(0)

where P(0) is P(x3 )| o Equation (9.30) can then also be integrated, leading

X3 =

to any one of the following equivalent forms:

P Jder[M;(O)] Jdetwm

P(0) \[det| M, (x,)] \ det[ M, (0)] (9.31)
) 1
= \/det[l+cpx3Mp (0)] .

Using the second of these forms our Gaussian beam solution for the
pressure, p, then can be written as

det[Mp (x; )]
det[ M, (0)] ©32)

-exp (% XTMp (x, )X]

p(x,@)=P(0) exp(ikpx3 )

with X =[x,,x,]", which shows that both the amplitude and phase of the
Gaussian beam are functions solely of the matrix M, (x3) and the starting
values P(0),M (0) at x; = 0. The velocity in the Gaussian beam can

also be obtained by differentiating this pressure. However, in the paraxial
approximation the dominant term in such a differentiation comes from the
exp(ikpx3) term so that the velocity is simply given by

det[Mp (x3 )}

Vv (x,al) _pr (O)d!’ eXP(ik,,xz) det [Mp (0)] (9.33)

.exp(%XTMp ()@)Xj,

where V7 (0)=P(0)/pcp,pis the density of the fluid and d” is a unit
vector in the x;-direction (the direction of propagation). For a proof that
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the other terms obtained when differentiating the pressure to obtain the
velocity are indeed negligible, see the discussion in Appendix F leading up
to Eq. (F.25).

Gaussian beams are often used to also represent the light beam in a
laser. In the laser field the matrix M , is usually taken to be a diagonal matrix

of the form (see Appendix F and [9.1])

! 0
M, (x;)= (%) oo (9.34)
O -
cpq(x3)

where q(x3) is a complex scalar. In this case Eq. (9.32) becomes

4(0) exp{ik(xf +x22)]

p(x,0)=P(0)explik x 9.35
(x.0) () 20 (9.35)
and the propagation law for M, (Eq. (9.26)) is simply

q(x;)=q(0)+x,. (9.36)

Equation (9.35) represents a propagating Gaussian beam of circular cross
section. As long as the imaginary part of the starting value at x, =0, q(O) ,
has a negative imaginary part, the propagation law shows that q(x3) will
also have a negative imaginary part so that Eq. (9.35) will represent a
beam that is always localized near the axis of propagation. If we let

: = ! +i A 9.37
d(%) R(x) v (x) ©-37)

then Eq. (9.35) can be written as

p(x,@)=P(0) exp(ikpx3 ) qq((f))

a2, 2 2, 2 (9.38)

2R(x3) w (x3)
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which shows that R(x,) represents a wave front radius of curvature that
varies as the Gaussian beam propagates while w(x3) represents a beam width
parameter that defines the radial distance to which the beam amplitude
drops by a factor e from its on-axis value. Figure 9.6 illustrates these

quantities for a propagating Gaussian beam. From the results given in
Appendix F (see Eq. (F.14)) one can write down relatively simple

expressions for R(x;),w(x;):
R(x3)=(x3 _x03)+x12e3 /(x3 —x03)

w(x3)=w0\/1+(x3 — X5 )2 /x12e3 ,

where w, is the beam width at the waist (see Fig. 9.6), located at x, = x,

(9.39)

and x,, = 7w, / A is the confocal parameter, as discussed in Appendix F.

In the laser field, most of the discussion of Gaussian beams is for
circular cross-section beams where Eq. (9.34) is valid. This is because in
the interactions of the Gaussian light beam in a laser (reflection from
mirrors, etc) the cross-section of the Gaussian beam often remains circular.
Appendix F describes similar cases where a circular cross-section Gaussian
beam propagates in a fluid and interacts with spherical interfaces, resulting
in transmitted and reflected beams also of circular cross-section.

In NDE problems, although the Gaussians used to model a
transducer may have circular cross-sections to begin with at the transducer
face, after transmission and reflection from interfaces we must normally
use the more general form of Eq. (9.14) and let M, (x3) be a complex
2x2 symmetrical matrix. As long as the two eigenvalues of
M! (x3)EIrn{MP (x3)} (m=1,2), satisfy M (x3) >0, where Im{ }
indicates “imaginary part of”, Eq. (9.14) will represent a wave which has
an elliptical Gaussian profile with decay away from the x,axis and hence
will be a localized beam traveling along that axis. If the general Gaussian
beam of Eq. (9.14) starts out at x, = 0 with eigenvalues of
M, (0)=Im{M, (0)} (m=1,2), that satisfy M (0)>0, then during
propagation the eigenvalues of Im\M, (x3 )} will also satisfy M (x3 ) >0
since the propagation law, Eq. (9.26), shows that only the real parts of the
eigenvalues of M; (and, hence, M) are affected during propagation.
Thus a localized Gaussian at x, =0 always generates a localized
propagating Gaussian beam, just as in the circular cross-section case. Note
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(a) (b)

Fig. 9.7. The elliptical cross-section of a general propagating Gaussian beam,
showing (a) the principal beam widths and principal beam width directions where
the beam amplitude has fallen to 1/e of its value on the beam axis, and (b) the
principal wave front radii of curvatures and their directions.

that the eigenvalues of Re{Mp (x )} , My (x;) (m=1,2), are related to
the principal wave front curvatures, where Re{ } denotes “real part of™.
The directions of those principal curvatures, however, are different from
the directions associated with the eigenvalues M (x3), which are related
to the two principal beam widths for a Gaussian beam of elliptical cross-
section (see Fig. 9.7). Thus, as an elliptical cross-section Gaussian beam
represented by Eq. (9.32) propagates the angle between the major axes of
that elliptical cross section and the principal wave front curvatures
changes. If we let

A
M ()=
" (x3) ﬂcpwi (x3)
(9.40)
1
MR (x))=——,
( 3) chm (x3)

where R ,w, are the principal radii of curvature and beam widths, respec-
tively, the general Gaussian beam of Eq. (9.32) can be written as

(9.41)
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where (£,,,) and (7,,,) are the principal axes for the imaginary and real
parts of the M, matrix, respectively. The orientation of both these axes

are functions of x;.

Another difference between the circular cross-section case
(Eq. (9.35)) and the more general case (Eq. (9.32)) is that square roots
appear in the latter equation. Since the matrix M is complex and the

principal curvature and beam width directions are not aligned in general,
some care must be taken in evaluating those square roots. This issue
appears to have received little attention in the literature as in many
Gaussian beam problems discussed the M , matrix is diagonal, i.e.

M, (%)= {M' (()x3) Mja%)}' 9.42)

In this case it is easy to specify the roots since we can write Eq. (9.31) as

P(x3) _ Vdet[Mp()%)] _ \/Ml(x3)\/M2(x3)
PO)  Jaet[m,(0)]  M,(0){m,(0)

Because the imaginary parts of M, (0),M, (x;) (m = 1, 2) are always

(9.43)

positive, the individual square roots in Eq. (9.43) also must be taken to
have positive imaginary parts.

For the more general case where M, is not diagonal, although the
principal directions of the real and imaginary parts of M, do not coincide,
the real part of M, is a real, symmetrical matrix and the imaginary part is
a real, symmetrical and positive definite matrix. Under these conditions,
matrix theory [9.5] shows that it is always possible to define a generalized
eigenvalue problem where a real 2x2 transformation matrix, T, can be
found that simultaneously diagonalizes both the real and imaginary parts of
M, . Knowing this transformation matrix we can then form up the term

\/det[TT (%)M, (x3)T(x3)] _ \/Ml(xs)\/Mz(xa)
Jdet[ T (0)M,, (0)T(0)] /47, (0)/3, (0)

and calculate the complex M, (0),M, (x,) terms which are the diagonal

(9.44)

matrix terms obtained after applying the transformation matrices to M, as
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shown in Eq. (9.44). We have placed the tilde over these diagonal terms to
emphasize that these complex quantities are not the same as the complex
values given in Eq. (9.43). However, the square roots on the right side of
Eq. (9.44) can be found in the same fashion as done with Eq. (9.43). Then
in terms of the remaining real determinants, we find

Jdet[Mp()%)]
det[Mp(O)]

= Vdetz[T(O)] \/M1(x3)\/M2(x3)
Jaet' [ T(x,)] /M, (0)/M, (0)

Many mathematical software packages such as MATLAB are available
that obtain the transformation matrix T, so that Eq. (9.45) is easy to imple-
ment in practice.

P(x3) _
P(0)

(9.45)

9.2 The Paraxial Wave Equation and Gaussian Beams in a
Solid

For a homogeneous, elastic solid, the displacement potentials satisfy wave
equations so that they also have paraxial Gaussian beam solutions of the
form

¢= (D(x3)exp(ikpx3)exp(i?wXTMp()%)Xj
, (9.46)
¥ =¥ (x,) texp(ik,x, )exp (?XTMS ()@)Xj.

At high frequencies we can obtain the velocity, v (a = p,s) , for a P-wave
or S-wave by again just differentiating the exp(ikax3 )terms in these equa-
tions to obtain

v =V (x;)d” exp(ik,x, )exp [%XTMQ ()@)XJ (a=p.s) (9.47)

with V'’ =@’®/c,,V* =w’¥/c, and d” =e;,d" =e,xt, where e, is a

unit vector in the x,-direction. Note that these relations are identical in
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form to those for a plane wave since in a plane wave exp(ik,x, ) is the only
spatially varying term present.
Alternatively, we can show that a formal high frequency approxi-

mation of Navier’s equations for the displacements in the quasi-plane wave
form

u, =U,(x,,x,,x,)exp(ik,x,) (9.48)
leads to the paraxial wave equation
o’U, o'U, ouU
+ +2ik, —2=0 9.49
ox;  ox; ’ox, ©49)

with U, =U, =0 for P-waves while for S-waves

277 277 5
0, 20,y U,

=0 (/=L2 )
ox’  ox: Oox, ( ) ©-50)

with 03 =0]9.6]. Since both P-waves and S-waves in a homogeneous,

isotropic elastic solid satisfy paraxial equations (Egs. (9.49) and (9.50)),
elastic wave Gaussian beam solutions can be written in vector form for the
displacements of both wave types as

u’ =U%(x,)d* exp(ikax3 )eXp(%XTMa (x3)Xj (a = p,s) (9.51)
Then Eq. (9.47) again follows, where v* = —iou®, V' (x,)=—ioU“ (x,).

In the solid these Gaussian beam solutions of the paraxial equation
also must satisfy transport and Riccati equations given by [9.2]

2.dV”®
S V(M) =0
s M,) (9.52)
and
1 dM
— 21+ M? =0.
e o (9.53)

Following exactly the same steps outlined for the fluid case, the solutions
of Egs. (9.52) and (9.53) are then

-1

M, (x,)=M, (0)[T+c,xM,(0)] (9.54)
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and

() det[ M, (0)] _ [det[ M, (x,)]
re(0) \det[ M, (x;)] Y\ det[M,(0)]
1

) \/det [I +c,x,M, (0)]

so that the velocity in the solid for a Gaussian beam of type a (a = p,s)

P [det |:Ma (x, )}
Jdet[Ma (0)] (9.56)

.exp(ikax3)exp(i?wXTMa (;@)Xj (a = p,s)

(9.55)

i

which shows that apart from the polarization vector the form of a Gaussian
beam propagating in a solid is identical to that in a fluid (Eq. (9.33)).

9.3 Transmission/Reflection of a Gaussian Beam at an
Interface

In the last section, we obtained explicit expressions for a Gaussian beam
propagating in either a fluid or a solid. Here, we will obtain the transmission/
reflection laws for a Gaussian beam incident on a curved interface between
two solids (Fig. 9.8). A fluid-solid interface as found in immersion testing
is then merely a special case of these relations. We will consider the case
where the Gaussian beam may interact with an interface more than one
time so the interface shown in Fig. 9.8 will be used to represent the
Gaussian beam on the mth interface (m =1, 2, ...).

When the incident Gaussian beam strikes the interface, transmitted
and reflected Gaussian beams of various types will be generated. In
Fig. 9.8 we show a Gaussian beam incident on a general curved interface
> between two homogenous, isotropic media (solid or fluid) and only one
other Gaussian beam that will be used to represent any one of the
transmitted or reflected Gaussian beams generated. We will let the first
medium be medium m and the second medium m+1. The wave speed of a

Gaussian beam type £ (f = p,s)in medium m and the wave speed of a
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medium m

5§

P
p m? Cm ? Cm

medium m+1

P § 2
pm+1 ? Cmﬂ ? Cmvl

Fig. 9.8. A Gaussian beam incident on a curved interface between two elastic
media and one of the transmitted or reflected Gaussian beams. The origins of the
(x,x,,x,) and (,,,,y,)axes are both at the point 0, where the central axis of
the incident Gaussian beam meets the interface, but these origins are shown
displaced for clarity of illustration.

Gaussian beam of type a (o= p,s)in medium m+1 will be given by
s respectively, and the corresponding wave numbers by k”,k*

m? m> " m+l
The velocity amplitude, polarization vector, and complex phase of a
Gaussian beam of type £ in medium m and of type « in medium m+1

will be designated as V”,d”,M” and ¥, d%  ,M”

m?2 m+12 “m+12 m+12

a
cm+l >

c

respectively. The
propagation direction of the incident Gaussian beam will be along the x; -axis
in the (xl,xz,x3) coordinate system and the propagation of the generated
wave will be along the y,-axis in the ( Vis Vs y3) coordinates (Fig. 9.8).
Unit vectors along both of these propagation directions are given
bye’, e, respectively, as shown. The normal to the interface at the point

Q,, where the central axis of the incident Gaussian beam strikes the interface
is the unit vector, n. The origins of both the (x,,x,,x;)and (y,,,,y;) axes
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